173
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Novel aqueous nano-scaled formulations of oleic acid stabilized hydrophobic superparamagnetic iron oxide nanocrystals

&
Pages 186-196 | Received 04 Dec 2011, Accepted 06 Feb 2012, Published online: 14 Mar 2012

References

  • Bulte JW, Kraitchman DL. (2004). Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed, 17:484–499.
  • Jarrett BR, Frendo M, Vogan J, Louie AY. (2007). Size-controlled synthesis of dextran sulfate coated iron oxide nanoparticles for magnetic resonance imaging. Nanotechnology, 18: 035603.
  • Lu J, Yang S, Ng KM, Su CH, Yeh CS, Wu YN et al. (2006). Solid-state synthesis of monocrystalline iron oxide nanoparticle based ferrofluid suitable for magnetic resonance imaging contrast application. Nanotechnology, 17:5812–5820.
  • Wang YX, Hussain SM, Krestin GP. (2001). Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol, 11:2319–2331.
  • Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY et al. (2004). Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater, 3:891–895.
  • Hyeon T. (2003). Chemical synthesis of magnetic nanoparticles. Chem Commun (Camb), 927–934.
  • Park J, Lee E, Hwang NM, Kang M, Kim SC, Hwang Y et al. (2005). One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed Engl, 44:2873–2877.
  • Taboada E, Rodríguez E, Roig A, Oró J, Roch A, Muller RN. (2007). Relaxometric and magnetic characterization of ultrasmall iron oxide nanoparticles with high magnetization. Evaluation as potential T1 magnetic resonance imaging contrast agents for molecular imaging. Langmuir, 23:4583–4588.
  • Jun YW, Huh YM, Choi JS, Lee JH, Song HT, Kim S et al. (2005). Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc, 127:5732–5733.
  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX et al. (2004). Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc, 126:273–279.
  • Kim BS, Qiu JM, Wang JP, Taton TA. (2005). Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers. Nano Lett, 5:1987–1991.
  • Ai H, Flask C, Weinberg B, Shuai X, Pagel MD, FarrelD et al. (2005). Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv Mater, 17:1949–1952.
  • Lecommandoux S, Sandre O, Checot F, Rodriguez-Hernandez J, Perzynski R. (2005). Magnetic nanocomposite micelles and vesicles. Adv Mater, 17:712–718.
  • Maier J. (2008). Synthese und Anwendung von FERR-b-PEO stabilisierten SPIO Partikeln als Kontrastmittelsystem für die Magnetresonanztomographie. PhD Dissertation, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
  • Yue-Jian C, Juan T, Fei X, Jia-Bi Z, Ning G, Yi-Hua Z et al. (2010). Synthesis, self-assembly, and characterization of PEG-coated iron oxide nanoparticles as potential MRI contrast agent. Drug Dev Ind Pharm, 36:1235–1244.
  • Yang J, Lee TI, Lee J, Lim EK, Hyung W, Lee CH et al. (2007). Synthesis of ultrasensitive magnetic resonance contrast agents for cancer imaging using PEG-fatty acid. Chem Mater, 19:3870–3876.
  • Shtykova EV, Huang X, Remmes N, Baxter DV, Stein B, Dragnea B et al. (2007). Structure and properties of iron oxide nanoparticles encapsulated by phospholipids with poly(ethylene glycol) tails. J Phys Chem C, 111:18078–18086.
  • Shtykova EV, Huang X, Gao X, Dyke JC, Schmucker AL, Dragnea B et al. (2008). Hydrophilic Monodisperse Magnetic Nanoparticles Protected by an Amphiphilic Alternating Copolymer. J Phys Chem C Nanomater Interfaces, 112:16809–16817.
  • Hultman KL, Raffo AJ, Grzenda AL, Harris PE, Brown TR, O’Brien S. (2008). Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. ACS Nano, 2:477–484.
  • Mulder WJ, Strijkers GJ, van Tilborg GA, Cormode DP, Fayad ZA, Nicolay K. (2009). Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Acc Chem Res, 42:904–914.
  • Mulder WJ, Strijkers GJ, van Tilborg GA, Griffioen AW, Nicolay K. (2006). Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed, 19:142–164.
  • Fortune WB, Mellon MG. (1938). Determination of iron with o-phenanthroline: a spectrophotometric study. Ind Eng Chem Anal Ed, 10:60–64.
  • Skoog DA, West DM, Holler FJ, eds. Fundamentals of Analytical Chemistry, 7th edn. Philadelphia: Saunders College Publishing, 1996: 561,859.
  • Corot C, Robert P, Idée JM, Port M. (2006). Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Deliv Rev, 58:1471–1504.
  • Wyatt PJ. (1998). Submicrometer Particle Sizing by Multiangle Light Scattering following Fractionation. J Colloid Interface Sci, 197:9–20.
  • Woodle MC, Storm G, eds. Long Circulating Liposomes: Old Drugs, New Therapeutics. New York: Springer-Verlag, 1998.
  • Lukyanov AN, Torchilin VP. (2004). Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. Adv Drug Deliv Rev, 56:1273–1289.
  • Krishnadas A, Rubinstein I, Onyüksel H. (2003). Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res, 20:297–302.
  • Johnsson M, Edwards K. (2003). Liposomes, disks, and spherical micelles: aggregate structure in mixtures of gel phase phosphatidylcholines and poly(ethylene glycol)-phospholipids. Biophys J, 85:3839–3847.
  • Jumma M, Müller BW. (1999). Influence of the non-ionic surfactant PEG-660-12-hydroxy stearate on the surface properties of phospholipid monolayers and their effect on lipid emulsion stability. Colloid Polym Sci, 277:347–353.
  • Alkan-Onyuksel H, Ramakrishnan S, Chai HB, Pezzuto JM. (1994). A mixed micellar formulation suitable for the parenteral administration of taxol. Pharm Res, 11:206–212.
  • Jumaa M, Müller BW. (2000). Lipid emulsions as a novel system to reduce the hemolytic activity of lytic agents: mechanism of the protective effect. Eur J Pharm Sci, 9:285–290.
  • Rupp C, Müller BW. Mixed micelles based on phospholipids structural influence of sucrose esters on micelle formation. Abstracts presented at the 6th World Meeting on Pharmaceutics, Biopharmaceutics and Pharmaceutical Technology; 7th - 10th April 2008, Barcelona, Spain.
  • Tartaj P, Morales MP, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ. (2003). The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D: Appl Phys, 36:R182–R197.
  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L et al. (2008). Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev, 108:2064–2110.
  • Thielking H, Roessner D, Kulicke WM. (1995). Online coupling of flow field-flow fractionation and multiangle laser light scattering for the characterization of polystyrene particles. Anal Chem, 67:3229–3233.
  • Lohrke J, Briel A, Mäder K. (2008). Characterization of superparamagnetic iron oxide nanoparticles by asymmetrical flow-field-flow-fractionation. Nanomedicine (Lond), 3:437–452.
  • Fraunhofer W, Winter G, Coester C. (2004). Asymmetrical flow field-flow fractionation and multiangle light scattering for analysis of gelatin nanoparticle drug carrier systems. Anal Chem, 76:1909–1920.
  • Rheinländer T, Kötitz R, Weitschies W, Semmler W. (2000). Magnetic fractionation of magnetic fluids. J Magn Magn Mater, 219:219–228.
  • Fraunhofer W, Winter G. (2004). The use of asymmetrical flow field-flow fractionation in pharmaceutics and biopharmaceutics. Eur J Pharm Biopharm, 58:369–383.
  • Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. (2005). Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol, 40:715–724.
  • Wu EX, Tang H, Jensen JH. (2004). Applications of ultrasmall superparamagnetic iron oxide contrast agents in the MR study of animal models. NMR Biomed, 17:478–483.
  • Martina MS, Fortin JP, Ménager C, Clément O, Barratt G, Grabielle-Madelmont C et al. (2005). Generation of superparamagnetic liposomes revealed as highly efficient MRI contrast agents for in vivo imaging. J Am Chem Soc, 127:10676–10685.
  • Berret JF, Schonbeck N, Gazeau F, El Kharrat D, Sandre O, Vacher A et al. (2006). Controlled clustering of superparamagnetic nanoparticles using block copolymers: design of new contrast agents for magnetic resonance imaging. J Am Chem Soc, 128:1755–1761.
  • Josephson L, Lewis J, Jacobs P, Hahn PF, Stark DD. (1988). The effects of iron oxides on proton relaxivity. Magn Reson Imaging, 6:647–653.
  • Abdelwahed W, Degobert G, Stainmesse S, Fessi H. (2006). Freeze-drying of nanoparticles: formulation, process and storage considerations. Adv Drug Deliv Rev, 58:1688–1713.
  • Zhou XJ, Hu XM, Yi YM, Wan J. (2009). Preparation and body distribution of freeze-dried powder of ursolic acid phospholipid nanoparticles. Drug Dev Ind Pharm, 35:305–310.
  • Chen H, Shi S, Zhao M, Zhang L, He H, Tang X. (2010). A lyophilized etoposide submicron emulsion with a high drug loading for intravenous injection: preparation, evaluation, and pharmacokinetics in rats. Drug Dev Ind Pharm, 36:1444–1453.
  • Jumaa M, Müller BW. (2002). Parenteral emulsions stabilized with a mixture of phospholipids and PEG-660-12-hydroxy-stearate: evaluation of accelerated and long-term stability. Eur J Pharm Biopharm, 54:207–212.
  • Konan YN, Gurny R, Allémann E. (2002). Preparation and characterization of sterile and freeze-dried sub-200 nm nanoparticles. Int J Pharm, 233:239–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.