1,947
Views
78
CrossRef citations to date
0
Altmetric
Review Article

Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance

, &
Pages 1159-1170 | Received 12 Jun 2011, Accepted 28 Nov 2011, Published online: 12 Sep 2012

References

  • Chang D, Chang R. (2007). Review of current issues in pharmaceutical excipients. Pharm Technol, 31:1–2
  • Larner G, Schoneker D, Sheehan C, Uppoor R, Walsh P, Wiens R. (2006). Pharmaceutical excipient testing and control strategies. Pharm Technol, 1:1–7.
  • Block LH, Moreton RC, Apte SP, Wendt RH, Munson EJ, Creekmore JR, Persaud IV, Sheehan C, Wang H. (2009). Co-processed excipients. Pharm Forum, 35:1026–1028.
  • Reimerdes D. (1993). The near future of tablet excipients. Manuf Chem, 64:14–15.
  • Nachaegari SK, Bansal, AK. (2004). Co-processed excipients for solid dosage forms. Pharm Technol, 28:52–65.
  • Lerk C, Bolhuis G, De Boer A. (1974). Comparative evaluation of excipients for direct compression, II. Pharm Weekbl, 109:945–955.
  • Klinger R, Meuser F, Niediek E. (1986). Deploymerization of starch by high pressure extrusion. Starch/Starke, 38:40–44.
  • Ashish A, Neves S. (2006). From commodities to specialized excipients. Phar Health News, 4:5–8.
  • Levin M. (2006). Wet granulation: End-point determination and scale-up. encyclopedia of pharmaceutical technology. New York: Marcel Dekker, 4078–4098.
  • Beso A, Sirca J, Inventors. (2006). Rapidly disintegrating orodispersible composition containing non filamentous co-processed polyols particles and silicified microcrystalline cellulose. EP 1773292.
  • Burjak M, Legen I, Kerc J, Inventors. (2008). Orally disintegrating tablets. WO/2008/077813.
  • Gonnissen Y, Gonçalves SI, Remon JP, Vervaet C. (2008). Mixture design applied to optimize a directly compressible powder produced via cospray drying. Drug Dev Ind Pharm, 34:248–257.
  • Jivraj I, Martini LG, Thomson CM. (2000). An overview of the different excipients useful for the direct compression of tablets. Pharm Sci Technol Today, 3:58–63.
  • Rasmussen KE, Albrechtsen J. (1974). Glutaraldehyde. The influence of pH, temperature, and buffering on the polymerization rate. Histochem Cell Biol, 38:19–26.
  • Krassig H., editor. (1996). Cellulose, Structure, Accessibility and Reactivity. Asterdam: Gordon and Breach science publishers. pp. 371
  • Rojas J, López A, Gamboa Y, González C, Montoya F. (2011). Assessment of processing and polymorphic form effect on the powder and tableting properties of microcrystalline celluloses I and II. Chem Pharm Bull, 59:603–607.
  • Chow K, Tong HH, Lum S, Chow AH. (2008). Engineering of pharmaceutical materials: An industrial perspective. J Pharm Sci, 97:2855–2877.
  • Jacob S, Shirwaikar A, Joseph A, Srinivasan K. (2007). Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide. Indian J Pharm Sci, 69:633–639.
  • Saha S, Shahiwala AF. (2009). Multifunctional co-processed excipients for improved tabletting performance. Expert Opin Drug Deliv, 6:197–208.
  • Bolhuis G, Zuurman K. (1995). Tableting properties of experimental and commercially available lactose granulations for direct compression. Drug Dev Ind Pharm, 21:2057–2071.
  • Atassi F, Almaya A, Aburub A. (2008). Effect of storage conditions on compaction behavior of two grades of spray-dried lactose. Pharm Dev Technol, 13:277–282.
  • Steckel H, Bolzen N. (2004). Alternative sugars as potential carriers for dry powder inhalations. Int J Pharm, 270:297–306.
  • Sebathu T, Elamin AA, Ahlnek C. (1994). Effect of sorption on tableting characteristics of spray-dried (15% amorphous) lactose. Pharm Res, 11:1233–1238.
  • Stubberud L, Arwidsson HG, Hjortsberg V, Graffner C. (1996). Water-solid interactions. III. Effect of glass transition temperature, Tg, and processing on tensile strength of compacts of lactose and lactose/polyvinyl pyrrolidone. Pharm Dev Technol, 1:195–204.
  • Arida AI, Al-Tabakha MM. (2008). Cellactose a co-processed excipient: A comparison study. Pharm Dev Technol, 13:165–175.
  • Belda P, Mielck J. (1996). Tableting behavior of cellactose compared with mixtures of celluloses with lactoses. Eur J Pharm Biopharm, 42:325–330.
  • Schmidt PC, Rubensdörfer CJW. (1994). Evaluation of Ludipress as a “multipurpose excipient” for direct compression: Part I: Powder characteristics and tableting properties. Drug Dev Ind Pharm, 20:2899–2925.
  • Casalderrey M, Souto C, Concheiro A, Gómez-Amoza JL, Martínez-Pacheco R. (2004). A comparison of drug loading capacity of cellactose with two ad hoc processed lactose-cellulose direct compression excipients. Chem Pharm Bull, 52:398–401.
  • Clerch AV. (2008). Aportacion al diseno de un nuevo excipient tipo “co-processed product” para compresion directa. Barcelona: Universidad de Barcelona, 1–235.
  • Muzíková J, Nováková P. (2007). A study of the properties of compacts from silicified microcrystalline celluloses. Drug Dev Ind Pharm, 33:775–781.
  • BASF. (2007). Soluble Kollidon grades. Tech Inf., Retrieved May 25, 2010, Available from http://www.pharmaingredients.basf.com/Kollidon/TheKollidonProductFamily.aspx?WT.srch = 1&WT.mc_id=Google%20Adwords&WT.seg_1=kollidon. 1–16.
  • Baykara T, Duman G, Ozsener, KS, Ordu S, Ozates B. (1991). Comparing the compressibility of Ludipress with the other direct tableting agents by using acetaminophen as an active ingredient. Drug Dev Ind Pharm, 17:2359–2371.
  • Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. (2007). Preparation and assessment of novel co-processed superdisintegrant consisting of crospovidone and sodium starch glycolate: A technical note. AAPS Pharm Sci Tech, 8:63–69.
  • Hauschild K, Picker KM. (2004). Evaluation of a new co-processed compound based on lactose and maize starch for tablet formulation. AAPS J, 6:27–38.
  • Dressler JA, Wagner KG, Wahl MA, Schmidt PC. (2001). Comparison of incremental and inductive displacement transducers on an eccentric tablet press. Phar Ind, 63:886–893.
  • Bolhuis GK, Armstrong NA. (2006). Excipients for direct compaction–an update. Pharm Dev Technol, 11:111–124.
  • Fu Y, Pai CM, Park SY, Seomoon G, Park K. Inventors. (2004). Highly plastic granules for making fast melting tablets. EP1620075.
  • Jeong S, Kimura S, Fu Y, Park K. Inventors. (2005). Fast melting tablets having taste-masking and sustained release properties. WO/2006/101536.
  • Patel RP, Bhavsar MM. (2009). Directly compressible materials via co-processing. Int. J Pharm Tech Res, 1:745–753.
  • Gulian F, Simon B, Kurt A, LaBella G, Farrell T., Colorcon W. (2006). Evaluation of Star cap 1500® in a propranolol hydrochloride capsule formulation. Colorcon Retrieved May 27, 2010, Available from http://www.colorcon.com/literature/marketing/ex/StarCap%201500/Pex_poster_starcap_prophcl_ver1_1105.pdf.pdf. 1105:1–5.
  • Mužíková J, Eimerová I. (2011). A study of the compaction process and the properties of tablets made of a new co-processed starch excipient. Drug Dev Ind Pharm, 37:576–582.
  • Legen I, Beso A, Reven S. Inventors. (2007). Pharmaceutical composition comprising hydrochlorothiazide and telmisartan. WO/2007/144175.
  • El-Barghouthi M, Eftaiha A, Rashid I, Al-Remawi M, Badwan A. (2008). A novel superdisintegrating agent made from physically modified chitosan with silicon dioxide. Drug Dev Ind Pharm, 34:373–383.
  • Auguello M, Ruszkay TA, Reier GE, Inventors. (1998). Co-processed microcrystalline cellulose and calcium carbonate. EP 0942950.
  • Auguello M, Ruszkay TA, Reier GE, Inventors. (1998). Co-processed products. US 5747067.
  • Gupta P, Nachaegari SK, Bansal AK. (2006). Improved excipient functionality by coprocessing. In: Excipient Development for Pharmaceutical, Biotechnology and Drug Delivery Systems. New York, USA: Informa Healthcare USA Inc. pp. 109–127.
  • Saigal N, Baboota S, Ahuja A, Ali J. (2009). Microcrystalline cellulose as a versatile excipient in drug research. J Young Pharm, 1:1–6.
  • Inghelbrecht S, Remon JP. (1998). Roller compaction and tableting of microcrystalline cellulose/drug mixtures. Int J Pharm, 161:215–224.
  • Carlin B. (2008). Direct compression and the role of filler-binders. In: Pharmaceutical Dosage Forms: Tablets, Volume 2: Rational Design and Formulation. Augsburger AL and Hoag SW ed 3rd ed. New York, USA: Informa Healthcare. pp. 173–216.
  • Thoorens G, Leclercq B, Carlin B, Riley P, Garcia M. It P. inventors. (2008). Dry granulation binders, products, and use thereof. WO/2008/057266.
  • Garcia J, Ghaly ES. (2001). Evaluation of bioadhesive glipizide spheres and compacts from spheres prepared by extruder/marumerizer technique. Pharm Dev Technol, 6:407–417.
  • Battista O, Inventor. (1966). Shaped particles containing cellulose crystallite aggregates having an average level-off. US 3357845.
  • Battista O. (1965). Colloidal macromolecular phenomena. J Polym Sci Pol Sym, 9:135–155.
  • Mihranyan A, Edsman K, Strømme M. (2007). Rheological properties of cellulose hydrogels prepared from Cladophora cellulose powder. Food Hydrocoll, 21:267–272.
  • Bolhuis GK, Chowhan ZT. (1996). Materials for direct compression. In: Pharmaceutical Powder Compaction Technology. Alderborn G and Nystrom C, editors. New York: Dekker, pp. 419–500.
  • Lahdenpaa E, Antikainen O, Yliruusi J. (2001). Direct compression with silicified and non-silicified microcrystalline cellulose: Study of some properties of powders and tablets. STP Pharma Sci, 11:129–135.
  • Sherwood BE, Staniforth JH, Hunter EA. Inventors. (2004). Pharmaceutical excipient having improved compresibility. US 5,725,883.
  • van Veen B, Bolhuis GK, Wu YS, Zuurman K, Frijlink HW. (2005). Compaction mechanism and tablet strength of unlubricated and lubricated (silicified) microcrystalline cellulose. Eur J Pharm Biopharm, 59:133–138.
  • Gohel MC, Jogani PD, Bariya SE. (2003). Development of agglomerated directly compressible diluent consisting of brittle and ductile materials. Pharm Dev Technol, 8:143–151.
  • Sherwood B, Zeleznik JA, Schaible D, Berkulin W, Theissing K. Inventors. (2002). Agglomerated particles including an active agent co-processed with silicified microcrystalline cellulose. EP 1509204.
  • Kachrimanis K, Nikolakakis I, Malamataris S. (2003). Tensile strength and disintegration of tableted silicified microcrystalline cellulose: Influences of interparticle bonding. J Pharm Sci, 92:1489–1501.
  • Aljaberi A, Chatterji A, Shah NH, Sandhu HK. (2009). Functional performance of silicified microcrystalline cellulose versus microcrystalline cellulose: A case study. Drug Dev Ind Pharm, 35:1066–1071.
  • Zeleznik JA, Renak J. (2005). High functionality excipients (HFE)–Prosolv SMCC as an effective strategy for generic drug formulation. JRS Pharma L.P. Business Briefing: PharmaGenerics. pp 1–4
  • Limwong V, Sutanthavibul N, Kulvanich P. (2004). Spherical composite particles of rice starch and microcrystalline cellulose: A new co-processed excipient for direct compression. AAPS PharmSciTech, 5:e30.
  • Parrott EL. (1989). Comparative evaluation of a new direct compression excipient, Soludex™ 15. Drug Dev Ind Pharm, 15:561–583.
  • Celik M, Okutgen E. (1993). Excipient functionality. Drug Dev Ind Pharm, 19:2309–2334.
  • Olmo IG, Ghaly ES. (1999). Compressional characterization of two dextrose-based directly compressible excipients using an instrumented tablet press. Pharm Dev Technol, 4:221–231.
  • Kruse S, Gebert S, Kolter K. (2007). LudiFlash®–Easy and reliable development of orally dispersible tablets. Exc Act, 19:1–4.
  • Yidan L. (2008). A new excipient for fast disintegrating oral dosage forms. BASF p. 1 Retrieved August 10, 2010, Available from http://www.phexcom.cn/UploadFiles/200899112624826.pdf
  • SPI Pharma. (2007). Compressol ®S: Co-processed polyol. Technical Bulletin T135:1–2. Retrieved May 25, 2008, Available from http://www.spipharma.com/downloads/Products/Excipients/Compressol_S/CompressolSTech.pdf
  • Lieberman H, Lachman L, Schwartz J, Herbert, A., ed. (1989). Pharmaceutical dosage froms: Tablets. 2nd ed. New York: Marcel Dekker, pp. 225–232.
  • Abu-Taleb A, Aly S. (1985). Comparative evaluation of certain excipients and their binary blends for direct compression oxytetracycline hydrochloride tablets. Drug Dev Ind Pharm, 11:1971–1987.
  • El Sabbagh HM, El Shaboury MH. (1984). The use of directly compressible vehicles for the preparation of vitamin B1 tablets. Pharmazie, 39:237–239.
  • Es-Saheb, M. (1996). Tensile fracture characteristics of double convex-faced cylindrical powder compacts. J. Mater Sci, 31:214–223.
  • Shangraw R. (2002). Direct compression tableting. In: Encyclopedia of Pharmaceutical Technology. Swarbrick J and Boylan JC, ed. New York: Marcel Dekker. pp. 85–107.
  • Stout P, Howard S, Mouger J. (1991). Dissolution of pharmaceutical suspensions. In: Encyclopedia of Pharmaceutical Technology. Swarbrick J and Boylan J ed New York, USA: Marcel Dekker. pp. 169–192.
  • Ho R, Bagster DF, Crooks M. (1977). Flow studies on directly compressible tablet vehicles. Drug Dev Ind Pharm, 3:475–487.
  • Bowe K. (1998). Recent advances in sugar-based excipients. Pharm Sci Technol Today, 1:166–173.
  • Hurtta M, Pitkänen I, Knuutinen J. (2004). Melting behaviour of D-sucrose, D-glucose and D-fructose. Carbohydr Res, 339:2267–2273.
  • Morris LE, Moore JC, Schwartz JB. (1996). Characterization and performance of a new direct compression excipient for chewable tablets: Xylitab®. Drug Dev Ind Pharm, 22:925–932.
  • Ndindayino F, Henrist D, Kiekens F, Vervaet C, Remon JP. (1999). Characterization and evaluation of isomalt performance in direct compression. Int J Pharm, 189:113–124.
  • Muzíková J, Balhárková J. (2008). A study of the properties of tablets made of directly compressible maltose. Ceska Slov Farm, 57:21–27.
  • F-Melt® a new directly compressible excipient for fast oral disintegration tablets. Fuji Chemical inductry Co.; c2009, Retrieved June 15, 2010, Available from http://www.fujichemical.co.jp/english/newsletter/newsletter_pharma_0803.html
  • Piene J. Inventor. (2005). Prebiotic combination products. EP1696937.
  • Rashid I, Al-Remawi M, Eftaiha A, Badwan A. (2008). Chitin-silicon dioxide co-precipitate as a novel superdisintegrant. J Pharm Sci, 97:4955–4969.
  • Teng Y, Qiu Z, Wen H. (2009). Systematical approach of formulation and process development using roller compaction. Eur J Pharm Biopharm, 73:219–229.
  • Cucala EJ, Siles OA, Gallego LM, It P. Inventors. (2006). Modified calcium phosphate excipient. US 7364755.
  • Baichwal AR, Staniforth JN, Inventors. (2000). Direct compressible sustained release excipient. US 6039980.
  • Baichwal AR, Staniforth JN, Inventors. (1992). Controlled release verapamil tablets. US 5169639.
  • McCall TW, Baichwal AR, Staniforth JN. (2003). TIMERx oral controlled-release drug delivery system. Rathbone M, Hadgraph J, Roberts M, ed New York: Marcel Dekker, pp. 11–19.
  • Tobyn MJ, Staniforth JN, Baichwal AR, McCall TW. (1996). Prediction of physical properties of a novel polysaccharide controlled release system. I. Int J Pharm, 128:113–122.
  • Tobyn MJ, Maher J, Challinor CL, Staniforth JN. (1996). Investigations of the interactions between a novel polysaccharide controlled release matrix and model compounds using ESR. J Control Rel, 40:147–155.
  • Baichwal A, McCall TW, Inventors. (1995). Once a day metoprolol oral dosage form. US 5399362.
  • Kumar V, de la Luz Reus-Medina M, Yang D. (2002). Preparation, characterization, and tabletting properties of a new cellulose-based pharmaceutical aid. Int J Pharm, 235:129–140.
  • Reus M, Lenz M, Kumar V, Leuenberger H. (2004). Comparative evaluation of mechanical properties of UICEL and commercial microcrystalline and powdered celluloses. J Pharm Pharmacol, 56:951–958.
  • de la Luz Reus Medina M, Kumar V. (2006). Evaluation of cellulose II powders as a potential multifunctional excipient in tablet formulations. Int J Pharm, 322:31–35.
  • de la Luz Reus Medina M, Kumar V. (2007). Modified cellulose II powder: Preparation, characterization, and tableting properties. J Pharm Sci, 96:408–420.
  • Rojas J, Kumar V. (2011). Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle. Int J Pharm, 416:120–128.
  • Rojas J, Kumar V. (2011). Coprocessing of cellulose II with amorphous silicon dioxide: Effect of silicification on the powder and tableting properties. Drug Dev Ind Pharm, DOI: 10.3109/03639045.2011.597400. 1–18.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.