Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 37, 2013 - Issue 3
259
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Application of Multiplex Ligation-Dependent Probe Amplification to Screen for β-Globin Cluster Deletions: Detection of Two Novel Deletions in a Multi Ethnic Population

, , , &
Pages 241-256 | Received 30 Oct 2012, Accepted 06 Dec 2012, Published online: 11 Apr 2013

REFERENCES

  • Clark BE, Thein SL. Molecular diagnosis of haemoglobin disorders. Clin Lab Haematol. 2004;26(3):159–176.
  • Chong SS, Boehm CD, Higgs DR, Cutting GR. Single-tube multiplex-PCR screen for common deletional determinants of α-thalassemia. Blood. 2000;95(1):360–362.
  • Wang W, Ma ES, Chan AY, et al. Single-tube multiplex-PCR screen for anti-3.7 and anti-4.2 α-globin gene triplications. Clin Chem. 2003;49(10):1679–1682.
  • Zhou Y, Zhang Y, Li L, et al. [Rapid detection of three common deletional αthalassemias in Chinese by single-tube multiplex PCR]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2005;22(2):180–184.
  • Bhardwaj U, McCabe ER. Multiplex-PCR assay for the deletions causing hereditary persistence of fetal hemoglobin. Mol Diagn. 2005;9(3):151–156.
  • Kidd JL, Azimi M, Lubin B, Vichinsky E, Hoppe C. Application of an expanded multiplex genotyping assay for the simultaneous detection of Hemoglobin Constant Spring and common deletional α-thalassemia mutations. Int J Lab Hematol. 2010;32(4):373–380.
  • Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 200215;30(12):1–13.
  • Sellner LN, Taylor GR. MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat. 2004;23(5):413–419.
  • Harteveld CL, Voskamp A, Phylipsen M, et al. Nine unknown rearrangements in 16p13.3 and 11p15.4 causing α- and β-thalassaemia characterised by high resolution multiplex ligation-dependent probe amplification. J Med Genet. 2005;42(12):922–931.
  • Henthorn PS, Smithies O, Nakatsuji T, et al. (Aγδβ)0-Thalassaemia in Blacks is due to a deletion of 34 kbp of DNA. Br J Haematol. 1985;59(2):343–356.
  • Henthorn PS, Smithies O, Mager DL. Molecular analysis of deletions in the human β-globin gene cluster: deletion junctions and locations of breakpoints. Genomics. 1990;6(2):226–237.
  • Weatherall DJ. The thalassemias. In: Stamatoyannopoulos G, Nienhuis AW, Eds. The Molecular Basis of Blood Diseases. Philadelphia: W.B. Saunders. 1994:157–160.
  • Anagnou NP, Papayannopoulou T, Stamatoyannopoulos G, Nienhuis AW. Structurally diverse molecular deletions in the β-globin gene cluster exhibit an identical phenotype on interaction with the βS-gene. Blood. 1985;65(5):1245–1251.
  • McKeown SM, Carmichael H, Markowitz RB, Kutlar A, Holley L, Kutlar F. Rare occurrence of Hb Lepore-Baltimore in African Americans: molecular characteristics and variations of Hb Lepores. Ann Hematol. 2009;88(6):545–548.
  • Waye JS, Eng B, Patterson M, et al. Hb E/Hb Lepore-Hollandia in a family from Bangladesh. Am J Hematol. 1994;47(4):262–265.
  • Fairbanks VF, McCormick DJ, Kubik KS, et al. Hb S/Hb Lepore with mild sickling symptoms: a hemoglobin variant with mostly δ-chain sequences ameliorates sickle-cell disease. Am J Hematol. 1997;54(2):164–165.
  • Mirabile E, Testa R, Consalvo C, Dickerhoff R, Schiliro G. Association of Hb S/Hb Lepore and δβ-thalassemia/Hb lepore in Sicilian patients: review of the presence of Hb Lepore in Sicily. Eur J Haematol. 1995;55(2):126–130.
  • Waye JS, Eng B, Coleman MB, Steinberg MH, Alter BP. δβ-Thalassemia in an African-American: identification of the deletion endpoints and PCR-based diagnosis. Hemoglobin. 1994;18(6):389–399.
  • Chaibunruang A, Srivorakun H, Fucharoen S, Fucharoen G, Sae-ung N, Sanchaisuriya K. Interactions of Hemoglobin Lepore (δβ hybrid hemoglobin) with various hemoglobinopathies: a molecular and hematological characteristics and differential diagnosis. Blood Cells Mol Dis. 2010;44(3):140–145.
  • Quattrin N, Luzzatto L, Quattrin S Jr. New clinical and biochemical findings from 235 patients with Hemoglobin Lepore. Ann NY Acad Sci. 1980;344:364–374.
  • Craig JE, Barnetson R, Weatherall DJ, Thein SL. Rapid detection of a 13.4-kb deletion causing δβ thalassemia in an Egyptian family by polymerase chain reaction. Blood. 1993;81(3):861–863.
  • Esposito G, Grosso M, Gottardi E, Izzo P, Camaschella C, Salvatore F. A unique origin for Sicilian (δβ)0-thalassemia in 33 unrelated families and its rapid diagnostic characterization by PCR analysis. Hum Genet. 1994;93(6):691–693.
  • Motum PI, Kearney A, Hamilton TJ, Trent RJ. Filipino β0 thalassaemia: a high Hb A2 β0 thalassaemia resulting from a large deletion of the 5′ β globin gene region. J Med Genet. 1993;30(3):240–244.
  • Waye JS, Eng B, Hunt JA, Chui DHK. Filipino β-thalassemia due to a large deletion: identification of the deletion endpoints and polymerase chain reaction (PCR)-based diagnosis. Hum Genet. 1994;94(5):530–532.
  • Dimovski AJ, Baysal E, Efremov DG, et al. A large β-thalassemia deletion in a family of Indonesian-Malay descent. Hemoglobin. 1996;20(4):377–392.
  • Van Ziffle J, Yang W, Chehab FF. Homozygous deletion of six olfactory receptor genes in a subset of individuals with β-thalassemia. PLoS One. 2011;6(2):e17327.
  • Lynch JR, Brown JM, Best S, Jennings MW, Weatherall DJ. Characterization of the breakpoint of a 3.5-kb deletion of the β-globin gene. Genomics. 1991;10(2):509–511.
  • Sanguansermsri T, Pape M, Laig M, Hundrieser J, Flatz G. β0-Thalassemia in a Thai family is caused by a 3.4 kb deletion including the entire β-globin gene. Hemoglobin. 1990;14(2):157–168.
  • Anand R, Boehm CD, Kazazian HH Jr., Vanin EF. Molecular characterization of a β0-thalassemia resulting from a 1.4 kilobase deletion. Blood. 1988;72(2):636–641.
  • Thein SL, Hesketh C, Brown JM, Anstey AV, Weatherall DJ. Molecular characterization of a high A2 β thalassemia by direct sequencing of single strand enriched amplified genomic DNA. Blood. 1989;73(4):924–930.
  • Padanilam BJ, Felice AE, Huisman THJ. Partial deletion of the 5′ β-globin gene region causes β0-thalassemia in members of an American Black family. Blood. 1984;64(4):941–944.
  • Fogarty WM Jr., Vedvick TS, Itano HA. Absence of Haemoglobin A in an individual simultaneously heterozygous in the genes for hereditary persistence of foetal haemoglobin and β-thalassaemia. Br J Haematol. 1974;26(4):527–533.
  • Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2(4):245–255.
  • Conley CL, Weatherall DJ, Richardson SN, Shepard MK, Charache S. Hereditary persistence of fetal hemoglobin: a study of 79 affected persons in 15 Negro families in Baltimore. Blood. 1963;21(3): 261–281.
  • Waye JS, Chui DHK, Eng B, et al. Hb S/β0-thalassemia due to the approximately 1.4-kb deletion is associated with a relatively mild phenotype. Am J Hematol. 1991;38(2):108–112.
  • Dimovski AJ, Divoky V, Adekile AD, et al. A novel deletion of approximately 27 kb including the β-globin gene and the locus control region 3′HS-1 regulatory sequence: β0-thalassemia or hereditary persistence of fetal hemoglobin? Blood. 1994;83(3):822–827.
  • Xu XM, Li ZQ, Liu ZY, Zhong XL, Zhao YZ, Mo QH. Molecular characterization and PCR detection of a deletional HPFH: application to rapid prenatal diagnosis for compound heterozygotes of this defect with β-thalassemia in a Chinese family. Am J Hematol. 2000;65(3):183–188.
  • Dimovski AJ, Efremov DG, Jankovic L, Plaseska D, Juricic D, Efremov GD. A β0-thalassaemia due to a 1605 bp deletion of the 5′ β-globin gene region. Br J Haematol. 1993;85(1):143–147.
  • Mager DL, Henthorn PS, Smithies O. A Chinese Gγ + (Aγδβ)0 thalassemia deletion: comparison to other deletions in the human β-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Res. 1985;13(18):6559–6575.
  • Ribeiro ML, Gu LH, Buchanan-Adair I, Huisman THJ. Incorrect genetic counseling of a couple with β-thalassemia, due to incomplete testing. Am J Hum Genet. 1993;52(4):842–843.
  • Li J, Xie XM, Zhou JY, Li DZ. Co-inheritance of β- and δ-thalassemia compromising prenatal screening in a Chinese couple seeking prevention. Fetal Diagn Ther. 2011;30(1):73–76.
  • Labie D, Dunda-Belkhodja O, Rouabhi F, Pagnier J, Ragusa A, Nagel RL. The –158 site 5′ to the Gγ gene and Gγ expression. Blood. 1985;66(6):1463–1465.
  • Menzel S, Garner C, Gut I, et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat Genet. 2007;39(10):1197–1199.
  • Thein SL, Menzel S, Peng X, et al. Intergenic variants of HBS1L-MYB are responsible for a major quantitative trait locus on chromosome 6q23 influencing fetal hemoglobin levels in adults. Proc Natl Acad Sci USA. 2007;104(27):11346–11351.
  • Sankaran VG, Menne TF, Xu J, et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 2008;322(5909):1839–1842.
  • Acquaye JK, Omer A, Ganeshaguru K, Sejeny SA, Hoffbrand AV. Non-benign sickle cell anaemia in western Saudi Arabia. Br J Haematol. 1985;60(1):99–108.
  • Inati A, Taher A, Bou Alawi W, et al. β-Globin gene cluster haplotypes and Hb F levels are not the only modulators of sickle cell disease in Lebanon. Eur J Haematol. 2003;70(2):79–83.
  • Seltzer WK, Abshire TC, Lane PA, Roloff JS, Githens JH. Molecular genetic studies in Black families with sickle cell anemia and unusually high levels of fetal hemoglobin. Hemoglobin. 1992;16(5): 363–377.
  • Cao A, Galanello R. β-Thalassemia. Genet Med. 2010;12(2):61–76.
  • Bain BJ. The α, β, δ and γ thalassemias and related conditions. In: Khan M, Harvey H, Eds. Haemoglobinopathy Diagnosis, 2nd ed. Malden: Blackwell Publishing Ltd. 2006:121–125.
  • Shriver MD, Parra EJ, Dios S, et al. Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet. 2003;112(4):387–399.
  • Phylipsen M, Chaibunruang A, Vogelaar IP, et al. Fine-tiling array CGH to improve diagnostics for α- and β-thalassemia rearrangements. Hum Mutat. 2012;33(1):272–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.