Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 22, 1998 - Issue 2
33
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Recombinant Hemoglobin Variants

(Editorial Assistant Editorial Office) &
Pages 99-112 | Published online: 07 Jul 2009

References

  • Nagai K., Thergersen H. C. Nature 1984; 309: 810
  • Martin de Llano J. J., Schneewind O., Stetler G., Manning J. M. Proc. Natl. Acad. Sci. USA 1993; 90: 918
  • Shen T-J., Ho N. T., Simplaceanu V., Zou M., Green B. N., Tam M. F., Ho C. Proc. Natl. Acad. Sci. USA 1993; 90: 8108
  • Hernan R. A., Sligar S. G. J. Biol. Chem. 1995; 270: 26257
  • Adachi K., Konitzer P., Lai C. H., Surrey S. Protein Eng. 1992; 5: 807
  • Adachi K., Rappaport E., Eck H. S., Konitzer P., Kim J., Surrey S. Polymerization and solubility of recombinant hemoglobins α2β26VAL (Hb S) and α2β26LEU (Hb LEU). Hemoglobin 1991; 15: 417
  • Adachi K., Konitzer P., Kim J., Welch N., Surrey S. Effects of β6 aromatic amino acids on polymerization and solubility of recombinant hemoglobins made in yeast. Biol. J. Chem. 1993; 268: 21650
  • Adachi K., Lai C. H., Konitzer P., Donahee M., Campbell A., Surrey S. Crystallization of recombinant hemoglobins with basic amino acid substitutions (Lys and Arg) at the p6 position. Blood 1994a; 84: 1309
  • Adachi K., Reddy L. R., Surrey S. Role of hydrophobicity of phenylalanine β85 and leucine β88 in the acceptor pocket for valine β6 during Hemoglobin S polymerization. J. Biol. Chem. 1994b; 269: 31563
  • Adachi K., Konitzer P., Surrey S. Role of y87 Gln in the inhibition of Hemoglobin S polymerization by Hemoglobin F. J. Biol. Chem. 1994c; 269: 9562
  • Adachi K., Konitzer P., Paulraj C. G., Surrey S. Role of Leu-β88 in the hydrophobic acceptor pocket for Val-β6 during Hemoglobin S polymerization. J. Biol. Chem. 1994d; 269: 17477
  • Adachi K., Reddy L. R., Reddy K. S., Surrey S. Mutational analysis of phenylalanine p85 in the valine β6 acceptor pocket during hemoglobin S polymerization. Protein Sci. 1995a; 4: 1272
  • Adachi K., Sabnekar P., Adachi M., Reddy L. R., Pang J., Reddy K. S., Surrey S. Polymerization of recombinant Hb S-Kempsey (deoxy-R state) and Hb S-Kansas (oxy-T state). J. Biol. Chem. 1995b; 270: 26857
  • Adachi K., Pang J., Konitzer P., Surrey S. Polymerization of recombinant Hemoglobin F yE6V and Hemoglobin F yE6V, yQ87T alone, and in mixtures with Hemoglobin S. Blood 1996a; 87: 1617
  • Adachi K., Pang J., Reddy L. R., Bradley L. E., Chen Q., Trifillis P., Schwartz E., Surrey S. Polymerization of three Hemoglobin A2 variants containing Val6 and inhibition of Hemoglobin S polymerization by Hemoglobin A2. J. Biol. Chem. 1996b; 271: 24557
  • Adachi K., Konitzer P., Pang J., Reddy K. S., Surrey S. Amino acids responsible for decreased 2, 3-biphosphosphoglycerate binding of fetal hemoglobin. Blood 1997; 90: 2916
  • Adachi K., Yamaguchi T., Pang J., Surrey S. Effects of increased anionic charge in the β-globin chain on assembly of hemoglobin in vitro. Blood 1998; 91: 1
  • Barrick D., Ho N. T., Simplaceanu V., Dahlquist F. W., Ho C. A test of the role of the proximal histidines in the Perutz model for cooperativity in haemoglobin. Nature Struct. Biol. 1997; 4: 78
  • Baudin V., Pagnier J., Kiger L., Kister J., Schaad O., Bihoreau M. T., Lacaze N., Marden M. C., Edelstein S. J., Poyart C. Functional consequences of mutations at the allosteric interface in hetero-and homohemoglobin tetramers. Protein Sci. 1993; 2: 1320
  • Baudin V., Dumoulin A., Poyart C., Pagnier J. Hémoglobine humaine recombinante de faible affinitb pour l'oxygbne: effects additionnels de deux mutations. Trans. Clin. Biol. 1995; 2: 463
  • Baudin V., Kister J., Caron G., Jonval V., Poyart C., Pagnier J. The role of proline β5(A2) in the functional properties of human adult hemoglobin. Hemoglobin 1996; 20: 55
  • Bihoreau M. T., Baudin V., Marden M., Lacaze N., Bohn B., Kister J., Schaad O., Dumoulin A., Edelstein S. J., Poyart C., Pagnier J. Steric and hydrophobic determinants of the solubilities of recombinant sickle cell hemoglobins. Protein Sci. 1992; 1: 145
  • Cupane A., Leone M., Militello V., Friedman F. K., Koley A. P., Vasquez G. B., Brinigar W. S., Karavitis M., Fronticelli C. Modification of β-chain or β-chain heme pocket polarity by Val(E11) Thr substitution has different effects on the steric, dynamic, and functional properties of human recombinant hemoglobin. Biol J. Chem. 1997; 272: 26271
  • Doyle M. L., Lew G., De Young A., Kwiatkowski L., Wierzba A., Noble R. W., Ackers G. K. Functional properties of human hemoglobins synthesized from recombinant mutant P-globins. Biochemistry 1992; 31: 8629
  • Dumoulin A., Kiger L., Jiang R., Baudin V., Vasseur C., Sligar S. G., Marden M. C., Pagnier J., Poyart C. Loss of allosteric behavious in recombinant hemoglobin α2β292(F8)His αa: restoration upon addition of strong effectors. FEBS Lett. 1995; 374: 39
  • Fabry M. E., Sengupta A., Suzuka S. M., Costantini F., Rubin E. M., Hofrichter J., Christoph G., Manci E., Culberson D., Factor S. M., Nagel R. L. A second generation transgenic mouse model expressing both Hemoglobin S (HbS) and HbS-Antilles results in increased phenotypic severity. Blood 1995; 86: 2419
  • Fronticelli C., Brinigar W. S., Olson J. S., Bucci E., Gryczynski Z., O'Donnell J. K, Kowalczyk J. Recombinant human hemoglobin: modification of the polarity of the β-heme pocket by a valine67(E11) threonine mutation. Biochemistry 1993; 32: 1235
  • Fronticelli C., Sanna M. T., Perez-Alvarado G. C., Karavitis M., Lu A-L., Brinigar W. S. Allosteric modulation by tertiary structure in mammalian hemoglobins. Introduction of the functional characteristics of bovine hemoglobin into human hemoglobin by five amino acid substitutions. Biol J. Chem. 1995; 270: 30588
  • Himanen J-P., Schneider K., Chait B., Manning J. M. Participation and strength of interaction of lysine 95(β) in the polymerization of Hemoglobin S as determined by its sitedirected substitution by isoleucine. Mol. J. Biol. 1995; 270: 13885
  • Himanen J-P., Mirra U. A., Chait B. T., Bookchin R. M., Manning J. M. A recombinant sickle hemoglobin triple mutant with independent inhibitory effects on polymerization. Biol. J. Chem. 1996; 271: 25152
  • Himanen J-P., Popowicz A. M., Manning J. M. Recombinant sickle hernoglobin containing a lysine substitution at Asp85(α): expression in yeast, functional properties, and participation in gel formation. Blood 1997; 89: 4196
  • Ho C., Willis B. F., Shen T-J., Ho N. T., Sun D. P., Tam M. F., Suzuka S. M., Fabry M. E., Nagel R. L. Roles of α114 and β87 amino acid residues in the polymerization of Hemoglobin S: implications for gene therapy. Mol. J. Biol. 1996; 263: 475
  • Ho C., Sun D. P., Shen T-J., Ho N. T., Zou M., Hu C-K, Sun Z-Y., Lukin J. A. Hemoglobins with low oxygen affinity and high cooperativity. Present and Future Perspective of Blood Substitutes, E. Tsuchida. Elsevier Science SA, LausanneSwitzerland 1998, in press
  • Imai K., Fushitani K., Miyazaki G., Ishimori K., Kitagawa T., Wada Y., Morimoto H., Morishima I., Shih D. T-b., Tame J. Site-directed mutagenesis in haemoglobin functional role of tyrosine-42(C7)a at the α1-β2 interface. J. Mol. Biol. 1991; 218: 769
  • Ishimori K., Morishima I., Imai K., Fushitani K., Miyataki G., Shih D., Tame J., Pegnier J., Nigai K. NMR study of human mutant hemoglobins synthesized in Escherichai coli. J. Biol. Chem. 1989; 264: 14624
  • Kiger L., Baudin V., Desbois A., Pagnier J., Kister J., Griffon N., Henry Y., Poyart C., Marden M. C. Recombinant [Pheβ63]hemoglobin shows rapid oxidation of the β chains and low-affinity, non-cooperative oxygen binding to the a subunits. Eur. Biochem. J. 1997; 243: 365
  • Kim H-W., Shen T-J., Sun D. P., Ho N. T., Madrid M., Tam M. F., Zou M., Cottam P. F., Ho C. Restoring allosterism with compensatory mutations in hemoglobin. Proc. Natl. Acad. Sci. USA 1994; 91: 11547
  • Kim H-W., Shen T-J., Sun D. P., Ho N. T., Madrid M., Ho C. A novel low oxygen affinity recombinant hemoglobin (a96VabTrp): switching quarternary structure without changting the ligation state. Mol. J. Biol. 1995; 246: 867
  • Kim H-W., Shen T-J., HoMing N., Zou T., Tam M. F., Ho C. Contributions of asparagine at a97 to the cooperative oxygenation process of hemoglobin. Biochemistry 1996; 35: 6620
  • Lesecq S., Baudin V., Kister J., Marden M. C., Poyart C., Pagnier J. Functional studies and polymerization of recombinant hemoglobin Glu-α2β26(A3) Val/Glu-7(A4) Ala. J. Biol Chem. 1996; 271: 17211
  • Li X., Mirza U. A., Chait B. T., Manning J. M. Systematic enhancement of polymerization of recombinant sickle hemoglobin mutants: implications for transgenic mouse model for sickle cell anemia. Blood 1997; 90: 462
  • Luisi B. F., Nagai K. Crystallographic analysis of mutant human haemoglobins made in Escherichia coli. Nature 1986; 320: 555
  • Manning L. R., Jenkins W. T., Hess J. R., Vandegriff K., Winslow R. M., Manning J. M. Subunit dissociations in natural and recombinant hemoglobins. Protein Sci 1996; 5: 775
  • Martin de Llano J. J., Schneewind O., Stetler G., Manning J. M. Recombinant human sickle hemoglobin expressed in yeast. Proc. Natl. Acad. Sci. USA 1993a; 90: 918
  • Martin de Llano J. J., Jones W., Schneider K., Chait B. T., Manning J. M. Biochemical and funtional properties of recombinant human sickle hemoglobin expressed in yeast. Biol. J. Chem. 1993b; 268: 27004
  • Martin de Llano J. J., Manning J. M. Properties of a recombinant human hemoglobin double mutant: sickle hemoglobin with Leu-88(β) at the primary aggregation site substituted by Ala. Protein Sci 1994; 3: 1206
  • McCune S. L., Reilly M. P., Chomo M. J., Asakura T., Townes T. M. Recombinant human hemoglobins designed for gene therapy of sickle cell disease. Proc. Natl. Acad. Sci. USA 1994; 91: 9852
  • Militello V., Cupane A., Leone M., Brinigar W. S., Lu A-L., Fronticelli C. Dynamic properties of some P-chain mutant hemoglobins. Proteins. Struct., Funct., Genet. 1995; 22: 12
  • Mohvani N., Talarico T., Jain S., Bajwa W., Blackburn R., Nwosu V., Holland M., DeAngelo J., Privalle C., Keng T. Production, purification, and characterization of recombinant human Hemoglobin Rainier expressed in Saccharomyces cervisiae. Protein Expr. Purificat. 1996; 8: 447
  • Nagai K., Perutz M. F., Poyart C. Oxygen binding properties of human mutant hemoglobins synthesized in Escherichai coli. Proc. Natl. Acad. Sci. USA 1985; 82: 7252
  • Nagai K., Luisi B., Shih D., Miyazaki G., Imai K., Poyart C., De Young A., Kwiatkowsky L., Noble R. W., Lin S-H., Yu N-T. Distal residues in the oxygen binding site of haemoglobin studied by protein engineering. Nature 1987; 329: 858
  • Pagnier J., Bihoreau M-T., Baudin V., Edelstein S. J., Poyart C. Polymerisation et solubilité des hémoglobines recombinantes α2β2 6 Gluαa (Hb Makassar) et α2β2 6 Glu αa, 23 Val lle. Comp. Rend. Acad. Sci. Paris 1993; 316: 431
  • Reddy L. R., Reddy K. S., Surrey S., Adachi K. Role of hydrophobic amino acids at β85 and β88 in stabilizing F helix conformation in Hemoglobin S. J. Biol. Chem. 1996; 271: 24564
  • Reddy L. R., Reddy K. S., Surrey S., Adachi K. Role of β87 Thr in the β6 Val accepter site during deoxy Hb S polymerization. Biochemistry 1998, in press
  • Scheepens A., Mould R., Hofmann O., Brittain T. Some effects of post-translational N-terminal acetylation of the human embryonic globin protein. Biochem. J. 1995; 310: 597
  • Shih D. T.B., Luisi B. F., Miyazaki G., Perutz M. F., Nagai K. A mutagenic study of the allosteric linkage of His(HC3)143β in haemoglobin. Mol. J. Biol. 1993; 230: 1291
  • Sun D. P., Zou M., Ho N. T., Ho C. Contribution of surface histidyl residues in the a-chain to the Bohr effect on human normal adult hemoglobin: roles of global electrostatic effects. Biochemistry 1997; 36: 6663
  • Trifillis P., Adachi K., Yamaguchi T., Schwartz E., Surrey S. Expression studies of & globin gene alleles associated with reduced Hemoglobin A2 levels in Greek Cypriots. J. Biol. Chem. 1996; 271: 26931
  • Wagenbach M., O'Rourke K., Vitez L., Wieczorek A., Hoffman S., Durfee S., Tedesco J., Stetler G. Synthesis of wild type and mutant human hemoglobins in Saccharomyces cerevisiae. Biotechnology 1991; 9: 57
  • Weber R. E., Jessen T-H., Malte H., Tame J. Mutant hemoglobins (α119-Ala and β55-Ser): functions related to high-altitude respiration in geese. Appl. J. Physiol. 1993; 75: 2646
  • Yamashiro D. J., Adachi M., Konitzer P., Surrey S., Adachi K. Polymerization and instability of a recombinant hemoglobin containing valine β7. J. Biol. Chem. 1994; 269: 23996
  • Yanase H., Cahill S., Martin de Llano J. J., Manning L. R., Schneider K., Chait B. T., Vandegriff K. D., Winslow R. M., Manning J. M. Properties of a recombinant human hemoglobin with aspartic acid 99(β), an important intersubunit contact site, substituted by lysine. Protein Sci. 1994; 3: 1213
  • Yanase H., Manning L. R., Vandengriff K., Winslow R. M., Manning J. M. A recombinant human hemoglobin with asparagine-102(β) substituted by alanine has a limiting low oxygen affinity, reduced marginally by chloride. Protein Sci 1995; 4: 21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.