1,836
Views
90
CrossRef citations to date
0
Altmetric
Review Article

Solubility and dissolution enhancement strategies: current understanding and recent trends

, &
Pages 875-887 | Received 09 Aug 2013, Accepted 22 Sep 2014, Published online: 24 Oct 2014

References

  • Bhattachar SN, Deschenes LA, Wesley JA. Solubility: it's not just for physical chemists. Drug Discov Today 2006;11:1012–18
  • Thomas VH, Bhattachar S, Hitchingham L, et al. The road map to oral bioavailability: an industrial perspective. Expert Opin Drug Metab Toxicol 2006;2:591–608
  • Alsenz J, Kansy M. High throughput solubility measurement in drug discovery and development. Adv Drug Deliv Rev 2007;59:546–67
  • Ku MS, Dulin W. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-Of-Concept. Pharm Dev Technol 2012;17:285–302
  • Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413–20
  • Yu LX, Amidon GL, Polli JE, et al. Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm Res 2002;19:921–5
  • Swarbrick J. Encyclopedia of pharmaceutical technology, 3rd ed. (Print/Online Version). New York: Taylor & Francis Group; 2006
  • Martin AN, Bustamante P. Physical pharmacy: physical chemical principles in the pharmaceutical sciences. Philadelphia: Lea & Febiger; 1993
  • Remington JP, Beringer P. Remington: the science and practice of pharmacy. Philadelphia: Lippincott Williams & Wilkins; 2006
  • Yalkowsky SH, Valvani SC. Solubility and partitioning I: solubility of nonelectrolytes in water. J Pharm Sci 1980;69:912–22
  • Liu R. Water-insoluble drug formulation. 2nd ed. London: Taylor & Francis; 2008
  • Sun J, Wang F, Sui Y, et al. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q(10) as naked nanocrystals. Int J Nanomedicine 2012;7:5733–44
  • Williams HD, Trevaskis NL, Charman SA, et al. Strategies to address low drug solubility in discovery and development. Pharmacol Rev 2013;65:315–499
  • Chowhan ZT. pH-solubility profiles of organic carboxylic acids and their salts. J Pharm Sci 1978;67:1257–60
  • David SE, Timmins P, Conway BR. Impact of the counterion on the solubility and physicochemical properties of salts of carboxylic acid drugs. Drug Dev Ind Pharm 2012;38:93–103
  • Kawabata Y, Wada K, Nakatani M, et al. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications. Int J Pharm 2011;420:1–10
  • Shoghi E, Fuguet E, Bosch E, Rafols C. Solubility-pH profiles of some acidic, basic and amphoteric drugs. Eur J Pharm Sci 2013;48:291–300
  • Stephenson GA, Aburub A, Woods TA. Physical stability of salts of weak bases in the solid-state. J Pharm Sci 2011;100:1607–17
  • Paluch KJ, Tajber L, McCabe T, et al. Preparation and characterisation of novel chlorothiazide potassium solid-state salt forms: intermolecular self assembly suprastructures. Eur J Pharm Sci 2011;42:220–9
  • Gwak H-S, Choi J-S, Choi H-K. Enhanced bioavailability of piroxicam via salt formation with ethanolamines. Int J Pharm 2005;297:156–61
  • Han H-K, Choi H-K. Improved absorption of meloxicam via salt formation with ethanolamines. Eur J Pharm Biopharm 2007;65:99–103
  • Tay T, Allahham A, Morton DAV, Stewart PJ. Counter-intuitive enhancement in the dissolution of indomethacin with the incorporation of cohesive poorly water-soluble inorganic salt additives. Eur J Pharm Biopharm 2011;79:674–82
  • Sonje VM, Kumar L, Puri V, et al. Effect of counterions on the properties of amorphous atorvastatin salts. Eur J Pharm Sci 2011;44:462–70
  • Hasa D, Voinovich D, Perissutti B, et al. Enhanced oral bioavailability of vinpocetine through mechanochemical salt formation: physico-chemical characterization and in vivo studies. Pharm Res 2011;28:1870–83
  • Hasa D, Perissutti B, Cepek C, et al. Drug salt formation via mechanochemistry: the case study of vincamine. Mol Pharm 2012;10:211–24
  • Huang X-F, Zhang Z-H, Zhang Q-Q, et al. Norfloxacin salts with benzenedicarboxylic acids: charge-assisted hydrogen-bonding recognition and solubility regulation. Cryst Eng Commun 2013;15:6090–100
  • Gould PL. Salt selection for basic drugs. Int J Pharm 1986;33:201–17
  • Parshad H, Frydenvang K, Liljefors T, et al. Aqueous solubility study of salts of benzylamine derivatives and p-substituted benzoic acid derivatives using X-ray crystallographic analysis. Int J Pharm 2004;269:157–68
  • Li S, Wong S, Sethia S, et al. Investigation of solubility and dissolution of a free base and two different salt forms as a function of pH. Pharm Res 2005;22:628–35
  • Elder DP, Delaney E, Teasdale A, et al. The utility of sulfonate salts in drug development. Int J Pharm 2010;99:2948–61
  • Galcera J, Molins E. Effect of the counterion on the solubility of isostructural pharmaceutical lamotrigine Salts. Cryst Growth Des 2008;9:327–34
  • Kumar L, Amin A, Bansal AK. Preparation and characterization of salt forms of enalapril. Pharm Dev Technol 2008;13:345–57
  • Serajuddin AT. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007;59:603–16
  • Li S, Doyle P, Metz S, et al. Effect of chloride ion on dissolution of different salt forms of haloperidol, a model basic drug. J Pharm Sci 2005;94:2224–31
  • Tsutsumi S, Iida M, Tada N, et al. Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties. Int J Pharm 2011;421:230–6
  • Bastin RJ, Bowker MJ, Slater BJ. Salt selection and optimisation procedures for pharmaceutical new chemical entities. Org Process Res Dev 2000;4:427–35
  • Supuk E, Ghori MU, Asare-Addo K, et al. The influence of salt formation on electrostatic and compression properties of flurbiprofen salts. Int J Pharm 2013;458:118–27
  • FDA. Regulatory classification of pharmaceutical co-crystals. Silver Spring (MD): CDER; 2011
  • Chow K, Tong HH, Lum S, Chow AH. Engineering of pharmaceutical materials: an industrial perspective. J Pharm Sci 2008;97:2855–77
  • Chiarella RA, Davey RJ, Peterson ML. Making co-crystals: the utility of ternary phase diagrams. Cryst Growth Des 2007;7:1223–6
  • Childs SL, Rodriguez-Hornedo N, Reddy LS, et al. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. Cryst Eng Commun 2008;10:856–64
  • James SL, Adams CJ, Bolm C, et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem Soc Rev 2012;41:413–47
  • Berry DJ, Seaton CC, Clegg W, et al. Applying hot-stage microscopy to co-crystal screening: a study of nicotinamide with seven active pharmaceutical ingredients. Cryst Growth Des 2008;8:1697–712
  • Padrela L, Rodrigues MA, Velaga SP, et al. Screening for pharmaceutical cocrystals using the supercritical fluid enhanced atomization process. J Supercrit Fluids 2010;53:156–64
  • Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst Growth Des 2009;9:1106–23
  • Desiraju GR. Supramolecular synthons in crystal engineering – a new organic synthesis. Angew Chem Int Ed Engl 1995;34:2311–27
  • Abramov YA, Loschen C, Klamt A. Rational co-former or solvent selection for pharmaceutical cocrystallization or desolvation. J Pharm Sci 2012;101:3687–97
  • Good D, Miranda C, Rodriguez-Hornedo N. Dependence of cocrystal formation and thermodynamic stability on moisture sorption by amorphous polymer. Cryst Eng Commun 2011;13:1181–9
  • Good DJ, Rodriüguez-Hornedo Nü. Solubility advantage of pharmaceutical cocrystals. Cryst Growth Des 2009;9:2252–64
  • Shevchenko A, Bimbo LM, Miroshnyk I, et al. A new cocrystal and salts of itraconazole: comparison of solid-state properties, stability and dissolution behavior. Int J Pharm 2012;436:403–9
  • Kuleshova LN, Hofmann DWM, Boese R. Lattice energy calculation – a quick tool for screening of cocrystals and estimation of relative solubility. Case of flavonoids. Chem Phys Lett 2013;564:26–32
  • Lin H-L, Zhang G-C, Hsu P-C, Lin S-Y. A portable fiber-optic Raman analyzer for fast real-time screening and identifying cocrystal formation of drug-co-former via grinding process. Microchem J 2013;110:15–20
  • Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. Int J Pharm 2011;407:63–71
  • Good DJ, Rodrüguez-Hornedo N. Cocrystal eutectic constants and prediction of solubility behavior. Cryst Growth Des 2010;10:1028–32
  • McNamara DP, Childs SL, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 2006;23:1888–97
  • Bethune SJ, Huang N, Jayasankar A, Rodriguez-Hornedo N. Understanding and predicting the effect of cocrystal components and pH on cocrystal solubility. Cryst Growth Des 2009;9:3976–88
  • Reddy LS, Bethune SJ, Kampf JW, Rodriguez-Hornedo N. Cocrystals and salts of gabapentin: pH dependent cocrystal stability and solubility. Cryst Growth Des 2008;9:378–85
  • Grossjohann C, Eccles KS, Maguire AR, et al. Characterisation, solubility and intrinsic dissolution behaviour of benzamide: dibenzyl sulfoxide cocrystal. Int J Pharm 2012;422:24–32
  • Ober CA, Montgomery SE, Gupta RB. Formation of itraconazole/L-malic acid cocrystals by gas antisolvent cocrystallization. Powder Technol 2013;236:122–31
  • Mulye SP, Jamadar SA, Karekar PS, et al. Improvement in physicochemical properties of ezetimibe using a crystal engineering technique. Powder Technol 2012;222:131–8
  • Shiraki K, Takata N, Takano R, et al. Dissolution improvement and the mechanism of the improvement from cocrystallization of poorly water-soluble compounds. Pharm Res 2008;25:2581–92
  • Shikhar A, Bommana MM, Gupta SS, Squillante E. Formulation development of Carbamazepine-Nicotinamide co-crystals complexed with gamma cyclodextrin using supercritical fluid process. J Supercrit Fluids 2011;55:1070–8
  • Childs SL, Chyall LJ, Dunlap JT, et al. Crystal engineering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc 2004;126:13335–42
  • Gao Y, Gao J, Liu Z, et al. Co-former selection based on degradation pathway of drugs: a case study of adefovir dipivoxil-saccharin and adefovir dipivoxil-nicotinamide cocrystals. Int J Pharm 2012;438:327–35
  • Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical co-crystals. J Pharm Sci 2006;95:499–516
  • Muller CE. Prodrug approaches for enhancing the bioavailability of drugs with low solubility. Chem Biodivers 2009;6:2071–83
  • Chung M, Guido R, Martinelli T, et al. Synthesis and in vitro evaluation of potential antichagasic hydroxymethylnitrofurazone (NFOH-121): a new nitrofurazone prodrug. Bioorg Med Chem 2003;11:4779–83
  • Hu L. Prodrugs: effective solutions for solubility, permeability and targeting challenges. IDrugs 2004;7:736–42
  • Oslob JD, Heumann SA, Yu CH, et al. Water-soluble prodrugs of an Aurora kinase inhibitor. Bioorg Med Chem Lett 2009;19:1409–12
  • Reusser P. Oral valganciclovir: a new option for treatment of cytomegalovirus infection and disease in immunocompromised hosts. Expert Opin Investig Drugs 2001;10:1745–53
  • Kesisoglou F, Panmai S, Wu Y. Nanosizing–oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev 2007;59:631–44
  • Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol 2004;56:827–40
  • Galli C. Experimental determination of the diffusion boundary layer width of micron and submicron particles. Int J Pharm 2006;313:114–22
  • Fakes MG, Vakkalagadda BJ, Qian F, et al. Enhancement of oral bioavailability of an HIV-attachment inhibitor by nanosizing and amorphous formulation approaches. Int J Pharm 2009;370:167–74
  • Sylvestre JP, Tang MC, Furtos A, et al. Nanonization of megestrol acetate by laser fragmentation in aqueous milieu. J Control Release. 2011;149:273–80
  • Xia D, Cui F, Piao H, et al. Effect of crystal size on the in vitro dissolution and oral absorption of nitrendipine in rats. Pharm Res 2010;27:1965–76
  • Singh SK, Srinivasan KK, Gowthamarajan K, et al. Investigation of preparation parameters of nanosuspension by top-down media milling to improve the dissolution of poorly water-soluble glyburide. Eur J Pharm Biopharm 2011;78:441–46
  • Branham ML, Moyo T, Govender T. Preparation and solid-state characterization of ball milled saquinavir mesylate for solubility enhancement. Eur J Pharm Biopharm 2012;80:194–202
  • De Waard H, Frijlink HW, Hinrichs WL. Bottom-up preparation techniques for nanocrystals of lipophilic drugs. Pharm Res 2011;28:1220–3
  • Zhiyi L, Jingzhi J, Xuewu L, et al. Preparation of griseofulvin microparticles by supercritical fluid expansion depressurization process. Powder Technol 2008;182:459–65
  • Zu Y, Zhang Q, Zhao X, et al. Preparation and characterization of vitexin powder micronized by a supercritical antisolvent (SAS) process. Powder Technol 2012;228:47–55
  • Kim YH, Shing KS. Supercritical fluid-micronized ipratropium bromide for pulmonary drug delivery. Powder Technol 2008;182:25–32
  • Yasuji T, Takeuchi H, Kawashima Y. Particle design of poorly water-soluble drug substances using supercritical fluid technologies. Adv Drug Deliv Rev 2008;60:388–98
  • Van Eerdenbrugh B, Froyen L, Martens JA, et al. Characterization of physico-chemical properties and pharmaceutical performance of sucrose co-freeze dried solid nanoparticulate powders of the anti-HIV agent loviride prepared by media milling. Int J Pharm 2007;338:198–206
  • de Waard H, Hinrichs WL, Frijlink HW. A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying. J Control Release 2008;128:179–83
  • Ali HS, York P, Ali AM, Blagden N. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release 2011;149:175–81
  • Mahesh KV, Singh SK, Gulati M. A comparative study of top-down and bottom-up approaches for the preparation of nanosuspensions of glipizide. Powder Technol 2014;256:436–49
  • Hecq J, Deleers M, Fanara D, et al. Preparation and in vitro/in vivo evaluation of nano-sized crystals for dissolution rate enhancement of ucb-35440-3, a highly dosed poorly water-soluble weak base. Eur J Pharm Biopharm 2006;64:360–8
  • Ghosh I, Schenck D, Bose S, Ruegger C. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption. Eur J Pharm Sci 2012;47:718–28
  • Wyeth Research Drug Information. Rapamune (Sirolumus) oral solutions and tablets. South Africa: Wyeth Communications Company; 2004
  • Salazar J, Ghanem A, Muller RH, Moschwitzer JP. Nanocrystals: comparison of the size reduction effectiveness of a novel combinative method with conventional top-down approaches. Eur J Pharm Biopharm 2012;81:82–90
  • Moschwitzer JP. Drug nanocrystals in the commercial pharmaceutical development process. Int J Pharm 2013;453:142–56
  • Salazar J, Muller RH, Moschwitzer JP. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets. Eur J Pharm Sci 2013;49:565–77
  • Wong SM, Kellaway IW, Murdan S. Enhancement of the dissolution rate and oral absorption of a poorly water soluble drug by formation of surfactant-containing microparticles. Int J Pharm 2006;317:61–8
  • Wang Y, Zheng Y, Zhang L, et al. Stability of nanosuspensions in drug delivery. J Control Release 2013;172:1126–41
  • Figueroa CE, Bose S. Spray granulation: importance of process parameters on in vitro and in vivo behavior of dried nanosuspensions. Eur J Pharm Biopharm 2013;85:1046–55
  • Khinast J, Baumgartner R, Roblegg E. Nano-extrusion: a one-step process for manufacturing of solid nanoparticle formulations directly from the liquid phase. AAPS PharmSciTech 2013;14:601–4
  • Murdande SB, Pikal MJ, Shanker RM, Bogner RH. Aqueous solubility of crystalline and amorphous drugs: challenges in measurement. Pharm Dev Technol 2011;16:187–200
  • Laitinen R, Lobmann K, Strachan CJ, et al. Emerging trends in the stabilization of amorphous drugs. Int J Pharm 2013;453:65–79
  • Qian KK, Bogner RH. Application of mesoporous silicon dioxide and silicate in oral amorphous drug delivery systems. J Pharm Sci 2012;101:444–63
  • Alonzo DE, Zhang GG, Zhou D, et al. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm Res 2010;27:608–18
  • Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci 2009;98:2549–72
  • Gao P, Rush BD, Pfund WP, et al. Development of a supersaturable SEDDS (S-SEDDS) formulation of paclitaxel with improved oral bioavailability. J Pharm Sci 2003;92:2386–98
  • Nepal PR, Han HK, Choi HK. Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation. Int J Pharm 2010;383:147–53
  • Aso Y, Yoshioka S, Kojima S. Molecular mobility-based estimation of the crystallization rates of amorphous nifedipine and phenobarbital in poly(vinylpyrrolidone) solid dispersions. J Pharm Sci 2004;93:384–91
  • Newman A, Knipp G, Zografi G. Assessing the performance of amorphous solid dispersions. J Pharm Sci 2012;101:1355–77
  • Six K, Verreck G, Peeters J, et al. Increased physical stability and improved dissolution properties of itraconazole, a class II drug, by solid dispersions that combine fast- and slow-dissolving polymers. J Pharm Sci 2004;93:124–31
  • Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 2008;70:493–9
  • Onoue S, Sato H, Ogawa K, et al. Improved dissolution and pharmacokinetic behavior of cyclosporine A using high-energy amorphous solid dispersion approach. Int J Pharm 2010;399:94–101
  • Yamashita K, Nakate T, Okimoto K, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm 2003;267:79–91
  • Li B, Harich K, Wegiel L, et al. Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions. Carbohydr Polym 2013;92:1443–50
  • Wyttenbach N, Janas C, Siam M, et al. Miniaturized screening of polymers for amorphous drug stabilization (SPADS): rapid assessment of solid dispersion systems. Eur J Pharm Biopharm 2013;84:583–98
  • Just S, Sievert F, Thommes M, Breitkreutz J. Improved group contribution parameter set for the application of solubility parameters to melt extrusion. Eur J Pharm Biopharm 2013;85:1191–9
  • DiNunzio JC, Brough C, Miller DA, et al. Fusion processing of itraconazole solid dispersions by kinetisol dispersing: a comparative study to hot melt extrusion. J Pharm Sci 2010;99:1239–53
  • Miller DA, DiNunzio JC, Hughey JR, et al. KinetiSol: a new processing paradigm for amorphous solid dispersion systems. Drug Develop Deliv 2012;12:30–9
  • Frank KJ, Westedt U, Rosenblatt KM, et al. The amorphous solid dispersion of the poorly soluble ABT-102 forms nano/microparticulate structures in aqueous medium: impact on solubility. Int J Nanomedicine 2012;7:5757–68
  • Onoue S, Kojo Y, Aoki Y, et al. Physicochemical and pharmacokinetic characterization of amorphous solid dispersion of Tranilast with enhanced solubility in gastric fluid and improved oral bioavailability. Drug Metab Pharmacokinet 2012;27:379–87
  • He H, Yang R, Tang X. In vitro and in vivo evaluation of fenofibrate solid dispersion prepared by hot-melt extrusion. Drug Dev Ind Pharm 2010;36:681–7
  • Paradkar A, Ambike AA, Jadhav BK, Mahadik KR. Characterization of curcumin-PVP solid dispersion obtained by spray drying. Int J Pharm 2004;271:281–6
  • Nielsen LH, Gordon S, Holm R, et al. Preparation of an amorphous sodium furosemide salt improves solubility and dissolution rate and leads to a faster Tmax after oral dosing to rats. Eur J Pharm Biopharm 2013;85:942–51
  • Yu D, Williams G, Wang X, et al. Polymer-based nanoparticulate solid dispersions prepared by a modified electrospraying process. J Biomed Sci Eng 2011;4:741–9
  • Moes J, Koolen S, Huitema A, et al. Development of an oral solid dispersion formulation for use in low-dose metronomic chemotherapy of paclitaxel. Eur J Pharm Biopharm 2012;83:87–94
  • Aggarwal AK, Singh S. Physicochemical characterization and dissolution study of solid dispersions of diacerein with polyethylene glycol 6000. Drug Dev Ind Pharm 2011;37:1181–91
  • Konno H, Handa T, Alonzo DE, Taylor LS. Effect of polymer type on the dissolution profile of amorphous solid dispersions containing felodipine. Eur J Pharm Biopharm 2008;70:493–9
  • Law D, Schmitt EA, Marsh KC, et al. Ritonavir–PEG 8000 amorphous solid dispersions: in vitro and in vivo evaluations. J Pharm Sci 2004;93:563–70
  • Yalkowsky SH, Amidon GL, Zografi G, Flynn GL. Solubility of nonelectrolytes in polar solvents III: alkyl p-aminobenzoates in polar and mixed solvents. J Pharm Sci 1975;64:48–52
  • Kipp J. Solubilizing systems for parenteral formulation development-small molecules. In: Augustijns P, Brewster M, eds. Solvent systems and their selection in pharmaceutics and biopharmaceutics. biotechnology: pharmaceutical aspects. VI. New York: Springer; 2007:309–39
  • Miyako Y, Khalef N, Matsuzaki K, Pinal R. Solubility enhancement of hydrophobic compounds by cosolvents: role of solute hydrophobicity on the solubilization effect. Int J Pharm 2010;393:48–54
  • Desai KGH, Park HJ. Solubility studies on valdecoxib in the presence of carriers, cosolvents, and surfactants. Drug Dev Res 2004;62:41–8
  • Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci 2008;11:32–58
  • Paan P, Chen X, Clark II CJ. Effect of cosolvents on toxaphene aqueous solubility. Environ Chem 2006;3:111–17
  • Jain P, Yalkowsky SH. Solubilization of poorly soluble compounds using 2-pyrrolidone. Int J Pharm 2007;342:1–5
  • Soltanpour S, Acree WE, Jr Jouyban A. Solubility of pioglitazone hydrochloride in aqueous solutions of ethanol, propylene glycol, and N-methyl-2-pyrrolidone at 298.2 degrees K. AAPS PharmSciTech 2009;10:1153–7
  • Sanghvi R, Narazaki R, Machatha SG, Yalkowsky SH. Solubility improvement of drugs using N-methyl pyrrolidone. AAPS PharmSciTech 2008;9:366–76
  • Chaudhari P, Sharma P, Barhate N, et al. Solubility enhancement of hydrophobic drugs using synergistically interacting cyclodextrins and cosolvent. Curr Sci Assoc 2007;92:1586–90
  • Elder D, Holm R. Aqueous solubility: simple predictive methods (in silico, in vitro and bio-relevant approaches). Int J Pharm 2013;453:3–11
  • Chickos JS, Braton CM, Hesse DG, Liebman JF. Estimating entropies and enthalpies of fusion of organic compounds. J Org Chem 1991;56:927–38

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.