Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 40, 2016 - Issue 2
217
Views
5
CrossRef citations to date
0
Altmetric
Original Article

First Report of a Dominantly Inherited β-Thalassemia Caused by a Novel Elongated β-Globin Chain

, , , , &
Pages 102-107 | Received 13 May 2015, Accepted 26 Nov 2015, Published online: 05 Feb 2016

References

  • Muncie HL Jr, Campbell J. α And β thalassemia. Am Fam Physician. 2009;80(4):339–344
  • Ginzburg Y, Rivella S. β-Thalassemia: A model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood. 2011;118(16):4321–4330
  • Gardenghi S, Grady RW, Rivella S. Anemia, ineffective erythropoiesis, and hepcidin: Interacting factors in abnormal iron metabolism leading to iron overload in β-thalassemia. Hematol Oncol Clin North Am. 2010;24(6):1089–1107
  • Cao A, Galanello R. β-Thalassemia. Genet Med. 2010;12(2):61–76
  • Galanello R, Origa R. β-Thalassemia. Orphanet J Rare Dis. 2010;5:11. doi: 10.1186/1750-1172-5-11
  • Borgna-Pignatti C, Rugolotto S, De Stefano P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–1193
  • Nienhuis AW, Nathan DG. Pathophysiology and clinical manifestations of β-thalassemias. Cold Spring Harb Perspect Med. 2012;2(12):a011726. doi: 10.1101/cshperspect.a011726
  • Musallam KM, Taher AT, Duca L, et al. Levels of growth differentiation factor-15 are high and correlate with clinical severity in transfusion-independent patients with β thalassemia intermedia. Blood Cells Mol Dis. 2011;47(4):232–234
  • Rivella S. The role of ineffective erythropoiesis in non-transfusion-dependent thalassemia. Blood Rev. 2012;26(Suppl 1):S12–S15
  • Camaschella C, Cappellini MD. Thalassemia intermedia. Haematologica. 1995;80(1):58–68
  • Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215
  • Baysal E, Huisman THJ. Detection of common deletional α-thalassemia-2 determinants by PCR. Am J Hematol. 1994;46(3):208–213
  • Harteveld CL, Refaldi C, Cassinerio E, et al. Segmental duplications involving the α-globin gene cluster are causing β-thalassemia intermedia phenotypes in β-thalassemia heterozygous patients. Blood Cells Mol Dis. 2008;40(3):312–316
  • Lee ST, Yoo EH, Kim JY, et al. Mutiple ligation-dependent probe amplification screening of isolated increased Hb F levels revealed three cases of novel rearrangements/deletions in the β-globin gene cluster. Br J Haematol. 2010;148(1):154–160
  • Fucharoen S, Viprakasit V. Hb H disease: Clinical course and disease modifiers. Hematology Am Soc Hematol Educ Program. 2009;1:26–34
  • Turbpaiboon C, Limjindaporn T, Wongwiwat W, et al. Impaired interaction of α-haemoglobin stabilising protein with α-globin termination mutant in a yeast two-hybrid system. Br J Haematol 2006;132(3):370–373
  • Colah R, Gorakshakar A, Nadkarni A. Global burden, distribution and prevention of β-thalassemias and Hemoglobin E disorders. Expert Rev of Hematol. 2010;3(1):103–117
  • Thein SL. Dominant β thalassaemia: Molecular basis and pathophysiology. Br J Haematol. 1992;80(3):273–277
  • Williamson D, Brown KP, Langdown JV, et al. Mild thalassemia intermedia resulting from a new insertion/frameshift mutation in the β-globin gene. Hemoglobin. 1997;21(6):485–493
  • Kim JY, Park SS, Yang SH, et al. A Korean family with a dominantly inherited β-thalassemia due to Hb Durham-N.C./Brescia [β114(G16)Leu→Pro]. Hemoglobin. 2001;25(1):79–89
  • Hall GW, Franklin IM, Sura T, et al. A novel mutation (nonsense β127) in exon 3 of the β globin gene produces a variable thalassaemic phenotype. Br J Haematol. 1991;79(2):342–344
  • Kazazian HH Jr, Dowling CE, Hurwitz RL, et al. Dominant thalassemia-like phenotypes associated with mutations in exon 3 of the β-globin gene. Blood. 1992;79(11):3014–3018
  • Arjona SN, Eloy-Garcia JM, Gu LH, et al. The dominant β-thalassaemia in a Spanish family is due to a frameshift that introduces an extra CGG codon (=arginine) at the 5′ end of the second exon. Br J Haematol. 1996;93(4):841–844
  • Hopmeier P, Krugluger W, Gu LH, et al. A newly discovered frameshift at codons 120–121 (+A) of the β gene is not associated with a dominant form of β-thalassemia. Blood. 1996;87(12):5393–5394
  • Fucharoen G, Fuchareon S, Jetsrisuparb A, et al. Eight-base deletion in exon 3 of the β-globin gene produced a novel variant (β Khon Kaen) with an inclusion body β-thalassemia trait. Blood. 1991;78(2):537–539
  • Ohba Y, Hattori Y, Harano T, et al. β-Thalassemia mutations in Japanese and Koreans. Hemoglobin. 1997;21(2):191–200
  • Cürük MA, Molchanova TP, Postnikov YuV, et al. β-Thalassemia alleles and unstable hemoglobin types among Russian pediatric patients. Am J Hematol. 1994;46(4):329–332
  • Girodon E, Ghanem N, Vidaud M, et al. Rapid molecular characterization of mutations leading to unstable hemoglobin β-chain variants. Ann Hematol. 1992;65(4):188–192
  • Akbari MT, Hamid M, Izadyar M. Identification of rare hemoglobin variant (Hb Fairfax) causing dominant β-thalassemia phenotype in an Iranian family. Ann Hematol. 2011;90(3):349–351
  • Ho PJ, Wickramasinghe SN, Rees DC, et al. Erythroblastic inclusions in dominantly inherited β thalassemias. Blood. 1997;89(1):322–328
  • Stamatoyannopoulos G, Woodson R, Papayannopoulou T, et al. Inclusion-body β-thalassemia trait. A form of β thalassemia producing clinical manifestations in simple heterozygotes. N Engl J Med. 1974;290(17):939–943
  • Thein SL. Is it dominantly inherited β thalassaemia or just a β-chain variant that is highly unstable? Br J Haematol. 1999;107(1):12–21
  • Craik CS, Buchman SR, Beychok Sh. Characterization of globin domains: Heme binding to the central exon product. Proc Natl Acad Sci USA. 1980;77(3):1384–1388
  • Craik CS, Buchman SR, Beychok Sh. SO2 binding properties of the product of the central exon of β-globin gene. Nature. 1981;291(5810):87–90
  • Flint J, Harding RM, Boyce AJ, et al. The population genetics of the hemoglobinopathies. Bailliére’s Clin Hematol. 1998;11:1–50
  • Vichinsky EP. Changing patterns of thalassemia worldwide. Ann N Y Acad Sci. 2005;1054:18–24
  • Weatherall DJ, Clegg JB, Knox-Macaulay HH, et al. A genetically determined disorder with features both of thalassaemia and congenital dyserythropoietic anaemia. Br J Haematol. 1973;24(6):681–702
  • Clegg JB, Naughton MA, Weatherall DJ. An improved method for the characterization of human haemoglobin mutants: Identification of α2β295GLU, Haemoglobin N (Baltimore). Nature. 1965;207(5000):945–947
  • Gottlieb AJ, Robinson EA, Itano HA. Primary structure of Hopkins-1 haemoglobin. Nature. 1967;214(5084):189–190
  • Johnson C, Powars D, Schroeder WA. A case with both Hemoglobins C and N-Baltimore. Acta Haematol. 1976;56(3):183–188
  • Wang MC, Tsai KW, Chu CH, et al. A novel hemoglobin variant found on the α1 chain: Hb KSVGH (HBA1: p.Lys57_Gly58insSerHisGlySerAlaGlnValLys). Hemoglobin. 2015;39(2):81–87

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.