Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 37, 2013 - Issue 6
216
Views
3
CrossRef citations to date
0
Altmetric
Original Article

Gene Expression Analysis of the Brazilian Type of Hereditary Persistence of Fetal Hemoglobin: Identification of Genes that Could be Related to γ-Globin Activation

, , , , , , , & show all
Pages 516-535 | Received 27 Nov 2012, Accepted 07 Apr 2013, Published online: 19 Aug 2013

REFERENCES

  • Gazouli M, Katsantoni E, Kosteas T, Anagnou NP. Persistent fetal γ-globin expression in adult transgenic mice following deletion of two silencer elements located 3' to the human Aγ-globin gene. Mol Med. 2009;15(11-12):415–424.
  • Weatherall DJ. Phenotype-genotype relationships in monogenic disease: lessons from the thalassaemias. Nat Rev Genet. 2001;2(4):245–255.
  • Kim A, Dean A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol Cells. 2012;34(1):1–5.
  • Wilber A, Nienhuis AW, Persons DA. Transcriptional regulation of fetal to adult hemoglobin switching: new therapeutic opportunities. Blood. 2011;117(15):3945–3953.
  • Steinberg MH. Genetic etiologies for phenotypic diversity in sickle cell anemia. Sci World J. 2009;9:46–67.
  • Ngo DA, Aygun B, Akinsheye I, et al. Fetal haemoglobin levels and haematological characteristics of compound heterozygotes for Haemoglobin S and deletional hereditary persistence of fetal haemoglobin. Br J Haematol. 2012;156(2):259–264.
  • Forget BG. Molecular basis of hereditary persistence of fetal hemoglobin. Ann NY Acad Sci. 1998;850:38–44.
  • Costa FF, Zago MA, Cheng G, Nechtman JF, Stoming TA, Huisman THJ. The Brazilian type of nondeletional Aγ-fetal hemoglobin has a C→G substitution at nucleotide –195 of the Aγ-globin gene. Blood. 1990;76(9):1896–1897.
  • Schreiber R, Goncalves MS, Junqueira ML, Saad ST, Krieger JE, Costa FF. The Aγ –195 (C→G) mutation in hereditary persistence of fetal hemoglobin is not associated with activation of a reporter gene in vitro. Braz J Med Biol Res. 2001;34(4):489–492.
  • Takahashi T, Schreiber R, Krieger JE, Saad ST, Costa FF. Analysis of the mechanism of action of the Brazilian type (Aγ –195 C→G) of hereditary persistence of fetal hemoglobin. Eur J Haematol. 2003;71(6):418–424.
  • da Cunha AF, Brugnerotto AF, Corat MA, et al. High levels of human γ-globin are expressed in adult mice carrying a transgene of the Brazilian type of hereditary persistence of fetal hemoglobin (Aγ –195). Hemoglobin. 2009;33(6):439–447.
  • Roversi FM, Cunha AF, Lanaro C, et al. The –195C→G substitution in Brazilian hereditary persistence of fetal hemoglobin decreases NF-E1/YY1 binding and increases PAXI binding to the Aγ globin promoter region. Proceedings of the 52nd Annual American Society of Hematology Meeting, Orlando, FL, USA, December 4-7, 2010. Blood. 2010:116(21):857.
  • Dacie JV, Lewis SM. Practical Haematology. Edinburgh: Churchill Livingstone, 1984.
  • Goossens M, Kan YY. DNA analysis in the diagnosis of hemoglobin disorders. Methods Enzymol. 1981;76:805–817.
  • Hillmann A, Dunne E, Kenny D. cDNA amplification by SMART-PCR and suppression subtractive hybridization (SSH)-PCR. Methods Mol Biol. 2009;496:223–243.
  • Vandesompele J, De Preter K, Pattyn F, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):RESEARCH0034.
  • Ghosh S, Zang S, Mitra PS, Ghimbovschi S, Hoffman EP, Dutta SK. Global gene expression and ingenuity biological functions analysis on PCBs 153 and 138 induced human PBMC in vitro reveals differential mode(s) of action in developing toxicities. Environ Int. 2011;37(5):838–857.
  • Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8(3):186–194.
  • Sankaran VG, Xu J, Byron R, et al. A functional element necessary for fetal hemoglobin silencing. N Engl J Med. 2011;365(9):807–814.
  • Rosok O, Sioud M. Discovery of differentially expressed genes: technical considerations. Methods Mol Biol. 2007;360:115–129.
  • Diatchenko L, Lau YF, Campbell AP, et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA. 1996;93(12):6025–6030.
  • de Andrade TG, Peterson KR, Cunha AF, et al. Identification of novel candidate genes for globin regulation in erythroid cells containing large deletions of the human β-globin gene cluster. Blood Cells Mol Dis. 2006;37(2):82–90.
  • Bonafoux B, Lejeune M, Piquemal D, et al. Analysis of remnant reticulocyte mRNA reveals new genes and antisense transcripts expressed in the human erythroid lineage. Haematologica. 2004;89(12):1434–1438.
  • Goh SH, Lee YT, Bhanu NV, et al. A newly discovered human α-globin gene. Blood. 2005;106(4):1466–1472.
  • Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR. BMC Mol Biol. 2006;7(1):33–42.
  • Goh SH, Josleyn M, Lee YT, et al. The human reticulocytes transcriptome. Physiol Genomic. 2007;30(2):172–178.
  • Wojda U, Noel P, Miller JL. Fetal and adult hemoglobin production during adult erythropoiesis: coordinate expression correlates with cell proliferation. Blood. 2002;99(8):3005–3013.
  • van den Berg MC, Burgering BM. Integrating opposing signals toward Forkhead box O. Antioxid Redox Signal. 2011;14(4):607–621.
  • Monsalve M, Olmos Y. The complex biology of FOXO. Curr Drug Targets. 2011;12(9):1322–1350.
  • Ding Z, Gillespie LL, Mercer FC, Paterno GD. The SANT domain of human MI-ER1 interacts with Sp1 to interfere with GC box recognition and repress transcription from its own promoter. J Biol Chem. 2004;279(27):28009–28016.
  • Blackmore TM, Mercer CF, Paterno GD, Gillespie LL. The transcriptional cofactor MIER1-β negatively regulates histone acetyltransferase activity of the CREB-binding protein. BMC Res Notes. 2008;1(1):68–73.
  • Kaiser F, Kaufmann SH, Zerrahn J. IIGP, a member of the IFN inducible and microbial defense mediating 47 kDa GTPase family, interacts with the microtubule binding protein hook3. J Cell Sci. 2004;117(Pt 9):1747–1756.
  • Chatterjee M, Agrawal S, Agarwal SS. Differential effect of IFN-α and IFN-γ on phosphorylation of p65 and p50 (rel) in the K562 cell line: implications for altered interaction with RXR β. Cytokine. 1996;8(5):357–364.
  • Bauer DE, Kamran SC, Orkin SH. Reawakening fetal hemoglobin: prospects for new therapies for the β-globin disorders. Blood. 2012;120(15)2945–2953.
  • Roversi FM, Cunea AF, Brugnerotto AF, Lanaro C, Albuquerque DM, Costa FF. Gene expression profile analysis in hereditary persistence of fetal hemoglobin (Brazilian type): identification of target genes that could be related to hemoglobin switching. Proceedings of the 16th Congress of the European Haematology Association, London, UK, June 9-12, 2011. Haematologica. 2011;96(suppl 2):169–170.
  • Jackson DA, McDowell JC, Dean A. β-Globin locus control region HS2 and HS3 interact structurally and functionally. Nucleic Acids Res. 2003;31(4):1180–1190.
  • Borg J, Papadopoulos P, Georgitsi M, et al. Haploinsufficiency for the erythroid transcription factor KLF1 causes hereditary persistence of fetal hemoglobin. Nat Genet. 2010;42(9):801–805.
  • Satta S, Perseu L, Maccioni L, Giagu N, Galanello R. Delayed fetal hemoglobin switching in subjects with KLF1 gene mutation. Blood Cells Mol Dis. 2012;48(1):22–24.
  • Zhou D, Liu K, Sun CW, Pawlik KM, Townes TM. KLF1 regulates BCL11A expression and γ- to β-globin gene switching. Nat Genet. 2010; 42(9):742–744.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.