Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 39, 2015 - Issue 1
640
Views
6
CrossRef citations to date
0
Altmetric
Review Article

β-Globin Genes: Mutation Hot-Spots in the Global Thalassemia Belt

, , &
Pages 1-8 | Received 01 Feb 2014, Accepted 07 Jul 2014, Published online: 19 Dec 2014

References

  • Darwin C. On the Origin of Species. Cambridge, MA: Harvard University Press, 1964
  • Caporale LH. Is there a higher level genetic code that directs evolution? Mol Cell Biochem. 1984;64(1):5–13
  • Caporale LH. Natural selection and the emergence of a mutation phenotype: An update of the evolutionary synthesis considering mechanisms that affect genome variation. Annu Rev Microbiol. 2003;57:467–485
  • Clark DP. Molecular Biology: Academic Cell Update Edition. 2005
  • Alvarez-Dominguez JR, Amosova O, Fresco JR. Molecular basis of disease: Selfcatalytic DNA-depurination underlies human β-globin gene mutations at codon six that cause anemias and thalassemias. J Biol Chem. 2013;doi10.1074/jbc.M113.454744
  • Bridges BA. Dirty transcripts from clean DNA. Science. 1999;284(5411):62–63
  • Prindle KH Jr, McCurdy PR. Red cell lifespan in Hemoglobin C disorders (with special reference to Hemoglobin C trait). Blood. 1970;36(1):14–19
  • Chernoff AI. The Hemoglobin D syndromes. Blood. 1958;13(2):116–127
  • McCurdy PR. 32-DFP and 51-Cr for measurement of red cell life span in abnormal hemoglobin syndromes. Blood. 1969;33(2):214–224
  • Haldane JBS. The rate ofmutation of human genes. Hereditas. 1949;35(Suppl b):267–273
  • Canali S. Researches on thalassemia and malaria in Italy and the origins of the “Haldane hypothesis”. Med Secoli. 2008;20(3):827–846
  • Allison AC. Protection afforded by the sickle-cell trait against subtertian malaria infection. Br Med J. 1954;1(4857):290–294
  • Flint J, Harding RM, Boyce AJ, Clegg JB. The population genetics of the haemoglobinopathies. Bailliére’s Clin Haematol. 1998;11:1–51
  • Weatherall DJ. The definition and epidemiology of non-transfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl 1):S3–S6
  • Min-Oo G, Gros P. Erythrocyte variants and the nature of their malaria protective effect. Cell Microbiol. 2005;7(6):753–763
  • Allison AC. Genetic control of resistance to human malaria. Curr Opin Immunol. 2009;21(5):499–505
  • Hay SI, Guerra CA, Tatem AJ, et al. The global distribution and population at risk of malaria: Past, present and future. Lancet Infect Dis. 2004;4(6):327–336
  • Tiffert T, Lew VL, Ginsburg H, et al. The hydration state of human red blood cells and their susceptibility to invasion by Plasmodium falciparum. Blood. 2005;105(12):4853–4860
  • Yuthavong Y, Butthep P, Bunyaratvej A, et al. Impaired parasite growth and increased susceptibility to phagocytosis of Plasmodium falciparum infected α thalassemia or Hemoglobin Constant Spring red blood cells. Am J Clin Pathol. 1988;89(4):521–525
  • Ayi K, Turrini F, Piga A, Arese P. Enhanced phagocytosis of ring-parasitized mutant erythrocytes: A common mechanism that may explain protection against falciparum malaria in sickle trait and β-thalassemia trait. Blood. 2004;104(10):3364–3371
  • Cholera R, Brittain NJ, Gillrie MR, et al. Impaired cytoadherence of Plasmodium falciparum-infectederythrocytes containing sickle hemoglobin. Proc Natl Acad Sci USA. 2008;105(3):991–996
  • Lopez C, Saravia C, Gomez A, et al. Mechanisms of genetically-based resistance to malaria. Gene. 2010;467(1–2):1–12
  • Pasvol G, Weatherall DJ, Wilson RJ, et al. Fetal haemoglobin and malaria. Lancet. 1976;1(7972):1269–1272
  • Luzzi GA, Merry AH, Newbold CI, et al. Surface antigen expression on Plasmodium falciparum-infected erythrocytes ismodified in α- and β-thalassemia. J Exp Med. 1991;173(4):785–791
  • Smith TG, Ayi K, Serghides L, et al. Innate immunity to malaria caused by Plasmodium falciparum. Clin Invest Med. 2002;25(6):262–272
  • Andy Malaria and Thalassemia. From Lisa Cammirelli’s: Thalassemia Patients and Friends 2006 (http://www.thalassemiapatientsandfriends.com/index.php?topic=474.0)
  • Williams TN, Weatherall DJ. World distribution, population genetics, and health burden of the hemoglobinopathies. Cold Spring Harb Perspect Med. 2012;2(9):a01692. doi: 10.1101/cshperspect.a011692
  • Vichinsky EP. Changing patterns of thalassemia worldwide. Ann N Y Acad Sci. 2005;1054:18–24
  • Steinberg MH, Forget BG, Higgs DR, Weatherall DJ, Eds. Disorders of Hemoglobin Genetics, Pathophysiology, and Clinical Management, 2nd ed. Cambridge, UK: Cambridge University Press, 2009
  • Weatherall DJ, Clegg JB. The Thalassaemia Syndromes, 2nd ed. Oxford, UK: Blackwell Science, 2001
  • Thein SL. Abnormalities of the structure and synthesis of hemoglobin. In: Porwit A, McCullough J, Erber W, Eds. Blood and Bone Marrow Pathology, 2nd ed. Edinburgh, UK: Churchill Livingstone (Elsevier Ltd). 2011:131–150
  • Tritipsombut J, Phylipsen M, Viprakasit V, et al. A single-tube multiplex gap polymerase chain reaction for the detection of eight globin gene cluster deletions common in Southeast Asia. Hemoglobin. 2012;36(6):571–580
  • Giardine B, van Baal S, Kaimakis P, et al. HbVar database of human hemoglobin variants and thalassemia mutations: 2007 update. Hum Mutat. 2007;28(2):206–216 (http://globin.cse.psu.edu)
  • Morales KR, Magana MT, Ibarra B, Perea FJ. Diversity of the 5′ β-globin haplotype of four β-thalassemia mutations in the Mexican population. Hemoglobin. 2009;33(1):66–71
  • Bravo-Urquiola M, Arends A, Gomez G, et al. Molecular spectrum of β-thalassemia mutations in the admixed Venezuelan population, and their linkage to β-globin gene haplotypes. Hemoglobin. 2009;36(3):209–218
  • Reichert VC, de Castro SM, Wagner SC, et al. Identification of β thalassemia mutations in South Brazilians. Ann Hematol. 2008;87(5):381–384
  • Lemsaddek W, Picanco I, Seuanes F, et al. The β-thalassemia mutation/haplotype distribution in the Moroccan population. Hemoglobin. 2004;28(1):25–37
  • Haj Khelil A, Denden S, Leban N, et al. Hemoglobinopathies in North Africa: A review. Hemoglobin. 2010;34(1):1–23
  • Ghedira ES, Dupin-Deguine D, Duffilot D, et al. A second observation of the rare frameshift mutation in the β-globin gene: Codon 46 (+A) (HBB: c.138_139insA). Hemoglobin. 2011;35(2):157–161
  • Sahli CA, Bibi A, Ouali F, et al. δ0-Thalassemia in cis of βKnossos globin gene: First homozygous description in thalassemia intermedia Libyans and first combination with codon 39 (C->T) in thalassemia intermedia Tunisian patients. Clin Chem Lab Med. 2012;50(10):1743–1748
  • Agouti I, Bennani M, Levy N, et al. The rare codon 24 (T > A) (β+) mutation in association with the common codon 39 (C > T) (β0) mutation causes transfusion dependent β-thalassemia in a Moroccan patient. Hemoglobin. 2009;33(2):150–154
  • Bouhass R, Perrin P, Trabuchet G, et al. The spectrum of β-thalassemia mutations in the Oran region of Algeria. Hemoglobin. 1994;18(3):211–219
  • Jiffri EH, Bogari N, Zidan KH, et al. Molecular updating of β-thalassemia mutations in the Upper Egyptian population. Hemoglobin. 2010;34(6):538–547
  • Amselem S, Nunes V, Vidaud M, et al. Determination of the spectrum of β thalassemia genes in Spain by use of dot-blot analysis of amplified β-globin DNA. Am J Hum Genet. 1988;43(1):95–100
  • Ropero P, Villegas A, Munoz J, et al. First Spanish case of thalassemia major due to a compound heterozygosity for the IVS-II-848 (C → A) and codon 39 (C → T) mutations of the β-globin gene. Hemoglobin. 2006;30(1):15–21
  • Ropero P, Gonzalez FA, Cela E, et al. Association in cis of the mutations +20 (C > T) in the 5' untranslated region and IVS-II-745 (C > G) on the β-globin gene. Hemoglobin. 2013;37(2):112–118
  • Lacan P, Aubry M, Couprie N, Francina A. A mutation of the β-globin gene initiation codon, ATG→AAG, found in a French Caucasian man. Hemoglobin. 2005;29(3):225–228
  • Aguilar-Martinez P, Jourdan, E, Brun S, et al. A novel mutation of the β-globin gene promoter (-102 C > A) and pitfalls in family screening. Am J Hematol. 2007;82(12):1088–1090
  • Georgel AF, Méreau C, Willekens C, et al. Identification of a new mutation on the β-globin gene: Codons 8/9 (+AGAA); (GAG.AAG.TCT)(Glu-Lys-Ser)>GAG.AAAGAAG, in a patient from the north of France with a phenotype of β thalassemia minor. Hemoglobin. 2010;34(4):389–393
  • Joly P, Lacan P, Garcia C, Couprie AN. Identification and molecular characterization of four new large deletions in the β-globin gene cluster. Blood Cells Mol Dis. 2009;43(1):53–57
  • Lacerra G, Prezioso R, Musollino G, et al. Identification and molecular characterization of a novel 55-kb deletion recurrent in southern Italy: The Italian GγAγδβ0-thalassemia. Eur J Haematol. 2013;90(3):214–219
  • Papachatzopoulou A, Vantarakis A, Kourakli A. Documentation of the incidence of β thalassemia and HBB mutation freguencies in South-Western Greece. Hemoglobin. 2010;34(4):333–342
  • Guvenc B, Canataroglu A, Unsal C, et al. β-Thalassemia mutations and hemoglobinopathies in Adana, Turkey: Results from a single center study. Arch Med Sci. 2012;8(3):411–414
  • Bozdogan ST, Unsal C, Erkman H, et al. Nonsense β-thalassemia mutation at codon 37 (TGG > TGA), detected for the first time in three Turkish cases. Hemoglobin. 2012;36(3):83–88
  • Boussiou M, Karababa P, Sinopoulou K, et al. The molecular heterogeneity of β thalassemia in Greece. Blood Cells Mol Dis. 2008;40(3):317–319
  • Giardine B, Borg J, Viennas E, et al. Updates of the HbVar database of human hemoglobin variants and thalassemia mutations. Nucleic Acids Res. 2014;42(Database issue):D1063–D1069. (http://globin.cse.psu.edu)
  • Akhavan-Niaki H, Poupak D-P, Ali B, et al. A comprehensive molecular characterization of β thalassemia in a highly heterogeneous population. Blood Cells Mol Dis. 2011;47(1):29–32
  • Kiani AA, Mortazavi Y, Zeinali S, Shirkhani Y. The molecular analysis of β thalassemia mutations in Lorestan Province, Iran. Hemoglobin. 2007;31(3):343–349
  • Galehdari H, Salehi B, Pedram M, Oraki Kohshour M. High Prevalence of rare mutations in the β globin gene in an ethnic group in Iran. Iran Red Crescent Med J. 2011;13(5):356–358
  • Saleh-Gohari N, Mashizi AK. A family with the 619 bp deletion on the β-globin gene found in Kerman Province, Iran. Hemoglobin. 2009;33(6):515–518
  • Hamid M, Akbari MT. A 13-bp deletion in the 3′ untranslated region of the β-globin gene causes β-thalassemia major in compound heterozygosity with IVS-II-1 mutation. Med Princ Pract. 2011;20(5):488–490
  • Al-Allawi NA, Al-Dousky AA. Frequency of haemoglobinopathies at premarital health screening in Dohuk, Iraq: Implications for a regional prevention programme. East Mediterr Health J. 2010;16(4):381–385
  • Jalal SD, Al-Allawi NA, Bayat N, et al. β-Thalassemia mutations in the Kurdish population of northeastern Iraq. Hemoglobin. 2010;34(5):469–476
  • Khan SN, Riazuddin S. Molecular characterization of β-thalassemia in Pakistan. Hemoglobin. 1998;22(4):333–345
  • Usman M, Moinuddin M, Ahmed SA. Role of iron deficiency anemia in the propagation of β thalassemia gene. Korean J Hematol. 2011;46(1):41–44
  • Moatter T, Kausar T, Aban M, et al. Prenatal screening for β-thalassemia major reveals new and rare mutations in the Pakistani population. Int J Hematol. 2012;95(4):394–398
  • Khan SN, Riazuddin S, Galanello R. Identification of three rare β-thalassemia mutations in the Pakistani population. Hemoglobin. 2000;24(1):15–22
  • Zahed L. The spectrum of β-thalassemia mutations in the Arab populations. J Biomed Biotech. 2000;1(3):129–132
  • Baysal E. Molecular heterogeneity of β-thalassemia in the United Arab Emirates. Community Genet. 2005;8(1):35–39
  • Adekile A, Haider M, Kutlar F. Mutations associated with β-thalassemia intermedia in Kuwait. Med Princ Pract. 2005;14(Suppl 1):69–72
  • Abuzenadah AM, Hussein IM, Damanhouri GA. Molecular basis of β-thalassemia in the western province of Saudi Arabia: Identification of rare β-thalassemia mutations. Hemoglobin. 2011;35(4):346–357
  • Al-Sultan A, Phanasgaonkar S, Suliman A. Spectrum of β-thalassemia mutations in the eastern province of Saudi Arabia. Hemoglobin. 2011;35(2):125–134
  • Furuumi H, Firdous N, Inoue T, et al. Molecular basis of β-thalassemia in the Maldives. Hemoglobin. 1998;22(2):141–151
  • Kotea N, Ramasawmy R, Lu CY, et al. Spectrum of β thalassemia mutations and their linkage to β-globin gene haplotypes in the Indo-Mauritians. Am J Hematol. 2000;63(1):11–15
  • Agarwal MB. The burden of haemoglobinopathies in India — time to wake up? J Assoc Physicians India. 2005;53(12):1017–1018
  • Sinha S, Black ML, Agarwal S, et al. Profiling β-thalassaemia mutations in India at state and regional levels: Implications for genetic education, screening and counselling programmes. HUGO J. 2009;3(1–4):51–62
  • Colah R, Gorakshakar A, Nadkarni A, et al. Regional heterogeneity of β thalassemia mutations in the multi ethnic Indian population. Blood Cells Mol Dis. 2009;42(3):241–246
  • Sharma N, Das R, Kaur J, et al. Evaluation of the genetic basis of phenotypic heterogeneity in North Indian patients with thalassaemia major. Eur J Haematol. 2010;84(6):531–537
  • Kumar R, Sharma DC, Kishor P. Hb E/β thalassemia: The second most common cause of β thalassemia in the Gwalior-Chambal region of central India. Hemoglobin. 2012;36(5):485–490
  • Sheth JJ, Sheth FJ, Pandya P, et al. Thalassemia mutations in Western India. Ind J Pediatr. 2008;75(6):567–570
  • Krishnamurti L. Few reports of Hb E/β thalassemia in north east India: Under diagnosis or complete exclusion of β thalassemia by Hemoglobin E. J Pediatr Hematol/Oncol. 2000;22(6):558–563
  • Black ML, Sinha S, Agarwal S, et al. A descriptive profile of β-thalassaemia mutations in India, Pakistan and Sri Lanka. J Community Genet. 2010;1(3):149–157
  • Fisher CA, Premawardhena A, de Silva S, et al. The molecular basis for the thalassaemias in Sri Lanka. Br J Haematol. 2003;121(4):662–671
  • Zheng CG, Liu M, Du J, et al. Molecular spectrum of α- and β-globin gene mutations detected in the population of Guangxi Zhuang Autonomous Region, People’s Republic of China. Hemoglobin. 2011;35(1):28–39
  • Yu F, Zhong C, Zhou Q, et al. Genetic Analysis of beta thalassemia mutations in the minority populations of Guizhou province. Zonghua Yi Xua Yi Chuan Xua Za Zhi. 2010;27(6):700–703
  • Shang Z, Rao J, Lou W, et al. Compound heterozygosity for a rare small deletion and a common point mutation in the β-globin gene: Report of two Chinese families. Int J Lab Hematol. 2011;33(1):79–84
  • Supawadee Y, Kanokwan S, Goonnapa F, et al. Genotype and phenotype characterizations in a large cohort of β-thalassemia heterozygote with different forms of a-thalassemia in northeast Thailand. Blood Cells Mol Dis. 2011;47(2):120–124
  • Yokoyama A, Nakamaki T, Yamada K, et al. β0-Thalassemia trait (IVS-I-1 G → T) in a Japanese family. Intern Med. 1993;32(11):865–868
  • Fujihara N, Tozuka M, Ueno I, et al. Novel β-thalassemia trait (IVS I-1 G → C) in a Japanese family. Am J Hematol. 2003;72(1):64–66
  • Adhiyanto C, Yamashiro Y, Hattori Y, et al. A new β0-Thalassemia mutation (codon 102, AAC > ATCAC) in coexistence with a heterozygous P4.2 Nippon gene. Hemoglobin. 2013;37(3):227–240
  • Wakamatsu C, Ichinose M, Manabe J, et al. Molecular basis of β-thalassemia in Japan: Heterogeneity and origins of mutations. Acta Haematol. 1994;91(3):136–143
  • Cobián JG, Sánchez-López JY, Magaña MT, et al. Types and frequencies of hemoglobin disorders in the pacific coast of four states of Mexico. Rev Invest Clin. 2009;61(5):399–404
  • Agouti I, Badens C, Abouyoub A, et al. Molecular basis of β-thalassemia in Morocco: Possible origins of the molecular heterogeneity. Genet Test. 2008;12(4):563–568
  • Fattoum S. [Hemoglobinopathies in Tunisia. An updated review of the epidemiologic and molecular data] (in French). Tunis Med. 2006;84(11):687–696
  • El-Beshlawy A, Youssry I. Prevention of hemoglobinopathies in Egypt. Hemoglobin. 2009;33(Suppl 1):S14–S20
  • Hamamy HA, Al-Allawi NA. Epidemiological profile of common haemoglobinopathies in Arab countries. J Community Genet. 2013;4(2):147–167
  • Madan N, Sharma S, Sood SK, et al. Frequency of β-thalassemia trait and other hemoglobinopathies in northern and western India. Indian J Hum Genet. 2010;16(1):16–25
  • Kyrri AR, Kalogerou E, Loizidou D, et al. The changing epidemiology of β-thalassemia in the Greek-Cypriot population. Hemoglobin. 2013;37(5):435–443
  • Firdous N, Gibbons S, Modell B. Falling prevalence of β-thalassaemia and eradication of malaria in the Maldives. J Community Genet. 2011;2(3):173–189
  • Kamberov YG, Wang S, Tan J, et al. Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell. 2013;152(4):691–702
  • Beall CM, Cavalleri GL, Deng L, et al. Natural selection on EPAS1(HIF2α) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci USA. 2010;107(25):11459–11464
  • Scheinfeldt LB, Soi S, Thompson S, et al. Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biol. 2012;13(1):R1. doi: 10.1186/gb-2012-13-1-r1
  • Cooper DN, Youssoufian H. The CpG dinucleotide and human genetic disease. Hum Genet. 1988;78(2):151–155
  • Jiricny J. Mismatch repair and cancer. Cancer Surv. 1996;28:47–68
  • Ehrlich M, Norris KF, Wang RY, et al. DNA cytosine methylation and heat-induced deamination. Biosci Rep. 1986;6(4):387–393
  • Jiang C, Han L, Su B, et al. Features and trend of loss of promoter-associated CpG islands in the human and mouse genomes. Mol Biol Evol. 2007;24(9):1991–2000
  • Zhao Z, Jiang C. Methylation-dependent transition rates are dependent on local sequence lengths and genomic regions. Mol Biol Evol. 2007;24(1):23–25
  • Xia J, Han L, Zhao Z. Investigating the relationship of DNA methylation with mutation rate and allele frequency in the human genome. BMC Genomics. 2012;13(Suppl 8):S7. doi: 10.1186/1471-2164-13-S8-S7
  • Perutz MF. Frequency of abnormal human haemoglobins caused by C– –T transitions in CpG dinucleotides. Biophys Chem. 1990;37(1–3):25–29
  • Li J, Harris RA, Cheung SW. Genomic hypomethylation in the human germline associates with selective structural mutability in the human genome. PLoS Genet. 2012;8(5):e1002692. doi: 10.1371/journal.pgen.1002692
  • Hedrick PW. Population genetics of malaria resistance in humans. Heredity (Edinb). 2011;107(4):283–304
  • Weatherall DJ. Thalassemia as a global health problem: Recent progress towards its control in the developing countries. Ann NY Acad Sci. 2010;120(2):17–23

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.