530
Views
51
CrossRef citations to date
0
Altmetric
Research Article

Microemulsions as vehicles for topical administration of voriconazole: formulation and in vitro evaluation

, , &
Pages 64-72 | Received 21 Feb 2011, Accepted 18 May 2011, Published online: 23 Jun 2011

References

  • Yang W, Wiederhold NP, Williams RO 3rd. (2008). Drug delivery strategies for improved azole antifungal action. Expert Opin Drug Deliv, 5:1199–1216.
  • Yavas GF, Oztürk F, Küsbeci T, Cetinkaya Z, Ermis SS, Kiraz N et al. (2008). Antifungal efficacy of voriconazole, itraconazole and amphotericin b in experimental fusarium solani keratitis. Graefes Arch Clin Exp Ophthalmol, 246:275–279.
  • Leonard BJ, Carol AK. (2003). Voriconazole: A New Triazole Antifungal Agent. Reviews of Anti-Infective Agents, 36:630–637.
  • Prats CH, Tello FL, San Jose AB, Otaolaurruchi JS, Baines JP. (2004). Voriconazole in fungal keratitis caused by Scedosporium apiospermum. Ann Pharmacother, 38:414–417.
  • Vatinee YB, Kristin MH, Christopher JR, Brandon DA, Elisabeth JC. (2007). Topical and oral voriconazole in the treatment of fungal keratitis. American Journal of Ophthalmology, 143:151–153.
  • Klein KC, Blackwood RA. (2006). Topical voriconazole solution for cutaneous aspergillosis in a pediatric patient after bone marrow transplant. Pediatrics, 118:506–508.
  • Buchanan CM, Buchanan NL, Edgar KJ, Ramsey MG. (2007). Solubilty and dissolution studies of antifungal drug: hydroxybutenyl-β-cyclodextrin complexes. Cellulose, 14:35–47.
  • Tolman JA, Nelson NA, Son YJ, Bosselmann S, Wiederhold NP, Peters JI et al. (2009). Characterization and pharmacokinetic analysis of aerosolized aqueous voriconazole solution. Eur J Pharm Biopharm, 72:199–205.
  • Aboofazeli R, Lawrence MJ. (1994). Investigations into the formation and characterisation of phospholipid microemulsions. II. Pseudo ternary phase diagrams of systems containing water-lecithin-isopropyl myristate-alcohol: influence of purity. Int J Pharm, 106:51–61.
  • Rawlins EA., Rheology, In: Carless, J.E. (Eds)), Bentley’s Textbook of Pharmaceutics. 8th ed., London, England, Bailliére Tindall, pp.123–139, 1977.
  • Chen H, Mou D, Du D, Chang X, Zhu D, Liu J et al. (2007). Hydrogel-thickened microemulsion for topical administration of drug molecule at an extremely low concentration. Int J Pharm, 341:78–84.
  • Brime B, Moreno MA, Frutos G, Ballesteros MP, Frutos P. (2002). Amphotericin B in oil-water lecithin-based microemulsions: formulation and toxicity evaluation. J Pharm Sci, 91:1178–1185.
  • Dangi JS, Vyas SP, Dixit VK. (1998). The role of mixed micelles in drug delivery. I. Solubilization. Drug Dev Ind Pharm, 24:681–684.
  • Eduardo R da Silva, Zaida MF de Freitas, Lycia de Brito G, Eduardo Ricci-Júnior. (2011). Improving the topical delivery of zinc phthalocyanine using oleic acid as a penetration enhancer: in vitro permeation and retention. Drug Dev Ind Pharm, 37:569–575.
  • El Laithy HM, El-Shaboury KM. (2002). The development of Cutina lipogels and gel microemulsion for topical administration of fluconazole. AAPS Pharmscitech, 3:E35.
  • Khan KA. (1975). The concept of dissolution efficiency. J Pharm Pharmacol, 27:48–49.
  • Lindner WD, Lippold BC. (1995). Drug release from hydrocolloid embeddings with high or low susceptibility to hydrodynamic stress. Pharm Res, 12:1781–1785.
  • Srinubabu G, Raju ChA, Sarath N, Kumar PK, Rao JV. (2007). Development and validation of a HPLC method for the determination of voriconazole in pharmaceutical formulation using an experimental design. Talanta, 71:1424–1429.
  • Manconi M, Sinico C, Valenti D, Lai F, Fadda AM. (2006). Niosomes as carriers for tretinoin. III. A study into the in vitro cutaneous delivery of vesicle-incorporated tretinoin. Int J Pharm, 311:11–19.
  • Bauer AW, Kirby WM, Sherris JC, Turck M. (1966). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol, 45:493–496.
  • Alander J, Warnheim T. (1989). Model microemulsions containing vegetable oils part 1: nonionic surfactant systems. J Am Oil Chem Soc, 66:1656–1660.
  • Raith K, Schmelzer CE, Neubert RH. (2006). Towards a molecular characterization of pharmaceutical excipients: mass spectrometric studies of ethoxylated surfactants. Int J Pharm, 319:1–12.
  • Kennedy RA, Kennedy ML. (2007). Effect of selected non-ionic surfactants on the flow behavior of aqueous veegum suspensions. AAPS Pharmscitech, 8:25.
  • 24. Podlogar F, Gasperlin M, Tomsic M, Jamnik A, Rogac MB. (2004). Structural characterisation of water-Tween 40/Imwitor 308-isopropyl myristate microemulsions using different experimental methods. Int J Pharm, 276:115–128.
  • Bansal VK, Shab DO, O’Conell JPP. (1980). Influence of alkyl chain length compatibility on microemulsion structure and solubilization. J Colloid Interface Sci, 75:462–475.
  • Junyaprasert VB, Boonme P, Songkro S, Krauel K, Rades T. (2007). Transdermal delivery of hydrophobic and hydrophilic local anesthetics from o/w and w/o Brij 97-based microemulsions. J Pharm Pharm Sci, 10:288–298.
  • Shevachmana M, Shania A, Gartib N. (2004). Formation and investigation of microemulsions based on jojoba oil and nonionic surfactants. JAOCS, 81:12.
  • Valenta C, Nowack E, Bernkop-Schnürch A. (1999). Deoxycholate-hydrogels: novel drug carrier systems for topical use. Int J Pharm, 185:103–111.
  • Nastuzzi C, Gambari R. (1994). Antitumor activity of (trans) dermally delivered aromatic tetra-amidines. J Cont Rel, 29:53–62.
  • Mei Z, Chen H, Weng T, Yang Y, Yang X. (2003). Solid lipid nanoparticle and microemulsion for topical delivery of triptolide. Eur J Pharm Biopharm, 56:189–196.
  • Subramanian N, Ghosal SK, Moulik SP. (2005). Enhanced in vitro percutaneous absorption and in vivo anti-inflammatory effect of a selective cyclooxygenase inhibitor using microemulsion. Drug Dev Ind Pharm, 31:405–416.
  • Rowat AC, Kitson N, Thewalt JL. (2006). Interactions of oleic acid and model stratum corneum membranes as seen by 2H NMR. Int J Pharm, 307:225–231.
  • Martins RM, da Silva CA, Becker CM, Samios D, Christoff M, Bica CID. (2006). Anionic surfactant aggregation with (Hydroxypropyl) cellulose in the presence of added salt. J Bio Chem Soc, 17:944–953.
  • De Prijck K, Peeters E, Nelis HJ. (2008). Comparison of solid-phase cytometry and the plate count method for the evaluation of the survival of bacteria in pharmaceutical oils. Lett Appl Microbiol, 47:571–573.
  • Garcia-Celma MJ, Azemar N, Pes MA, Solans C. (1994). Solubilization of antifungal drugs in water/POE (20) sorbitan monooleate/oil systems. Int J Pharm, 105:77–81.
  • Glbert S, Christopher T, Modern Pharmaceutics, 4th edn., Marcel Dekker, Inc., New York, pp.260, 2002.
  • Scwarz JS, Weisspapir MR, Shani A, Amselem S. (1996). Enhanced anti-inflammatory activity of diclofenac in jojoba oil submicron emulsion cream. J Appl Cosmetol, 14:19–24.
  • Kantaria S, Rees GD, Lawrence MJ. (2003). Formulation of electrically conducting microemulsion-based organogels. Int J Pharm, 250:65–83.
  • Nandi I, Bari M, Joshi H. (2003). Study of isopropyl myristate microemulsion systems containing cyclodextrins to improve the solubility of 2 model hydrophobic drugs. AAPS Pharmscitech, 4:E10.
  • Kale NJ, Allen LV. (1989). Studies on microemulsions using Brij 96 as surfactant and glycerin, ethylene glycol and propylene glycol as cosurfactants. Int J Pharm, 57:87–93.
  • Mitra RK, Paul BK. (2005). Physicochemical investigations of microemulsification of eucalyptus oil and water using mixed surfactants (AOT+Brij-35) and butanol. J Colloid Interface Sci, 283:565–577.
  • David UO, Anthony JIW, Kilian JO. (1988). Microemulsions as Topical Drug Delivery Vehicles. I. Characterization of a Model System. Drug Dev Ind Pharm, 14:1203–1219.
  • Sintov AC, Shapiro L. (2004). New microemulsion vehicle facilitates percutaneous penetration in vitro and cutaneous drug bioavailability in vivo. J Control Release, 95:173–183.
  • Hadgraft J, du Plessis J, Goosen C. (2000). The selection of non-steroidal anti-inflammatory agents for dermal delivery. Int J Pharm, 207:31–37.
  • Constantinides PP. (1995). Lipid microemulsions for improving drug dissolution and oral absorption: physical and biopharmaceutical aspects. Pharm Res, 12:1561–1572.
  • Moreno MA, Frutos P, Ballesteros MP. (2001). Lyophilized lecithin based oil-water microemulsions as a new and low toxic delivery system for amphotericin B. Pharm Res, 18:344–351.
  • Gekko K, Li X, Makino S. (1992). Effects of polyols and sugars on the sol-gel transition of gelatin. Biosci Biotech Biochem, 56:1279–1284.
  • Dreher F, Walde P, Walther P, Wehrli E. (1997). Interaction of a lecithin microemulsion gel with human stratum corneum and its effect on transdermal transport. J Cont Rel, 45:131–140.
  • Al-Kamis A, Davis SS, Hadgraft J. (1987). In vitro-in vivo correlations for the percutaneous absorption of salicylates. Int J Pharm, 40:111–118.
  • Thachrodi D, Panduranga Rao K. (1994). Transdermal absorption of nifedipine from microemulsions of lipophilic skin penetration enhancers. Int J Pharm, 111:235–240.
  • Dhiman MK, Dhiman A, Sawant KK. (2009). Transbuccal delivery of 5-fluorouracil: permeation enhancement and pharmacokinetic study. AAPS Pharmscitech, 10:258–265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.