719
Views
47
CrossRef citations to date
0
Altmetric
Review Article

Novel strategies for the buccal delivery of macromolecules

&
Pages 579-590 | Received 31 Jan 2014, Accepted 05 Feb 2014, Published online: 10 Mar 2014

References

  • Wertz PW, Squier CA. Cellular and molecular basis of barrier function in oral epithelium. Crit Rev Ther Drug Carrier Syst 1991;8:237–69
  • Collins LMC, Dawes C. The surface area of the adult human mouth and thickness of the salivary film covering the teeth and oral mucosa. J Dent Res 1987;66:1300–2
  • DeGrande G, Benes L, Horriere F, et al. Specialized oral mucosal drug delivery systems: patches. In: Rathbone MJ, ed. Oral mucosal drug delivery. New York: Informa Health Care; 1996:360–90
  • Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 2011;77:187–99
  • Squier CA, Hill MW. Oral mucosa. In: Ten Cate AR, ed. Oral histology, development, structure, and function. Amsterdam, Netherlands: Mosby Incorp; 1989:319–56
  • Li B, Robinson JR. Preclinical assessment of oral mucosal drug delivery systems. In: Ghosh TK, Pfister WR, eds. Drug delivery to the oral cavity. New York: Marcel Dekker Inc; 2005:41–66
  • Cu Y, Saltzman WM. Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 2009;61:101–14
  • Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deliv Rev 1994;13:43–74
  • Ganem-Quintanar A, Kalia YN, Falson-Rieg F, Buri P. Mechanisms of oral permeation enhancement. Int J Pharm 1997;156:127–42
  • Rossi S, Sandri G, Caramella C. Buccal delivery systems for peptides: recent advances. Am J Drug Deliv 2005;3:215–25
  • Squier CA, Wertz PW. Structure and function of the oral mucosa and implications for drug delivery. In: Rathbone MJ, ed. Oral mucosal drug delivery. New York: Informa Health Care; 1996:1–33
  • Davis NG, Phillips A, Becker DL. Connexin dynamics in the privileged wound healing of the buccal mucosa. Wound Rep Regen 2013;21:571–8
  • Sayani AP, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae. Crit Rev Ther Drug Carrier Syst 1996;13:85–184
  • Shojaei AH. Buccal mucosa as a route for systemic drug delivery: a review. J Pharm Pharm Sci 1998;1:15–30
  • Matoltsy AG, Parakkal PF. Membrane-coating granules of keratinizing epithelia. J Cell Biol 1965;24:297–307
  • Nicolazzo JA, Reed BL, Finnin BC. Buccal penetration enhancers – how do they really work? J Control Rel 2005;105:1–15
  • Squier CA. Zinc iodide-osmium staining of membrane-coating granules in keratinized and non-keratinized mammalian oral epithelium. Arch Oral Biol 1982;27:377–82
  • Squier CA. Membrane coating granules in nonkeratinizing oral epithelium. J Ultrastruct Res 1977;60:212–20
  • Wertz PW, Swartzendruber DC, Squier CA. Regional variation in the structure and permeability of oral mucosa and skin. Adv Drug Deliv Rev 1993;12:1–12
  • Law S, Wertz PW, Swartzendruber DC, Squier CA. Regional variation in content, composition and organization of porcine epithelial barrier lipids revealed by thin-layer chromatography and transmission electron microscopy. Archiv Oral Biol 1995;40:1085–91
  • Squier CA. The permeability of keratinized and nonkeratinized oral epithelium to horseradish peroxidase. J Ultrastruct Res 1973;43:160–77
  • Squier CA, Wertz PW, Cox PS. Thin-layer chromatographic analyses of lipids in different layers of porcine epidermis and oral epithelium. Archiv Oral Biol 1991;36:647–53
  • Squier CA, Cox PS, Wertz PW, Downing DT. The lipid composition of porcine epidermis and oral epithelium. Arch Oral Biol 1986;31:741–7
  • Veuillez F, Kalia YN, Jacques Y, et al. Factors and strategies for improving buccal absorption of peptides. Eur J Pharm Biopharm 2001;51:93–109
  • Burton PS, Conradi RA, Hilgers AR. (B) Mechanisms of peptide and protein absorption: (2) Transcellular mechanism of peptide and protein absorption: passive aspects. Adv Drug Deliv Rev 1991;7:365–85
  • Barnett ML, Szabo G. Gap junctions in human gingival keratinized epithelium. J Periodontal Res 1973;8:117–26
  • Harris D, Robinson JR. Drug delivery via the mucous membranes of the oral cavity. J Pharm Sci 1992;81:1–10
  • Goswami T, Kokate A, Jasti BR, Li X. In silico model of drug permeability across sublingual mucosa. Archiv Oral Biol 2013;58:545–51
  • Utoguchi N, Watanabe Y, Suzuki T, et al. Carrier-mediated transport of monocarboxylic acids in primary cultured epithelial cells from rabbit oral mucosa. Pharm Res 1997;14:320–4
  • Dowty ME, Knuth KE, Irons BK, Robinson JR. Transport of thyrotropin releasing hormone in rabbit buccal mucosa in vitro. Pharm Res 1992;9:1113–22
  • Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: V. Enzyme activity of the TR146 cell culture model, human buccal epithelium and porcine buccal epithelium, and permeability of leu-enkephalin. Int J Pharm 2000;200:261–70
  • Johnston TP, Rahman A, Alur H, et al. Permeation of unfolded basic fibroblast growth factor (bFGF) across rabbit buccal mucosa – does unfolding of bFGF enhance transport? Pharm Res 1998;15:246–53
  • Langoth N, Bernkop-Schnürch A, Kurka P. The inhibitory effect of glutathione on buccal enzymatic degradation of therapeutic peptides (leu-enkephalin, luteinizing hormone-releasing hormone and pituitary adenylate cyclase activating peptide). J Drug Deliv Sci Technol 2005;15:435–8
  • Walker GF, Langoth N, Bernkop-Schnürch A. Peptidase activity on the surface of the porcine buccal mucosa. Int J Pharm 2002;233:141–7
  • Walle T, Walle UK, Sedmera D, Klausner M. Benzo[a]pyrene-induced oral carcinogenesis and chemoprevention: studies in bioengineered human tissue. Drug Metab Dispos 2006;34:346–50
  • Yamamoto A, Hayakawa E, Lee VH. Insulin and proinsulin proteolysis in mucosal homogenates of the albino rabbit: implications in peptide delivery from nonoral routes. Life Sci 1990;47:2465–74
  • Jacobsen J, van Deurs B, Pedersen M, Rassing MR. TR146 cells grown on filters as a model for human buccal epithelium: I. Morphology, growth, barrier properties, and permeability. Int J Pharm 1995;125:165–84
  • Jacobsen J, Nielsen EB, Brøndum-Nielsen K, et al. Filter-grown TR146 cells as an in vitro model of human buccal epithelial permeability. Eur J Oral Sci 1999;107:138–46
  • Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Rel 2011;153:106–16
  • Senel S, Rathbone MJ, Cansız M, Pather I. Recent developments in buccal and sublingual delivery systems. Expert Opin Drug Deliv 2012;9:615–28
  • Hassan N, Ahad A, Ali M, Ali J. Chemical permeation enhancers for transbuccal drug delivery. Expert Opin Drug Deliv 2010;7:97–112
  • Nicolazzo JA, Reed BL, Finnin BC. Assessment of the effects of sodium dodecyl sulfate on the buccal permeability of caffeine and estradiol. J Pharm Sci 2004;93:431–40
  • Siegel IA. Permeability of the rat oral mucosa to organic solutes measured in vivo. Archiv Oral Biol 1984;29:13–6
  • Siegel IA, Izutsu KT, Watson E. Mechanisms of non-electrolyte penetration across dog and rabbit oral mucosa in vitro. Archiv Oral Biol 1981;26:357–61
  • Burton PS, Conradi RA, Ho NFH, et al. How structural features influence the biomembrane permeability of peptides. J Pharm Sci 1996;85:1336–40
  • Conradi RA, Hilgers AR, Ho NFH, Burton PS. The influence of peptide structure on transport across Caco-2 cells. II. Peptide bond modification which results in improved permeability. Pharm Res 1992;9:435–9
  • Veuillez F, Rieg FF, Guy R, et al. Permeation of a myristoylated dipeptide across the buccal mucosa: topological distribution and evaluation of tissue integrity. Int J Pharm 2002;231:1–9
  • Gandhi RB, Robinson JR. Permselective characteristics of rabbit buccal mucosa. Pharm Res 1991;8:1199–202
  • Whitehead K, Karr N, Mitragotri S. Discovery of synergistic permeation enhancers for oral drug delivery. J Control Rel 2008;128:128–33
  • Sohi H, Ahuja A, Ahmad FJ, Khar RK. Critical evaluation of permeation enhancers for oral mucosal drug delivery. Drug Dev Ind Pharm 2010;36:254–82
  • Mitra AK, Alur HH, Johnston TP. Peptides and proteins: buccal absorption. In: Swarbrick J, ed. Encyclopedia of pharmaceutical technology. New York: Marcel Dekker Inc; 2007:2664–77
  • Yang TZ, Zhang Q, Chen DB, Nagai T. Comparison of the effects of various transmucosal absorption enhancers on buccal insulin delivery: in vitro and in vivo studies. STP Pharm Sci 2001;11:415–9
  • Gandhi R, Robinson J. Mechanisms of penetration enhancement for transbuccal delivery of salicylic acid. Int J Pharm 1992;85:129–40
  • Hao J, Heng PWS. Buccal delivery systems. Drug Dev Ind Pharm 2003;29:821–32
  • Aungst BJ, Rogers NJ. Site dependence of absorption-promoting actions of laureth-9, Na salicylate, Na2EDTA, and aprotinin on rectal, nasal, and buccal insulin delivery. Pharm Res 1988;5:305–8
  • Aungst BJ. Site-dependence and structure-effect relationships for alkylglycosides as transmucosal absorption promoters for insulin. Int J Pharm 1994;105:219–25
  • Stoltz J-F, Zhou Y-F, He X-H, et al. Effect of soybean-lecithin as an enhancer of buccal mucosa absorption of insulin. Bio-Med Mater Eng 2012;22:171–8
  • Zhang J, Niu S, Ebert C, Stanley TH. An in vivo dog model for studying recovery kinetics of the buccal mucosa permeation barrier after exposure to permeation enhancers: apparent evidence of effective enhancement without tissue damage. Int J Pharm 1994;101:15–22
  • Zhu D-D, Chen H-B, Zheng J-N, et al. Preparation and permeation studies of soybean lecithin-based vesicles. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2006;28:492–6
  • Nielsen HM, Rassing MR. TR146 cells grown on filters as a model of human buccal epithelium: III. Permeability enhancement by different pH values, different osmolality values, and bile salts. Int J Pharm 1999;185:215–25
  • Sharma S, Kulkarni J, Pawar AP. Permeation enhancers in the transmucosal delivery of macromolecules. Pharmazie 2006;61:495–504
  • Hoogstraate AJ, Verhoef JC, Pijpers A, et al. In vivo buccal delivery of the peptide drug buserelin with glycodeoxycholate as an absorption enhancer in pigs. Pharm Res 1996;13:1233–7
  • Ebert CD, Heiber SJ, Dave SC, et al. Mucosal delivery of macromolecules. J Control Rel 1994;28:37–44
  • Steward A, Bayley DL, Howes C. The effect of enhancers on the buccal absorption of hybrid (BDBB) α-interferon. Int J Pharm 1994;104:145–9
  • Oh D-H, Chun K-H, Jeon S-O, et al. Enhanced transbuccal salmon calcitonin (sCT) delivery: effect of chemical enhancers and electrical assistance on in vitro sCT buccal permeation. Eur J Pharm Biopharm 2011;79:357–63
  • Jasti BR, Zhou S, Mehta RC, Li X. Permeability of antisense oligonucleotide through porcine buccal mucosa. Int J Pharm 2000;208:35–9
  • Langoth N, Bernkop-Schnürch A, Kurka P. In vitro evaluation of various buccal permeation enhancing systems for PACAP (pituitary adenylate cyclase-activating polypeptide). Pharm Res 2005;22:2045–50
  • Morishita M, Barichello JM, Takayama K, et al. Pluronic® F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm 2001;212:289–93
  • Ayensu I, Mitchell JC, Boateng JS. Development and physico-mechanical characterisation of lyophilised chitosan wafers as potential protein drug delivery systems via the buccal mucosa. Colloids Surf B Biointerf 2012;91:258–65
  • Giovino C, Ayensu I, Tetteh J, Boateng JS. Development and characterisation of chitosan films impregnated with insulin loaded PEG-b-PLA nanoparticles (NPs): a potential approach for buccal delivery of macromolecules. Int J Pharm 2012;428:143–51
  • Langoth N, Kahlbacher H, Schöffmann G, et al. Thiolated chitosans: design and in vivo evaluation of a mucoadhesive buccal peptide drug delivery system. Pharm Res 2006;23:573–9
  • Sandri G, Rossi S, Bonferoni MC, et al. Buccal penetration enhancement properties of N-trimethyl chitosan: influence of quaternization degree on absorption of a high molecular weight molecule. Int J Pharm 2005;297:146–55
  • Zheng C, Zhang XG, Sun L, et al. Biodegradable and redox-responsive chitosan/poly(l-aspartic acid) submicron capsules for transmucosal delivery of proteins and peptides. J Mater Sci Mater Med 2013;24:931–9
  • Dash M, Chiellini F, Ottenbrite RM, Chiellini E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 2011;36:981–1014
  • Bernkop-Schnürch A, Dünnhaupt S. Chitosan-based drug delivery systems. Eur J Pharm Biopharm 2012;81:463–9
  • Cui F, He C, He M, et al. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin. J Biomed Mater Res A 2009;89A:1063–71
  • Portero A, Teijeiro-Osorio D, Alonso MJ, Remuñán-López C. Development of chitosan sponges for buccal administration of insulin. Carbohydr Polym 2007;68:617–25
  • Ayensu I, Mitchell JC, Boateng JS. In vitro characterisation of chitosan based xerogels for potential buccal delivery of proteins. Carbohydr Polym 2012;89:935–41
  • Ayensu I, Mitchell JC, Boateng JS. Effect of membrane dialysis on characteristics of lyophilised chitosan wafers for potential buccal delivery of proteins. Int J Biol Macromol 2012c;50:905–9
  • Colonna C, Genta I, Perugini P, et al. 5-methyl-pyrrolidinone chitosan films as carriers for buccal administration of proteins. AAPS PharmSciTech 2006; 7:70
  • Portero A, Remunan-López C, Nielsen HM. The potential of chitosan in enhancing peptide and protein absorption across the TR146 cell culture model – an in vitro model of the buccal epithelium. Pharm Res 2002;19:169–74
  • Sandri G, Poggi P, Bonferoni MC, et al. Histological evaluation of buccal penetration enhancement properties of chitosan and trimethyl chitosan. J Pharm Pharmacol 2006;58:1327–36
  • Senel S, Kremer MJ, Kas S, et al. Enhancing effect of chitosan on peptide drug delivery across buccal mucosa. Biomaterials 2000;21:2067–71
  • Dodane V, Amin Khan M, Merwin JR. Effect of chitosan on epithelial permeability and structure. Int J Pharm 1999;182:21–32
  • Hsu L-W, Ho Y-C, Chuang E-Y, et al. Effects of pH on molecular mechanisms of chitosan–integrin interactions and resulting tight-junction disruptions. Biomaterials 2013;34:784–93
  • Rosenthal R, Günzel D, Finger C, et al. The effect of chitosan on transcellular and paracellular mechanisms in the intestinal epithelial barrier. Biomaterials 2012;33:2791–800
  • Rossi S, Sandri G, Caramella C. Buccal drug delivery: a challenge already won? Drug Discov Today 2005;2:59–65
  • Sandri G, Rossi S, Ferrari F, Bonferoni MC, et al. Assessment of chitosan derivatives as buccal and vaginal penetration enhancers. Eur J Pharm Sci 2004;21:351–9
  • Stratford RE Jr., Lee VHL. Aminopeptidase activity in homogenates of various absorptive mucosae m the albino rabbit: implications in peptide delivery. Int J Pharm 1986;30:73–82
  • Bernkop-Schnürch A, Gilge B. Anionic mucoadhesive polymers as auxiliary agents for the peroral administration of (poly) peptide drugs: influence of the gastric juice. Drug Dev Ind Pharm 2000;26:107–13
  • Hutton DA, Pearson JP, Allen A, Foster SN. Mucolysis of the colonic mucus barrier by faecal proteinases: inhibition by interacting polyacrylate. Clin Sci 1990;78:265–71
  • Lueβen HL, de Leeuw BJ, Pérard D, et al. Mucoadhesive polymers in peroral peptide drug delivery. I. Influence of mucoadhesive excipients on the proteolytic activity of intestinal enzymes. Eur J Pharm Sci 1996;4:117–28
  • Walker GF, Ledger R, Tucker IG. Carbomer inhibits tryptic proteolysis of luteinizing hormone-releasing hormone and N-α-Benzoyl-L-arginine ethyl ester by binding the enzyme. Pharm Res 1999;16:1074–80
  • Langoth N, Kalbe J, Bernkop-Schnürch A. Development of buccal drug delivery systems based on a thiolated polymer. Int J Pharm 2003;252:141–8
  • Bernkop-Schnürch A, Paikl C, Valenta C. Novel bioadhesive chitosan-EDTA conjugate protects leucine enkephalin from degradation by aminopeptidase N. Pharm Res 1997;14:917–22
  • Guggi D, Bernkop-Schnürch A. In vitro evaluation of polymeric excipients protecting calcitonin against degradation by intestinal serine proteases. Int J Pharm 2003;252:187–96
  • Guggi D, Kast CE, Bernkop-Schnürch A. In vivo evaluation of an oral salmon calcitonin-delivery system based on a thiolated chitosan carrier matrix. Pharm Res 2003;20:1989–94
  • Veuillez F, Ganem-Quintanar A, Deshusses J, et al. Comparison of the ex-vivo oral mucosal permeation of tryptophan-leucine (Trp-Leu) and its myristoyl derivative. Int J Pharm 1998;170:85–91
  • Wang J, Hogenkamp DJ, Tran M, et al. Reversible lipidization for the oral delivery of leu-enkephalin. J Drug Target 2006;14:127–36
  • Wang J, Chow D, Heiati H, Shen W-C. Reversible lipidization for the oral delivery of salmon calcitonin. J Control Rel 2003;88:369–80
  • Zhang L, Bulaj G. Converting peptides into drug leads by lipidation. Curr Med Chem 2012;19:1602–18
  • Peppas NA, Buri PA. Surface, interfacial and molecular aspects of polymer bioadhesion on soft tissues. J Control Rel 1985;2:257–75
  • Forstner J, Taichman N, Kalnins V, Forstner G. Intestinal goblet cell mucus: isolation and identification by immunofluorescence of a goblet cell glycoprotein. J Cell Sci 1973;12:585–601
  • Horowitz MI. Gastrointestinal glycoproteins. In: Horowitz MI, Pigman W, eds. The glycoconjugates. New York: Academic Press; 1977:189–213
  • Peppas NA, Hansen PJ, Buri PA. A theory of molecular diffusion in the intestinal mucus. Int J Pharm 1984;20:107–18
  • Bernkop-Schnürch A. Thiomers: a new generation of mucoadhesive polymers. Adv Drug Deliv Rev 2005;57:1569–82
  • Chinwala MG, Lin S. Application of hydrogel polymers for development of thyrotropin releasing hormone-loaded adhesive buccal patches. Pharm Dev Technol 2010;15:311–27
  • Morales JO, Ross AC, McConville JT. Protein-coated nanoparticles embedded in films as delivery platforms. J Pharm Pharmacol 2013;65:827–38
  • Yuan Q, Fu Y, Kao WJ, et al. Transbuccal delivery of CNS therapeutic nanoparticles: synthesis, characterization, and in vitro permeation studies. ACS Chem Neurosci 2011;2:676–83
  • Nafee NA, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive delivery systems. I. Evaluation of mucoadhesive polymers for buccal tablet formulation. Drug Dev Ind Pharm 2004;30:985–93
  • Nafee NA, Ismail FA, Boraie NA, Mortada LM. Mucoadhesive buccal patches of miconazole nitrate: in vitro/in vivo performance and effect of ageing. Int J Pharm 2003;264:1–14
  • Perioli L, Ambrogi V, Rubini D, et al. Novel mucoadhesive buccal formulation containing metronidazole for the treatment of periodontal disease. J Control Rel 2004;95:521–33
  • Rossi S, Sandri G, Ferrari F, et al. Buccal delivery of acyclovir from films based on chitosan and polyacrylic acid. Pharm Dev Technol 2003;8:199–208
  • Sharma P, Hamsa V. Formulation and evaluation of buccal mucoadhesive patches of terbutaline sulphate. STP Pharm Sci 2001;11:275–81
  • Shojaei AH, Paulson J, Honary S. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion. J Control Rel 2000;67:223–32
  • Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery – a promising option for orally less efficient drugs. J Control Rel 2006;114:15–40
  • Punitha S, Girish Y. Polymers in mucoadhesive buccal drug delivery system – a review. Int J Res Pharm Sci 2010;1:170–86
  • Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev 2005;57:1666–91
  • Bernkop-Schnürch A, Schwarz V, Steininger S. Polymers with thiol groups: a new generation of mucoadhesive polymers? Pharm Res 1999;16:876–81
  • Bernkop-Schnürch A, Hornof M, Zoidl T. Thiolated polymers – thiomers: synthesis and in vitro evaluation of chitosan–2-iminothiolane conjugates. Int J Pharm 2003;260:229–37
  • Hornof MD, Kast CE, Bernkop-Schnürch A. In vitro evaluation of the viscoelastic properties of chitosan–thioglycolic acid conjugates. Eur J Pharm Biopharm 2003;55:185–90
  • Kafedjiiski K, Jetti RKR, Föger F, et al. Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. Int J Pharm 2007;343:48–58
  • Sharon N. Lectin-carbohydrate complexes of plants and animals: an atomic view. Trends Biochem Sci 1993;18:221–6
  • Smart JD. Buccal drug delivery. Expert Opin Drug Deliv 2005;2:507–17
  • Smart JD. Lectin-mediated drug delivery in the oral cavity. Adv Drug Deliv Rev 2004;56:481–9
  • Lehr C-M. Lectin-mediated drug delivery: the second generation of bioadhesives. J Control Rel 2000;65:19–29
  • Smart JD, Nantwi PKK, Rogers DJ, Green KL. A quantitative evaluation of radiolabelled lectin retention on oral mucosa in vitro and in vivo. Eur J Pharm Biopharm 2002;53:289–92
  • Banchonglikitkul C, Smart JD, Gibbs RV, Cook DJ. Lectins as targeting agents – the in vitro binding of lectins to lesions in the eye and mouth. Br J Biomed Sci 2002;59:115–18
  • Smart JD. Recent developments in the use of bioadhesive systems for delivery of drugs to the oral cavity. Crit Rev Ther Drug Carrier Syst 2004;21:319–44
  • Smart JD, Nicholls TJ, Green KL, et al. Lectins in drug delivery: a study of the acute local irritancy of the lectins from Solanum tuberosum and Helix pomatia. Eur J Pharm Sci 1999;9:93–8
  • Smart JD, Banchonglikitkul C, Gibbs RV, et al. Lectins in drug delivery to the oral cavity, in vitro toxicity studies. STP Pharm Sci 2003;13:37–40
  • Clark MA, Hirst BH, Jepson MA. Lectin-mediated mucosal delivery of drugs and microparticles. Adv Drug Deliv Rev 2000;43:207–23
  • Inman LR, Cantey JR. Specific adherence of Escherichia coli (strain RDEC-1) to membranous (M) cells of the Peyer’s patch in Escherichia coli diarrhea in the rabbit. J Clin Investig 1983;71:1–8
  • Sanford BA, Thomas VL, Ramsay MA. Binding of staphylococci to mucus in vivo and in vitro. Infect Immun 1989;57:3735–42
  • Bernkop-Schnürch A, Gabor F, Szostak MP, Lubitz W. An adhesive drug delivery system based on K99-fimbriae. Eur J Pharm Sci 1995;3:293–9
  • Haltner E, Easson JH, Lehr C-M. Lectins and bacterial invasion factors for controlling endo- and transcytosis of bioadhesive drug carrier systems. Eur J Pharm Biopharm 1997;44:3–13
  • Isberg RR, Miller V, Falkow S. Yersinia INV nucleic acids. Patent number US5338842 A; 1994
  • Lehr CM. From sticky stuff to sweet receptors – achievements, limits and novel approaches to bioadhesion. Eur J Drug Metab Pharmacokinet 1996;21:139–48
  • De Vries ME, Boddé HE, Verhoef JC, Junginger HE. Transport of the peptide desglycinamide-arginine-vasopressin across buccal mucosa. J Control Rel 1990;13:316
  • Xue X, Zhou Y, Chen Y, et al. Promoting effects of chemical permeation enhancers on insulin permeation across TR146 cell model of buccal epithelium in vitro. Drug Chem Toxicol 2012;35:199–207
  • Jacobsen J. Buccal iontophoretic delivery of atenolol·HCl employing a new in vitro three-chamber permeation cell. J Control Rel 2001;70:83–95
  • Patel MP, Churchman ST, Cruchley AT, et al. Electrically induced transport of macromolecules through oral buccal mucosa. Dent Mater 2013;29:674–81
  • Giannola LI, Sutera FM, De Caro V. Physical methods to promote drug delivery on mucosal tissues of the oral cavity. Expert Opin Drug Deliv 2013;10:1449–62
  • Ishida M, Machida Y, Nambu N, Nagai T. New mucosal dosage form of insulin. Chem Pharm Bull 1981;29:810–16
  • Alur HH, Beal JD, Pather SI, et al. Evaluation of a novel, natural oligosaccharide gum as a sustained-release and mucoadhesive component of calcitonin buccal tablets. J Pharm Sci 1999;88:1313–19
  • Gutniak MK, Larsson H, Heiber SJ, et al. Potential therapeutic levels of glucagon-like peptide I achieved in humans by a buccal tablet. Diabetes Care 1996;19:843–8
  • Heiber SJ, Ebert CD, Dave SC, et al. In-vivo buccal delivery of calcitonin. J Control Rel 1994;28:269–71
  • Metia PK, Bandyopadhyay AK. In vitro and in vivo evaluation of a novel mucoadhesive buccal oxytocin tablet prepared with Dillenia indica fruit mucilage. Pharmazie 2008;63:270–4
  • Giovino C, Ayensu I, Tetteh J, Boateng JS. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles. Colloids Surf B Biointerf 2013;112:9–15
  • Morales JO, McConville JT. Development of films of insulin-coated nanoparticles for use in buccal delivery. In: 2013 AAPS Annual Meeting and Exposition. Presented at the 2013 AAPS Annual Meeting and Exposition, San Antonio, Texas, USA; 2013:M1283
  • Abakarova DS. Use of new solcoseryl-containing Diplan-denta C film in the treatment of injuries of the buccal mucosa. Stomatologiia 2004;83:33–6
  • Anders R, Merkle HP. Evaluation of laminated muco-adhesive patches for buccal drug delivery. Int J Pharm 1989;49:231–40
  • Cui Z, Mumper RJ. Buccal transmucosal delivery of calcitonin in rabbits using thin-film composites. Pharm Res 2002;19:1901–6
  • Cui Z, Mumper RJ. Bilayer films for mucosal (genetic) immunization via the buccal route in rabbits. Pharm Res 2002;19:947–53
  • Kundu J, Patra C, Kundu SC. Design, fabrication and characterization of silk fibroin-HPMC-PEG blended films as vehicle for transmucosal delivery. Mater Sci Eng C 2008;28:1376–80
  • Li C, Bhatt PP, Johnston TP. Transmucosal delivery of oxytocin to rabbits using a mucoadhesive buccal patch. Pharm Dev Technol 1997;2:265–74
  • Li C, Koch RL, Raul V, et al. Absorption of thyrotropin-releasing hormone in rats using a mucoadhesive buccal patch. Drug Dev Ind Pharm 1997;23:239–46
  • Merkle HP, Wolany G. Buccal delivery for peptide drugs. J Control Rel 1992;21:155–64
  • Yadev NP, Murdoch C, Saville SP, Thornhill MH. Evaluation of tissue engineered models of the oral mucosa to investigate oral candidiasis. Microb Pathogen 2011;50:278–85
  • Morales JO, Joks GM, Lamprecht A, et al. A design of experiments to optimize a new manufacturing process for high activity protein-containing submicron particles. Drug Dev Ind Pharm 2013;39:1793–801
  • Bernstein G. Delivery of insulin to the buccal mucosa utilizing the RapidMist system. Expert Opin Drug Deliv 2008;5:1047–55
  • Modi P, Mihic M, Lewin A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist System. Diabetes Metab Res Rev 2002;18:S38–42
  • Roblegg E, Fröhlich E, Meindl C, et al. Evaluation of a physiological in vitro system to study the transport of nanoparticles through the buccal mucosa. Nanotoxicology 2012;6:399–413
  • Teubl BJ, Meindl C, Eitzlmayr A, et al. In-vitro permeability of neutral polystyrene particles via buccal mucosa. Small 2013;9:457–66
  • Boateng JS, Ayensu I. Preparation and characterisation of laminated thiolated chitosan-based freeze-dried wafers for potential buccal delivery of macromolecules. Drug Dev Ind Pharm 2014:40. [Epub ahead of print]. doi:10.3109/03639045.2014.884126

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.