1,062
Views
90
CrossRef citations to date
0
Altmetric
Original Article

Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent

, , , , , , & show all
Pages 1235-1244 | Received 29 Oct 2009, Accepted 16 Feb 2010, Published online: 06 Sep 2010

References

  • Tomita K, Tanimoto A, Irie R, Kikuchi M. (2008). Evaluating the severity of nonalcoholic steatohepatitis with superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Magn Reson Imaging, 28:1444–50.
  • Gupta AK, Naregalkar RR, Vaidya VD, Gupta M. (2007). Nanoprobes and nanobiosensors for monitoring and imaging individual living cells. Nanomedicine, 2:22–30.
  • Jing XH, Yang K, Duan XJ, Xie B. (2008). In vivo MR imaging tracking of magnetic iron oxide nanoparticle labeled, engineered, autologous bone marrow mesenchymal stem cells following intra-articular injection. Joint Bone Spine, 75:432–8.
  • Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D. (2005). Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem, 16:1181–8.
  • Talelli M, Rijcken CJ, Lammers T, Seevinck PR, Storm G. (2009). Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: Toward a targeted nanomedicine suitable for image-guided drug delivery. Langmuir, 25:2060–7.
  • Horak D, Babic M, Jendelová P, Herynek V, Trchová M. (2007). D-mannose-modified iron oxide nanoparticles for stem cell labeling. Bioconjug Chem, 18:635–44.
  • Mahmoudi M, Simchi A, Milani AS, Stroeve P. (2009). Cell toxicity of superparamagnetic iron oxide nanoparticles. J Colloid Interface Sci, 336:510–8.
  • Aime S, Cabella C, Colombatto S, Crich SG, Ginolio E. (2002). Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J Magn Reson Imaging, 16:394–406.
  • Matsumura Y, Maeda H. (1986). A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res, 46:6387–92.
  • Zhang HT, Ding J, Chow GM, Dong ZL. (2008). Engineering inorganic hybrid nanoparticles: Tuning combination fashions of gold, platinum, and iron oxide. Langmuir, 24:13197–202.
  • Teng X, Yang H. (2007). Iron oxide shell as the oxidation-resistant layer in SmCo5@Fe2O3 core–shell magnetic nanoparticles. J Nanosci Nanotechnol, 7:356–61.
  • Shavel A, Liz-Marzán LM. (2009). Shape control of iron oxide nanoparticles. Phys Chem Chem Phys, 11:3762–6.
  • Park J, An K, Hwang Y. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater, 3:891–5.
  • Shi X, Thomas TP, Myc LA, Kotlyar A, Baker Jr JR. (2007). Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys, 9, 5712–20.
  • Pankhurst QA, Connolly J, Jones SK, Dobson J. (2003). Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys, 36:R167–81.
  • Berry CC, Curtis ASG. (2003). Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys, 36:R198–206.
  • Cui X, Antonietti M. (2006). Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates. Small, 2:756–9.
  • Jarrett BR, Frendo M, Vogan J. (2007). Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology, 18:35603–10.
  • Frankamp BL, Boal AK, Tuominen MT, Rotello VM. (2005). Direct control of the magnetic interaction between iron oxide nanoparticles through dendrimer-mediated self-assembly. J Am Chem Soc, 127:9731–5.
  • Larsen EK, Nielsen T, Wittenborn T, Birkedal H. (2009). Size-dependent accumulation of PEGylated silane-coated magnetic iron oxide nanoparticles in murine tumors. ACS Nano, 3:1947–51.
  • Narain R, Gonzales M, Hoffman AS, Stayton PS, Krishnan KM. (2007). Synthesis of monodisperse biotinylated p(NIPAAm)-coated iron oxide magnetic nanoparticles and their bioconjugation to streptavidin. Langmuir, 23:6299–304.
  • Okassa LN, Marchais H, Douziech-Eyrolles L. (2007). Optimization of iron oxide nanoparticles encapsulation within poly(d,l-lactide-co-glycolide) sub-micron particles. Eur J Pharm Biopharm, 67:31–8.
  • Arbab AS, Bashaw LA, Miller BR, Jordan EK. (2003). Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology, 229:838–46.
  • Strable E, Bulte JWM, Moskowitz B. (2001). Synthesis and characterization of soluble iron oxide-dendrimer. Chem Mater, 2001(13):2201–9.
  • Charvat TT, Lee DJ, Robinson WE. (2006). Design, synthesis, and biological evaluation of chicoric acid analogs as inhibitors of HIV-1 integrase. Bioorg Med Chem, 14:4552–67.
  • Xiong F, Li J, Wang H, Chen YJ. (2006). Synthesis, properties and application of a novel series of one-ended monooleate-modified poly(ethylene glycol) with active carboxylic terminal. Polymer, 47:6636–41.
  • Seguer J, Selve C, Allouch M, Infante M. (1996). Nonionic amphiphilic compounds from lysine as molecular mimics of lecithins. J Am Oil Chem Soc, 73:79–86.
  • Jana NR, Chen Y, Peng X. (2004). Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater, 16:3931–5.
  • Mercadal M, Domingo JC, Petriz J, Garcia J. (2000). Preparation of immunoliposomes bearing poly(ethylene glycol)-coupled monoclonal antibody linked via a cleavable disulfide bond for ex vivo applications. Biochim Biophys Acta, 1509:299–310.
  • Hardy JG, Hirst AR, Ashworth I, Brennan C. (2007). Exploring molecular recognition pathways within a family of gelators with different hydrogen bonding motifs. Tetrahedron, 63:7397–406.
  • Ray GB, Chakraborty I, Moulik SP. (2006). Pyrene absorption can be a convenient method for probing critical micellar concentration (cmc) and indexing micellar polarity. J Colloid Interface Sci, 294:248–54.
  • Sun C, Sze R, Zhang M. (2006). Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res B Appl Biomater, 78:550–7.
  • Ren YZ, Kato T. (2001). Structure of barium stearate films at the air/water interface investigated by polarization modulation infrared spectroscopy and π−A isotherms. Langmuir, 17:2688–93.
  • Chantrell RW, Popplewell J, Charles SW. (1978). Measurements of particle size distribution parameters in ferrofluids. IEEE Trans Magn, 14:975–7.
  • Popplewell J, Sakhinini L. (1995). The dependence of the physical and magnetic properties of magnetic fluids on particle size. J Magn Magn Mater, 149:72–8.
  • Mikhayaylvo M, Kim DK, Berry CC. (2004). BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater, 16:2344–54.
  • Silva AK, Egito ES, Araujo IB. (2008). Development of superparamagnetic microparticles for biotechnological purposes. Drug Dev Ind Pharm, 34:1111–6.
  • Tapan KJ, Richey J, Strand M, Leslie-Pelecky DL. (2008). Magnetic nanoparticles with dual functional properties: Drug delivery and magnetic resonance imaging. Biomaterials, 29:4012–21.
  • Bordat C, Sich M, Rety F. (2000). Acoustic noise and functional magnetic resonance imaging: Current strategies and future prospects. J Magn Reson Imaging, 16:505–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.