937
Views
30
CrossRef citations to date
0
Altmetric
Review Article

Has nanotechnology led to improved therapeutic outcomes?

&
Pages 158-170 | Received 31 Jul 2010, Accepted 15 Sep 2010, Published online: 22 Dec 2011

References

  • Merisko-Liversidge EM, Liversidge GG. (2008). Drug nanoparticles: formulating poorly water-soluble compounds. Toxicol Pathol, 36:43–48.
  • Yih TC, Al-Fandi M. (2006). Engineered nanoparticles as precise drug delivery systems. J Cell Biochem, 97:1184–1190.
  • Rao GC, Kumar MS, Mathivanan N, Rao ME. (2004). Nanosuspensions as the most promising approach in nanoparticulate drug delivery systems. Pharmazie, 59:5–9.
  • United States Patent and Trademark Office. (2010). Nanotechnology-Class Definition. [Online] Available at: http://www.uspto.gov/web/patents/classification/uspc977/defs977.htm. Accessed on 29 October 2010.
  • Oberdörster G, Oberdörster E, Oberdörster J. (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect, 113:823–839.
  • Ferrari M. (2005). Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer, 5:161–171.
  • Hans ML, Lowman AM. (2002). Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mat Sci 6:319–327.
  • Dunne A, Devane J, O’Hara T. (1999). The relationship between in vitro drug dissolution and in vivo absorption. J R Stat Soc Ser D-Stat 48:125–133.
  • Amidon GL, Lennernäs H, Shah VP, Crison JR. (1995). A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res, 12:413–420.
  • FDA. (2000). Guidance for industry: waiver of in vivo bioavailability and bioequivalence studies for immediate release dosage forms based on a biopharmaceutical classification system. Center for Drug Evaluation and Research.
  • Muller RH, Junghanns JAH. (2006). Drug nanocrystals/nanosuspensions for the delivery of poorly soluble drugs. In: Tochilin V (Ed.) Nanoparticulates as drug carriers. Imperial College Press, London, UK. 307–328.
  • Fahr A, Liu X. (2007). Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv, 4:403–416.
  • Hilden LR, Morris KR. (2004). Physics of amorphous solids. J Pharm Sci, 93:3–12.
  • Tang B, Cheng G, Gu JC, Xu CH. (2008). Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today, 13:606–612.
  • Huang L, Dong J. (2008). Formulation strategies and practice used for candidates with water-insoluble properties for toxicology, biology, and pharmacology studies in discovery support. In: Liu R (Ed.) Water-insoluble drug formulation. CPR Press, Boca Raton, USA. 113–132.
  • Noyes A, Whitney W. (1897). The rate of solution of solid substances in their own solutions, J Am Chem Soc 19: 930–934.
  • Bisrat M, Nystrom C. (1988). Physicochemical aspects of drug release.8. the relation between particle-size and surface specific dissolution rate in agitated suspensions. Int J Pharm 47:223–231.
  • Mosharraf M, Nystrom C. (1995). The effect of particle-size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122:35–47.
  • Junghanns JU, Müller RH. (2008). Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine, 3:295–309.
  • Welling PG. (1977). Influence of food and diet on gastrointestinal drug absorption: a review. J Pharmacokinet Biopharm, 5:291–334.
  • Gu CH, Li H, Levons J, Lentz K, Gandhi RB, Raghavan K et al. (2007). Predicting effect of food on extent of drug absorption based on physicochemical properties. Pharm Res, 24:1118–1130.
  • Welling PG. (1996). Effects of food on drug absorption. Annu Rev Nutr, 16:383–415.
  • Lentz KA. (2008). Current methods for predicting human food effect. AAPS J, 10:282–288.
  • Keck CM, Müller RH. (2006). Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur J Pharm Biopharm, 62:3–16.
  • Elan Drug Technologies. (2010). Nanocrystal® Technology. Commercialized Products. [Online] Available at: http://www.elandrugtechnologies.com/nanocrystal_technology/commercialised. Accessed on 17 October 2010.
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. (2003). Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci, 18:113–120.
  • Vazquez EM. (2000). Sirolimus: A new agent for prevention of renal allograft rejection. Am J Health-Syst Pharm 57:437–448.
  • Simamora P, Alvarez JM, Yalkowsky SH. (2001). Solubilization of rapamycin. Int J Pharm, 213:25–29.
  • Gandhi PJ, Murthy ZVP. (2010). Kinetic study of ultrasonic antisolvent crystallization of sirolimus. Cryst Res Technol 45:321–327.
  • Shen LJ, Wu FL. (2007). Nanomedicines in renal transplant rejection–focus on sirolimus. Int J Nanomedicine, 2:25–32.
  • Lampen A, Zhang Y, Hackbarth I, Benet LZ, Sewing KF, Christians U. (1998). Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther, 285:1104–1112.
  • Zimmerman JJ, Ferron GM, Lim HK, Parker V. (1999). The effect of a high-fat meal on the oral bioavailability of the immunosuppressant sirolimus (rapamycin). J Clin Pharmacol, 39:1155–1161.
  • Mathew TH, Van Buren C, Kahan BD, Butt K, Hariharan S, Zimmerman JJ. (2006). A comparative study of sirolimus tablet versus oral solution for prophylaxis of acute renal allograft rejection. J Clin Pharmacol, 46:76–87.
  • Majumdar AK, Howard L, Goldberg MR, Hickey L, Constanzer M, Rothenberg PL et al. (2006). Pharmacokinetics of aprepitant after single and multiple oral doses in healthy volunteers. J Clin Pharmacol, 46:291–300.
  • Hesketh PJ, Grunberg SM, Gralla RJ, Warr DG, Roila F, de Wit R et al.; Aprepitant Protocol 052 Study Group. (2003). The oral neurokinin-1 antagonist aprepitant for the prevention of chemotherapy-induced nausea and vomiting: a multinational, randomized, double-blind, placebo-controlled trial in patients receiving high-dose cisplatin–the Aprepitant Protocol 052 Study Group. J Clin Oncol, 21:4112–4119.
  • Wu Y, Loper A, Landis E, Hettrick L, Novak L, Lynn K et al. (2004). The role of biopharmaceutics in the development of a clinical nanoparticle formulation of MK-0869: a Beagle dog model predicts improved bioavailability and diminished food effect on absorption in human. Int J Pharm, 285:135–146.
  • Olver I, Shelukar S, Thompson KC. (2007). Nanomedicines in the treatment of emesis during chemotherapy: focus on aprepitant. Int J Nanomedicine, 2:13–18.
  • Poli-Bigelli S, Rodrigues-Pereira J, Carides AD, Julie Ma G, Eldridge K, Hipple A et al.; Aprepitant Protocol 054 Study Group. (2003). Addition of the neurokinin 1 receptor antagonist aprepitant to standard antiemetic therapy improves control of chemotherapy-induced nausea and vomiting. Results from a randomized, double-blind, placebo-controlled trial in Latin America. Cancer, 97:3090–3098.
  • Tziomalos K, Athyros VG. (2006). Fenofibrate: a novel formulation (Triglide) in the treatment of lipid disorders: a review. Int J Nanomedicine, 1:129–147.
  • Guay DR. (1999). Micronized fenofibrate: a new fibric acid hypolipidemic agent. Ann Pharmacother, 33:1083–1103.
  • Guichard JP, Blouquin P, Qing Y. (2000). A new formulation of fenofibrate: suprabioavailable tablets. Curr Med Res Opin, 16:134–138.
  • Keating GM, Ormrod D. (2002). Micronised fenofibrate: an updated review of its clinical efficacy in the management of dyslipidaemia. Drugs, 62:1909–1944.
  • Stamm A, Seth P. (2003). Fenofibrate pharmaceutical composition having high bioavailability and method for preparing it. US Patent No. 6589552.
  • Maciejewski S, Hilleman D. (2008). Effectiveness of a fenofibrate 145-mg nanoparticle tablet formulation compared with the standard 160-mg tablet in patients with coronary heart disease and dyslipidemia. Pharmacotherapy, 28:570–575.
  • Femia RA, Goyette RE. (2005). The science of megestrol acetate delivery: potential to improve outcomes in cachexia. Biodrugs, 19:179–187.
  • Berenstein EG, Ortiz Z. (2005). Megestrol acetate for the treatment of anorexia-cachexia syndrome. Cochrane Database Syst Rev, CD004310.
  • Zhang ZB, Shen ZG, Wang JX, Zhao H, Chen JF, Yun J. (2009). Nanonization of megestrol acetate by liquid precipitation. Ind Eng Chem Res 48:8493–8499.
  • Hovey D, Pruitt J, Ryde T. (2005). Nanoparticulate megestrol formulations. US Patent Application. Pub.No. US 2005/0233001 A1.
  • Graham KK, Mikolich DJ, Fisher AE, Posner MR, Dudley MN. (1994). Pharmacologic evaluation of megestrol acetate oral suspension in cachectic AIDS patients. J Acquir Immune Defic Syndr, 7:580–586.
  • Par Pharmaceuticals. Par Pharmaceuticals Announces FDA Approval of Megace ES for Anorexia, Cachexia, or an Unexplained, Significant Weight Loss in Patients with a Diagnosis of AIDS. [Online] Available at: http://www.parpharm.com/generics/index. Accessed on 19 October 2010.
  • Deschamps B, Musaji N, Gillespie JA. (2009). Food effect on the bioavailability of two distinct formulations of megestrol acetate oral suspension. Int J Nanomedicine, 4:185–192.
  • Agu RU, Ugwoke MI, Armand M, Kinget R, Verbeke N. (2001). The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir Res, 2:198–209.
  • Suarez S, Hickey AJ. (2000). Drug properties affecting aerosol behavior. Respir Care, 45:652–666.
  • Gehr P, Bachofen M, Weibel ER. (1978). The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol, 32:121–140.
  • Laube BL. (2005). The expanding role of aerosols in systemic drug delivery, gene therapy, and vaccination. Respir Care, 50:1161–1176.
  • Sweeney TD, Brain JD. (1991). Pulmonary deposition: determinants and measurement techniques. Toxicol Pathol, 19:384–397.
  • Courrier HM, Butz N, Vandamme TF. (2002). Pulmonary drug delivery systems: recent developments and prospects. Crit Rev Ther Drug Carrier Syst, 19:425–498.
  • Labiris NR, Dolovich MB. (2003). Pulmonary drug delivery. Part I: physiological factors affecting therapeutic effectiveness of aerosolized medications. Br J Clin Pharmacol, 56:588–599.
  • Byron PR. (1986). Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci, 75:433–438.
  • Jaques PA, Kim CS. (2000). Measurement of total lung deposition of inhaled ultrafine particles in healthy men and women. Inhal Toxicol, 12:715–731.
  • Henning A, Hein S, Schneider M, Bur M, Lehr CM. (2010). Pulmonary drug delivery: medicines for inhalation. In: Schaefer-Korting M (Ed.) Drug delivery. Springer, Berlin, Heidelberg, Germany. 176.
  • Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. (2002). Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA, 99:12001–12005.
  • Sham JO, Zhang Y, Finlay WH, Roa WH, Löbenberg R. (2004). Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung. Int J Pharm, 269:457–467.
  • Hadinoto K, Phanapavudhikul P, Kewu Z, Tan RBH. (2006). Novel formulation of large hollow nanoparticles aggregates as potential carriers in inhaled delivery of nanoparticulate drugs. Ind Eng Chem Res 45:3697–3706.
  • Hadinoto K, Zhu K, Tan RB. (2007). Drug release study of large hollow nanoparticulate aggregates carrier particles for pulmonary delivery. Int J Pharm, 341:195–206.
  • Hofmann W, Asgharian B. (2003). The effect of lung structure on mucociliary clearance and particle retention in human and rat lungs. Toxicol Sci, 73:448–456.
  • Schürch S, Gehr P, Im Hof V, Geiser M, Green F. (1990). Surfactant displaces particles toward the epithelium in airways and alveoli. Respir Physiol, 80:17–32.
  • Geiser M. (2010). Update on macrophage clearance of inhaled micro- and nanoparticles. J Aerosol Med Pulm Drug Deliv, 23:207–217.
  • Takenaka S, Karg E, Kreyling WG, Lentner B, Möller W, Behnke-Semmler M et al. (2006). Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol, 18:733–740.
  • Semmler-Behnke M, Takenaka S, Fertsch S, Wenk A, Seitz J, Mayer P et al. (2007). Efficient elimination of inhaled nanoparticles from the alveolar region: evidence for interstitial uptake and subsequent reentrainment onto airways epithelium. Environ Health Perspect, 115:728–733.
  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W. (2008). The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol, 38:371–376.
  • Hoeben BJ, Burgess DS, McConville JT, Najvar LK, Talbert RL, Peters JI et al. (2006). In vivo efficacy of aerosolized nanostructured itraconazole formulations for prevention of invasive pulmonary aspergillosis. Antimicrob Agents Chemother, 50:1552–1554.
  • McConville JT, Overhoff KA, Sinswat P, Vaughn JM, Frei BL, Burgess DS et al. (2006). Targeted high lung concentrations of itraconazole using nebulized dispersions in a murine model. Pharm Res, 23:901–911.
  • Vaughn JM, McConville JT, Burgess D, Peters JI, Johnston KP, Talbert RL et al. (2006). Single dose and multiple dose studies of itraconazole nanoparticles. Eur J Pharm Biopharm, 63:95–102.
  • Vaughn JM, Wiederhold NP, McConville JT, Coalson JJ, Talbert RL, Burgess DS et al. (2007). Murine airway histology and intracellular uptake of inhaled amorphous itraconazole. Int J Pharm, 338:219–224.
  • Garbuzenko OB, Saad M, Pozharov VP, Reuhl KR, Mainelis G, Minko T. (2010). Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc Natl Acad Sci USA, 107:10737–10742.
  • Brigger I, Dubernet C, Couvreur P. (2002). Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev, 54:631–651.
  • Hitzman CJ, Wattenberg LW, Wiedmann TS. (2006). Pharmacokinetics of 5-fluorouracil in the hamster following inhalation delivery of lipid-coated nanoparticles. J Pharm Sci, 95:1196–1211.
  • Azarmi S, Tao X, Chen H, Wang Z, Finlay WH, Löbenberg R et al. (2006). Formulation and cytotoxicity of doxorubicin nanoparticles carried by dry powder aerosol particles. Int J Pharm, 319:155–161.
  • Sharma S, White D, Imondi AR, Placke ME, Vail DM, Kris MG. (2001). Development of inhalational agents for oncologic use. J Clin Oncol, 19:1839–1847.
  • Otterson GA, Villalona-Calero MA, Sharma S, Kris MG, Imondi A, Gerber M et al. (2007). Phase I study of inhaled Doxorubicin for patients with metastatic tumors to the lungs. Clin Cancer Res, 13:1246–1252.
  • Kraft WK, Steiger B, Beussink D, Quiring JN, Fitzgerald N, Greenberg HE et al. (2004). The pharmacokinetics of nebulized nanocrystal budesonide suspension in healthy volunteers. J Clin Pharmacol, 44:67–72.
  • Sung JC, Pulliam BL, Edwards DA. (2007). Nanoparticles for drug delivery to the lungs. Trends Biotechnol, 25:563–570.
  • Chono S, Tanino T, Seki T, Morimoto K. (2007). Uptake characteristics of liposomes by rat alveolar macrophages: influence of particle size and surface mannose modification. J Pharm Pharmacol, 59:75–80.
  • du Toit LC, Pillay V, Danckwerts MP. (2006). Tuberculosis chemotherapy: current drug delivery approaches. Respir Res, 7:118.
  • Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. (2003). Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother, 52:981–986.
  • Sharma A, Sharma S, Khuller GK. (2004). Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother, 54:761–766.
  • Pandey R, Khuller GK. (2005). Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis (Edinb), 85:227–234.
  • Müller RH, Mäder K, Gohla S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm, 50:161–177.
  • Mansour HM, Rhee YS, Wu X. (2009). Nanomedicine in pulmonary delivery. Int J Nanomedicine, 4:299–319.
  • Pandey R, Khuller GK. (2005). Antitubercular inhaled therapy: opportunities, progress and challenges. J Antimicrob Chemother, 55:430–435.
  • Kawashima Y, Yamamoto H, Takeuchi H, Fujioka S, Hino T. (1999). Pulmonary delivery of insulin with nebulized DL-lactide/glycolide copolymer (PLGA) nanospheres to prolong hypoglycemic effect. J Control Release, 62:279–287.
  • Zhang Q, Shen Z, Nagai T. (2001). Prolonged hypoglycemic effect of insulin-loaded polybutylcyanoacrylate nanoparticles after pulmonary administration to normal rats. Int J Pharm, 218:75–80.
  • Renwick LC, Brown D, Clouter A, Donaldson K. (2004). Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med, 61:442–447.
  • Oberdörster G. (1997). Pulmonary carcinogenicity of inhaled particles and the maximum tolerated dose. Environ Health Perspect, 105 Suppl 5:1347–1355.
  • Oberdörster G, Ferin J, Gelein R, Soderholm SC, Finkelstein J. (1992). Role of the alveolar macrophage in lung injury: studies with ultrafine particles. Environ Health Perspect, 97:193–199.
  • Renwick LC, Donaldson K, Clouter A. (2001). Impairment of alveolar macrophage phagocytosis by ultrafine particles. Toxicol Appl Pharmacol, 172:119–127.
  • Donaldson K, Stone V, Clouter A, Renwick L, MacNee W. (2001). Ultrafine particles. Occup Environ Med, 58:211–6, 199.
  • Nikula KJ. (2000). Rat lung tumors induced by exposure to selected poorly soluble nonfibrous particles. Inhal Toxicol, 12:97–119.
  • Borm PJ, Schins RP, Albrecht C. (2004). Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer, 110:3–14.
  • Driscoll KE, Deyo LC, Carter JM, Howard BW, Hassenbein DG, Bertram TA. (1997). Effects of particle exposure and particle-elicited inflammatory cells on mutation in rat alveolar epithelial cells. Carcinogenesis, 18:423–430.
  • Mühlfeld C, Gehr P, Rothen-Rutishauser B. (2008). Translocation and cellular entering mechanisms of nanoparticles in the respiratory tract. Swiss Med Wkly, 138:387–391.
  • Turco SJ. (2006). Intravenous admixtures. In: Troy BD (ed.) Remington: the science and practice of pharmacy. Lippincott Williams & Wilkins, Maryland, USA.
  • Shi Y, Porter W, Merdan T, Li LC. (2009). Recent advances in intravenous delivery of poorly water-soluble compounds. Expert Opin Drug Deliv, 6:1261–1282.
  • Akers, MJ. (2006). Parenteral preparations. In: Troy, BD (ed.) Remington: the science and practice of pharmacy. Lippincott Williams & Wilkins, Maryland, USA.
  • Yalkowsky SH, Krzyzaniak JF, Ward GH. (1998). Formulation-related problems associated with intravenous drug delivery. J Pharm Sci, 87:787–796.
  • Wong J, Brugger A, Khare A, Chaubal M, Papadopoulos P, Rabinow B et al. (2008). Suspensions for intravenous (IV) injection: a review of development, preclinical and clinical aspects. Adv Drug Deliv Rev, 60:939–954.
  • United State Pharmacopeia (USP). The National Formulary. (2007). Particulate matter in injections.
  • Rabinow BE. (2004). Nanosuspensions in drug delivery. Nat Rev Drug Discov, 3:785–796.
  • Haley B, Frenkel E. (2008). Nanoparticles for drug delivery in cancer treatment. Urol Oncol, 26:57–64.
  • Storm G, Belliot SO, Daemen T, Lasic DD. (1995). Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system. Adv Drug Deliv Rev 17:31–48.
  • Cho K, Wang X, Nie S, Chen ZG, Shin DM. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res, 14:1310–1316.
  • Davis ME, Chen ZG, Shin DM. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov, 7:771–782.
  • Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW et al. (2006). Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA, 103:6315–6320.
  • Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. (2007). Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci USA, 104:15549–15554.
  • Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. (2003). Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release, 93:151–160.
  • Schluep T, Hwang J, Cheng J, Heidel JD, Bartlett DW, Hollister B et al. (2006). Preclinical efficacy of the camptothecin-polymer conjugate IT-101 in multiple cancer models. Clin Cancer Res, 12:1606–1614.
  • Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E et al. (2002). Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res, 8:1038–1044.
  • Desai NP, Soon-Shiong P, Yang, A. (2007). Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use therof. US Patent No. 0092563.
  • Desai NP, Selvaraj R, Yang A, Soon-Shiong P. (2010). Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents. US Patent No. 7771751.
  • Desai N, Trieu V, Damascelli B, Soon-Shiong P. (2009). SPARC Expression Correlates with Tumor Response to Albumin-Bound Paclitaxel in Head and Neck Cancer Patients. Transl Oncol, 2:59–64.
  • Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al. (2006). Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res, 12:1317–1324.
  • Cortes J, Saura C. (2010). Nanoparticle albumin-bound (nab (TM))-paclitaxel: improving efficacy and tolerability by targeted drug delivery in metastatic breast cancer. EJC Suppl 8:1–10.
  • ten Tije AJ, Verweij J, Loos WJ, Sparreboom A. (2003). Pharmacological effects of formulation vehicles: implications for cancer chemotherapy. Clin Pharmacokinet, 42:665–685.
  • Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P et al. (2005). Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol, 23:7794–7803.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.