623
Views
75
CrossRef citations to date
0
Altmetric
Research Article

Continuous production of drug nanoparticle suspensions via wet stirred media milling: a fresh look at the Rehbinder effect

, &
Pages 266-283 | Received 24 Nov 2011, Accepted 12 Mar 2012, Published online: 16 Apr 2012

References

  • Date AA, Patravale VB. (2004). Current strategies for engineering drug nanoparticles. Curr Opin Colloid Interface Sci, 9:222–235.
  • Muller RH, Peters K. (1998). Nanosuspensions for the formulation of poorly soluble drugs: I. Preparation by a size reduction technique. Int J Pharm, 160:229–237.
  • Niwa T, Miura S, Danjo K. (2011). Design of dry nanosuspension with highly spontaneous dispersible characteristics to develop solubilized formulation for poorly water-soluble drugs. Pharm Res, 28:2339–2349.
  • Noyes A, Whitney W. (1897). The rate of solution of solid substances in their own solutions. J Am Chem Soc, 19:930–934.
  • Chan LW, Lee CC, Heng PW. (2002). Ultrafine grinding using a fluidized bed opposed jet mill: effects of feed load and rotational speed of classifier wheel on particle shape. Drug Dev Ind Pharm, 28:939–947.
  • Kamiya S, Kurita T, Miyagishima A, Arakawa M. (2009). Preparation of griseofulvin nanoparticle suspension by high-pressure homogenization and preservation of the suspension with saccharides and sugar alcohols. Drug Dev Ind Pharm, 35:1022–1028.
  • Bilgili E, Hamey R, Scarlett B. (2004). Production of pigment nanoparticles using a wet stirred media mill with polymeric media. China Particuol, 2:93–100.
  • Bilgili E, Hamey R, Scarlett B. (2006). Nano-milling of pigment agglomerates using a wet stirred media mill: Elucidation of the kinetics and breakage mechanisms. Chem Eng Sci, 61:149–157.
  • Chiou H, Chan HK, Prud’homme RK, Raper JA. (2008). Evaluation on the use of confined liquid impinging jets for the synthesis of nanodrug particles. Drug Dev Ind Pharm, 34:59–64.
  • Anais JP, Razzouq N, Carvalho M, Fernandez C, Astier A, Paul M et al. (2009). Development of α-tocopherol acetate nanoparticles: influence of preparative processes. Drug Dev Ind Pharm, 35:216–223.
  • Ain-Ai A, Gupta PK. (2008). Effect of arginine hydrochloride and hydroxypropyl cellulose as stabilizers on the physical stability of high drug loading nanosuspensions of a poorly soluble compound. Int J Pharm, 351:282–288.
  • Basa S, Muniyappan T, Karatgi P, Prabhu R, Pillai R. (2008). Production andin vitrocharacterization of solid dosage form incorporating drug nanoparticles. Drug Dev Ind Pharm, 34:1209–1218.
  • Kesisoglou F, Panmai S, Wu Y. (2007). Nanosizing–oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev, 59:631–644.
  • Hu J, Johnston KP, Williams RO 3rd. (2004). Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm, 30:233–245.
  • Liversidge GG, Cundy KC. (1995). Particle size reduction for improvement of oral bioavailability of hydrophobic drugs: I. Absolute oral bioavailability of nanocrystalline danazol in beagle dogs. Int J Pharm, 125:91–97.
  • Park CH, Youn HR, Lee J, Lee KU, Park JY, Koh EH et al. (2009). Improved efficacy of appetite suppression by lipoic acid particles prepared by nanocomminution. Drug Dev Ind Pharm, 35:1305–1311.
  • Tanaka Y, Inkyo M, Yumoto R, Nagai J, Takano M, Nagata S. (2009). Nanoparticulation of poorly water soluble drugs using a wet-mill process and physicochemical properties of the nanopowders. Chem Pharm Bull, 57:1050–1057.
  • Bhakay A, Merwade M, Bilgili E, Dave RN. (2011). Novel aspects of wet milling for the production of microsuspensions and nanosuspensions of poorly water-soluble drugs. Drug Dev Ind Pharm, 37:963–976.
  • Sepassi S, Goodwin DJ, Drake AF, Holland S, Leonard G, Martini L et al. (2007). Effect of polymer molecular weight on the production of drug nanoparticles. J Pharm Sci, 96:2655–2666.
  • Lee J, Choi JY, Park CH. (2008). Characteristics of polymers enabling nano-comminution of water-insoluble drugs. Int J Pharm, 355:328–336.
  • Bruno JA, Doty BD, Gustow E, Illig KJ, Rajagopalan N, Sarpotdar P. (1996). Method of grinding pharmaceutical substances, US Patent 5518187.
  • Merisko-Liversidge E, Liversidge GG, Cooper ER. (2003). Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci, 18:113–120.
  • Merisko-Liversidge E, Liversidge GG. (2011). Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev, 63:427–440.
  • Ghosh I, Bose S, Vippagunta R, Harmon F. (2011). Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm, 409:260–268.
  • Singh SK, Srinivasan KK, Gowthamarajan K, Singare DS, Prakash D, Gaikwad NB. (2011). Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Eur J Pharm Biopharm, 78:441–446.
  • Cerdeira AM, Mazzotti M, Gander B. (2010). Miconazole nanosuspensions: Influence of formulation variables on particle size reduction and physical stability. Int J Pharm, 396:210–218.
  • Juhnke M, Berghausen J, Timpe C. (2010). Accelerated formulation development for nanomilled active pharmaceutical ingredients using a screening approach. Chem Eng Technol, 33:1412–1418.
  • Verhoff FH, Snow RA, Pace GW. (2003). Media milling, US Patent 6604698.
  • Annapragada A, Adjei A. (1996). Numerical simulation of milling processes as an aid to process design. Int J Pharm, 136:1–11.
  • Czekai DA, Seaman LP. (1996). Continuous media recirculation milling process. US Patent 5513803.
  • Adjel AL, Lee DY, Hlinak AJ. (1995). Apparatus for the continuous milling of aerosol pharmaceutical formulations in aerosol propellants. US Patent 5687920.
  • Czekai DA, Seaman LP. (1998). Continuous method of grinding pharmaceutical substances. US Patent 5718388.
  • Vanarase AU, Alcala M, Rozo JI, Muzzio FJ, Romanach RJ. (2010). Real-time monitoring of drug concentration in a continuous powder mixing process using NIR spectroscopy. Chem Eng Sci, 65:5728–5733.
  • Vanarase AU, Muzzio FJ. (2010). Effect of operating conditions and design parameters in a continuous powder mixer. Powder Technol, 208:26–36.
  • Berthiaux H, Marikh K, Gatumel C. (2008). Continuous mixing of powder mixtures with pharmaceutical process constraints. Chem Eng Process, 47:2315–2322.
  • Holland SJ, Knight WA, Leonard GS. (2006). Wet Milling Process, US Patent 2006/0214037.
  • Rehbinder PA. (1958). Formation and aggregative stability of disperse systems. Colloids J USSR, 20:493–502.
  • Butyagin P. (1999). Rehbinder’s predictions and advances in mechanochemistry. Colloids Surf, A, 160:107–115.
  • Rehbinder PA, Shchukin ED. (1972). Surface phenomena in solids during deformation and fracture processes. Prog Surf Sci, 3:97–104.
  • Shchukin ED. (2006). The influence of surface-active media on the mechanical properties of materials. Adv Colloid Interface Sci, 123-126:33–47.
  • Bhakay A, Dave R, Bilgili E. (2012). Recovery of BCS Class II drugs during aqueous redispersion of core-shell type nanocomposite particles produced via fluidized bed coating. Powder Technol, doi: 10.1016/j.powtec.2011.12.066.
  • Sievens-Figueroa L, Bhakay A, Jerez-Rozo JI, Pandya N, Romañach RJ, Michniak-Kohn B et al. (2012). Preparation and characterization of hydroxypropyl methyl cellulose films containing stable BCS Class II drug nanoparticles for pharmaceutical applications. Int J Pharm, 423:496–508.
  • Afolabi A, Bilgili E. (2011). Impact of processing and formulation parameters on drug nanoparticle suspensions produced via wet stirred media milling. Annu Meet AIChE, Paper No: 397b, Minneapolis, MN, Oct. 2011.
  • Knieke C, Steinborn C, Romeis S, Peukert W, Breitung-Faes S, Kwade A. (2010). Nanoparticle production with stirred-media mills: opportunities and limits. Chem Eng Technol, 33:1401–1411.
  • Feng T, Pinal R, Carvajal MT. (2008). Process induced disorder in crystalline materials: differentiating defective crystals from the amorphous form of griseofulvin. J Pharm Sci, 97:3207–3221.
  • Zarow A, Zhou B, Wang X, Pinal R, Iqbal Z. (2011). Spectroscopic and X-ray diffraction study of structural disorder in cryomilled and amorphous griseofulvin. Appl Spectrosc, 65:135–143.
  • Sharma P, Denny WA, Garg S. (2009). Effect of wet milling process on the solid state of indomethacin and simvastatin. Int J Pharm, 380:40–48.
  • Knieke C, Sommer M, Peukert W. (2009). Identifying the apparent and true grinding limit. Powder Technol, 195:25–30.
  • Sommer M, Stenger F, Peukert W, Wagner NJ. (2006). Agglomeration and breakage of nanoparticles in stirred media mills - a comparison of different methods and models. Chem Eng Sci, 61:135–148.
  • Bilgili E, Arastoopour H, Bernstein B, Hamey R. (2008). Some novel applications of grinding and milling technologies: milling of soft materials and nanomilling, In: Fine particle technology and characterization, Ed.: Yekeler Meftuni, pp. 41–67, Research Signpost, Kerala.
  • Bilgili E. (2007). On the consequences of non-first-order breakage kinetics in comminution processes: absence of self-similar size spectra. Part Part Syst Char, 24:12–17.
  • Bilgili E, Capece M. (2011). Quantitative analysis of multi-particle interactions during particle breakage: a discrete non-linear population balance framework. Powder Technol, 213:162–173.
  • Varinot C, Berthiaux H, Dodds J. (1999). Prediction of the product size distribution in associations of stirred bead mills. Powder Technol, 105:228–236.
  • Strazisar J, Runovc F. (1996). Kinetics of comminution in micro- and sub-micrometer ranges. Int J Miner Process, 44:673–682.
  • Cho H, Waters MA, Hogg R. (1996). Investigation of the grind limit in stirred-media milling. Int J Miner Process, 44:607–615.
  • Stehr N. (1982). Zerkleinerung u. Materialtransport in einer Ruhrwerkskugelmuhle. Dissertation. TU Braunschweig.
  • Deutsche Keramische Gesellschaft. (2009). Agitator bead mills for dispersing and comminution - Applications for ceramic processing. Ceram Forum Int, 86:E23–E28.
  • Kula MR, Schütte H. (1987). Purification of proteins and the disruption of microbial cells. Biotechnol Progr, 3:31–42
  • Stehr N, Schwedes J. (1983). Investigation of the grinding behaviour of a stirred ball mill. Ger Chem Eng, 6:337–343.
  • Stehr N. (1984). Residence time distribution in a stirred ball mill and their effect on comminution. Chem Eng Proces, 18:73–83.
  • Schwedes J, Bunge F. (1993). Operation of agitated bead mill. Hung J Ind Chem Veszprem, 21:129–147.
  • Fogler HS. (1999). Elements of Chemical Reaction Engineering. 3rd Ed. Prentice Hall, Upper Saddle River.
  • Bilgili E, Scarlett B. (2005) Numerical simulation of open-circuit continuous mills using a non-linear population balance framework: incorporation of non-first-order effects. Chem Eng Technol, 28:153–159.
  • El-Shall H, Somasundaran P. (1984). Physico-chemical aspects of grinding: a review of use of additives. Powder Technol, 38:275–293.
  • Klimpel RR. (1999). The selection of wet grinding chemical additives based on slurry rheology control. Powder Technol, 105:430–435.
  • Ryde N, Ruddy S. (2002). Solid dose nanoparticulate compositions comprising a synergistic combination of a polymeric surface stabilizer and dioctyl sodium sulfosuccinate. US Patent 6375986.
  • Karpenko GV. (1974). The 45th anniversary of the Rehbinder effect. Fiziko-Khimicheskaya Mekhanika Materialov, 10:5–7.
  • Tadros TF. (1994). Surfactants in Agrochemicals. Marcel Dekker, New York, p. 130.
  • Kissa E. (1999). Dispersions: Characterization, Testing, and Measurement. Marcel Dekker, New York, p. 240–241.
  • Vital A, Zürcher S, Dittmann R, Trottmann M, Lienemann P, Bommer B, Graule T, Apel E, Höland W. (2008). Ultrafine comminution of dental glass in a stirred media mill. Chem Eng Sci, 63:484–494.
  • Barthelmes G, Pratsinis SE, Buggisch H. (2003). Particle size distributions and viscosity of suspensions undergoing shear-induced coagulation and fragmentation. Chem Eng Sci, 58:2893–2902.
  • Bernhardt C, Reinsch E, Husemann, K. (1999). The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technol, 105:357–361.
  • Eskin D, Zhupanska O, Hamey R, Moudgil B, Scarlett B. (2005). Microhydrodynamic analysis of nanogrinding in stirred media mills. AlChE J, 51:1346–1358.
  • Eskin D, Zhupanska O, Hamey R, Moudgil B, Scarlett B. (2005). Microhydrodynamics of stirred media milling. Powder Technol, 156:95–102.
  • Tatsumi S, Murayama Y, Hayakawa H, Sano M. (2009). Experimental study on the kinetics of granular gases under microgravity. J Fluid Mech, 641:521–539.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.