Publication Cover
Hemoglobin
international journal for hemoglobin research
Volume 23, 1999 - Issue 2
45
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Characterization and locus assignment of two α-globin variants present in the maltese population: Hb St. Luke's [α95(G2)Pro→Arg] and Hb Setif [α94(G1)Asp→Tyr]

, , &
Pages 145-157 | Received 26 Oct 1998, Accepted 08 Jan 1999, Published online: 05 Aug 2009

References

  • Hatton C. S. R., Wilkie A. O. M., Drysdale H. C., Wood W. G., Vickers M. A., Sharpe J., Ayyub H., Pretorius I. M., Buckle V. J., Higgs D. R. a‐Thalassemia caused by a large (62kb) deletion upstream of the human a globin gene cluster. Blood 1990; 76: 221–227
  • Liebhaber S. A., Griese E. U., Weiss I., Cash F. E., Ayyub H., Higgs D. R., Horst J. Inactivation of human a globin gene expression by a de novo deletion located upstream of the a globin gene cluster. Proc. Natl. Acad. Sci. USA 1990; 87: 9431–9435
  • Molchanova T. P., Pobedimskaya D. D., Huisman T. H. J. The differences in quantities of a2‐ and a 1‐globin gene variants in heterozygotes. Br. J. Haematol. 1994; 88: 300–306
  • Gourdon G., Sharpe J. A., Wells D., Wood W. G., Higgs D. R. Analysis of a 70 kb segment of DNA containing the human →‐ and α‐globin genes linked to their regulatory element (HS‐40) in transgenic mice. Nucleic Acids Res. 1994; 22: 4139–4147
  • Higgs D. R., Wood W. G., Jarman A. P., Sharpe J., Lida J., Pretorius I. M., Ayyub J. A major positive regulatory region located far upstream of the human α‐globin gene locus. Genes Dev. 1990; 4: 1588–1601
  • Orkin S. H., Goff S. C. The duplicated human a‐globin genes: their relative expression as measured by RNA analysis. Cell 1981; 24: 345–351
  • Liebhaber S. A., Kan Y. W. Differentiation of the mRNA transcripts originating from the α1‐ and α2‐globin loci in normals and a‐thalassemics. J. Clin. Invest. 1981; 68: 439–446
  • Felice A. E., Webber B. B., Huisman T. H. J. a‐thalassemia and the production of different α chain variants in heterozygotes. Biochem. Genet. 1981; 19: 487–498
  • Smith L. L., Plese C. F., Barton B. P., Charache S., Wilson J. B., Huisman T. H. J. Subunit dissociation of the abnormal Hemoglobins G Georgia (α295Leu(G2)β2) and Rampa α295Ser(G2)β2). J.Biol. Chem. 1972; 247: 1433–1439
  • Huisman T. H. J., Gravely M. E., Henson J., Felice A. E., Wilson J. B., Abraham E. C., Vella F., Little M. W. Variability in the interaction of β‐thalassemia with the a chain variants Hb G‐Philadelphia and Hb Rampa. J. Lab. Clin. Med. 1978; 92: 311–320
  • Old J. M., Clegg J. D., Weatherall D. J., Booth P. D. Haemoglobin J Tongariki is associated with a‐thalassaemia. Nature 1978; 273: 319–320
  • Felice A. E., Ozdonmez R., Headlee M. E., Huisman T. H. J. Organization of α‐chain genes among Hb G‐Philadelphia heterozygotes in association with Hb S, β‐thalassemia, and α‐thalassemia‐2. Biochem. Genet. 1982; 20: 689–701
  • Bannister W. H., Grech J. L., Plese C. F., Smith L. L., Barton B. P., Wilson J. B., Reynolds C. A., Huisman T. H. J. Hemoglobin St. Luke's or α2 95 Arg (G2) β2. Eur. J. Biochem. 1972; 29: 301–307
  • Wajcman H., Belkhodja O., Labie D. Hb Setif: Gl (94) αAsp→Tyr. A new α chain hemoglobin variant with substitution of the residue involved in hydrogen bond between unlike subunits. FEBS Lett. 1972; 27: 298–300
  • Felice A. E. Molecular epidemiology of haemoglobin, and the molecular biology of normal and abnormal globin gene expression, R. Ellul‐Micallef, S. Fiorini. PEG Ltd., Marsa 1992; 357–391, Collected Papers, Collegium Melitense Quaternary Celebrations (1592–1992), University of Malta
  • Borg I., Valentino M., Fiorini A., Felice A. E. Hb Setif ‘α94(Gl )Asp→Tyr’ in Malta. Hemoglobin 1997; 21: 91–96
  • Bezzina Wettinger S. Molecular epidemiology and in vivo expression of α1‐ and α2‐globins. Master of Philosophy Thesis, Faculty of Medicine, University of Malta, Malta 1997
  • Abraham E. C., Reese A., Stallings M., Huisman T. H. J. Separation of human hemoglobins by DEAE‐cellulose chromatography using glycine‐KCN‐NaCl developers. Hemoglobin 1976; 1: 27–44
  • Schroeder W. A. HPLC of globin chains and of peptides in the identification of hemoglobin variants. The Hemoglobinopathies, T. H. J. Huisman. Methods in Hematology Series, Churchill Livingstone, Edinburgh 1986; Vol.15: 143–159
  • Poncz M., Solowieijczyk D., Harpel B., Morey Y., Schwartz E., Surrey S. Construction of human gene libraries from small amounts of peripheral blood: analysis of β‐like globin genes. Hemoglobin 1982; 6: 27–36
  • Giordano P. C., Fodde R., Amons R., Ploem J. E., Bernini L. F. Hb J‐Anatolia ‘α61(E10)Lys→Thr’; structural characterization and gene localization of a new α chain variant. Hemoglobin 1990; 14: 119–128
  • Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain‐terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977; 74: 5463–5467
  • Abdo M. Z. Hb Setif (α94(Gl)Asp→Tyr) in a Saudi Arabian family. Hemoglobin 1989; 13: 737–742
  • Harano T., Harano K., Shibata S., Ueda S., Tsuchida J., Marumoto K., Yakeishi Y., Murakami T. Hb St. Luke's ‘α95(G2)Pro→Arg’ in Japan. Hemoglobin 1983; 7: 471–472
  • Huisman T. H. J., Adams H. R., Wilson J. B., Efremov G. D., Reynolds C. A., Wright‐stone R. N. Hemoglobin G Georgia or α2 95 Leu (G2) β2. Biochim. Biophys. Acta 1970; 200: 578–580
  • De Jong W. W. W., Bernini L. F., Khan Meera P. Haemoglobin Rampa α95 Pro→Ser. Biochim. Biophys. Acta 1971; 236: 197–200
  • Wiltshire B. G., Clark K. G. A., Lorkin P. A., Lehmann H. Haemoglobin Denmark Hill α95 (G2) Pro→Ala, a variant with unusual electrophoretic and oxygen binding properties. Biochim. Biophys. Acta 1972; 278: 459–464
  • Wajcman H., Kister J., Riou J., Galacteros F., Girot R., Maier‐Redelsperger M., Nayudu N. V. S., Giordano P. C. Hb Godavari ‘α95(G2)Pro→Thr’: a neutral amino acid substitution in the α1 β2 interface that modifies the electrophoretic mobility of hemoglobin. Hemoglobin 1998; 22: 11–22
  • Molchanova T. P., Huisman T. H. J. The importance of the 3′ untranslated region for the expression of the α‐globin genes. Hemoglobin 1996; 20: 41–54
  • Raik E., Powell E., Fleming P., Gordon S. Hemoglobin Setif and in vitro pseudo‐sickling noted in a family with co‐existent alpha and beta thalassemia. Pathology 1983; 15: 453–456
  • Al‐Awamy B., Niazi G. A., Wilson J. B., Huisman T. H. J. Hb Setif or α294(Gl) Asp→Tyrβ2 observed in a Saudi Arabian family. Hemoglobin 1985; 9: 87–90
  • Schneider R. G., Atkins R. J., Hosty T. S., Tomlin G., Casey R., Lehmann H., Lorkin P. A., Nagai K. Haemoglobin Titusville: α94 Asp→Asn, a new haemoglobin with a lowered affinity for oxygen. Biochim. Biophys. Acta 1975; 400: 365–373
  • Schroeder W. A., Shelton J. B., Shelton J. R., Powars D. Hemoglobin Sunshine Seth ‐α2(94(Gl)Asp→His)β2. Hemoglobin 1979; 3: 145–159
  • Dinçol G., Dinçol K., Erdem S., Pobedimskaya D. D., Molchanova T. P., Ye Z., Webber B. B., Wilson J. B., Huisman T. H. J. Hb Çapa or α294(Gl)Asp→Glyβ2, a mildly unstable variant with an A→G (GACG`C) mutation in codon 94 of the α 1‐globin gene. Hemoglobin 1994; 18: 57–60
  • Kister J., Kiger L., Francina A., Hanny P., Szymanowicz A., Blouquit Y., Promé D., Galactéros F., Delaunay J., Wajcman H. Hb Roanne ‘α94(Gl)Asp→Glu’: a variant of the α1β2 interface with an unexpected high oxygen affinity. Biochim. Biophys. Acta 1995; 1246: 34–38
  • Felice A. E., Huisman T. H. J. Observations on the calculated contents of variant and normal α chains in adult and fetal erythrocytes. Hemoglobin 1979; 3: 475–480
  • Liebhaber S. A., Cash F. E. Locus assignment of α‐globin structural mutations by hybrid‐selected translation. J. Clin. Invest. 1985; 75: 64–70
  • Liebhaber S. A., Cash F. E., Ballas S. K. Human α‐globin gene expression: the dominant role of the α2‐locus in mRNA and protein synthesis. J. Biol. Chem. 1986; 261: 15327–15333

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.