416
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Ocular delivery systems for topical application of anti-infective agents

, , , , , & show all
Pages 1-11 | Received 16 Feb 2015, Accepted 02 Jul 2015, Published online: 27 Aug 2015

References

  • Willoughby CE, Ponzin D, Ferrari S, et al. Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function – a review. Clin Exp Ophthalmol 2010;38:2–11
  • Rüfer F, Schröder A, Erb C. White-to-white corneal diameter: normal values in healthy humans obtained with the Orbscan II topography system. Cornea 2005;24:259–61
  • Smith J. The transparency of the corneal stroma. Vision Res 1969;9:393–6
  • Johnson DH, Bourne WM, Campbell RJ. The ultrastructure of Descemet's membrane. I. Changes with age in normal corneas. Arch Ophthalmol 1982;100:1942–7
  • Rathore K, Nema R. An insight into ophthalmic drug delivery system. Int J Pharm Sci Drug Res 2009;1:1–5
  • Borchman D, Foulks GN, Yappert MC, et al. Factors affecting evaporation rates of tear film components measured in vitro. Eye Contact Lens 2009;35:32–7
  • Loftsson T, Stefánsson E. Effect of cyclodextrins on topical drug delivery to the eye. Drug Dev Ind Pharm 1997;23:473–81
  • Paulsen F, Schaudig U, Thale AB. Drainage of tears: impact on the ocular surface and lacrimal system. Ocular Surface 2003;1:180–91
  • Farjo A, McDermott M, Soong H. Corneal anatomy, physiology, and wound healing. Ophthalmology. 3rd edn. Edinburgh: Mosby Elsevier; 2009:203–8
  • Mindel J, ed. Duane's foundations of clinical ophthalmology. 3rd edn. Groningen, the Netherlands: Lippincott Williams & Wilkins; 1990
  • Maurice DM. The dynamics and drainage of tears. Int Ophthalmol Clin 1973;13:103–18
  • Lightman S, Sallam A, Jayakumar S. Intraocular delivery of anti-infective drugs-bacterial, viral, fungal and parasitic. Rec Pat Anti-Infect Drug Discov 2008;3:53–63
  • Snyder RW, Glasser DB. Antibiotic therapy for ocular infection. West J Med 1994;161:579–84
  • Thielen TL, Castle SS, Terry JE. Anterior ocular infections: an overview of pathophysiology and treatment. Ann Pharmacother 2000;34:235–46
  • Baum J. Infections of the eye. Clin Infect Dis 1995;21:479–86
  • Islam SM, Tabbara KF. Causes of uveitis at The Eye Center in Saudi Arabia: a retrospective review. Neuro-Ophthalmology 2002;9:239–49
  • Tovilla-Canales JL, Nava A, Tovilla y Pomar JL. Orbital and periorbital infections. Curr Opin Ophthalmol 2001;12:335–41
  • Thielen TL, Castle SS, Terry JE. Anterior ocular infections: an overview of pathophysiology and treatment. Ann Pharmacother 2000;34:235–46
  • Schoenwald RD. Ocular drug delivery. Clin Pharmacokinet 1990;18:255–69
  • Urtti A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev 2006;58:1131–5
  • Al-Ghananeem AM, Crooks PA. Phase I and phase II ocular metabolic activities and the role of metabolism in ophthalmic prodrug and codrug design and delivery. Molecules 2007;12:373–88
  • Dave V, Pareek A, Yadav S, Paliwal S. Ocular drug delivery system: a technical note. World J Pharm Pharm Sci 2012;1:858–71
  • Napper G, Douglas I, Albietz J. Ocular therapeutics. Clin Exp Optom 2003;86:265–6
  • Smit D. Anti-infective ophthalmic preparations in general practice. South Afric Fam Pract 2012;54:302–7
  • Ministry of Health. Medsafe Data Sheets. 2013. Available from: http://www.medsafe.govt.nz/profs/datasheet/dsform.asp [last accessed Jun 2015]
  • Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. Adv Org Biol 2005;10:307–51
  • Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Curr Drug Deliv 2006;3:207–17
  • Nagarwal RC, Kant S, Singh P, et al. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release 2009;136:2–13
  • Rajasekaran A, Arul Kumaran K, Padma Preetha J, Karthika K. A comparative review on conventional and advanced ocular drug delivery formulations. Int J PharmTech Res 2010;2:668–74
  • Kwon GS. Polymeric micelles for delivery of poorly water-soluble compounds. Crit Rev Ther Drug Carrier Syst 2003;20:357–403
  • Bhat PA, Dar AA, Rather GM. Solubilization capabilities of some cationic, anionic, and nonionic surfactants toward the poorly water-soluble antibiotic drug erythromycin. J Chem Eng Data 2008;53:1271–7
  • Kaur IP, Garg A, Singla AK, Aggarwal D. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004;269:1–14
  • Tamilvanan S. Oil-in-water lipid emulsions: implications for parenteral and ocular delivering systems. Prog Lipid Res 2004;43:489–533
  • Tamilvanan S, Benita S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur J Pharm Biopharm 2004;58:357–68
  • United States Pharmacopeial Convention Committee of Revision. United States Pharmacopeia. 29th edn. Rockville (MD): United States Pharmacopeial Convention Inc.; 2006
  • Shell JW. Ophthalmic drug delivery systems. Surv Ophthalmol 1984;29:117–28
  • Cortesi R, Lahm Ajanji SC, Sivieri E, et al. Eudragit® microparticles as a possible tool for ophthalmic administration of acyclovir. J Microencapsul 2007;24:445–56
  • Guo Q, Aly A, Schein O, et al. Moxifloxacin in situ gelling microparticles-bioadhesive delivery system. Res Pharm Sci 2012;2:66–71
  • Gupta H, Aqil M, Khar R, et al. Biodegradable levofloxacin nanoparticles for sustained ocular drug delivery. J Drug Target 2011;19:409–17
  • Mohammadi G, Nokhodchi A, Barzegar-Jalali M, et al. Physicochemical and anti-bacterial performance characterization of clarithromycin nanoparticles as colloidal drug delivery system. Coll Surfaces B Biointerfaces 2011;88:39–44
  • Das S, Suresh PK. Nanosuspension: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to amphotericin B. Nanomed Nanotechnol Biol Med 2011;7:242–7
  • Budai L, Hajdú M, Budai M, et al. Gels and liposomes in optimized ocular drug delivery: studies on ciprofloxacin formulations. Int J Pharm 2007;343:34–40
  • Lin H, Ko S, Hsu L, Tsai Y. The preparation of norfloxacin-loaded liposomes and their in-vitro evaluation in pig's eye. J Pharm Pharmacol 1996;48:801–5
  • Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech 2008;9:740–7
  • Kakkar S, Kaur IP. Spanlastics—a novel nanovesicular carrier system for ocular delivery. Int J Pharm 2011;413:202–10
  • Kaur IP, Rana C, Singh M, et al. Development and evaluation of novel surfactant-based elastic vesicular system for ocular delivery of fluconazole. J Ocular Pharmacol Ther 2012;28:484–96
  • Durairaj C, Kadam RS, Chandler JW, et al. Nanosized dendritic polyguanidilyated translocators for enhanced solubility, permeability, and delivery of gatifloxacin. Invest Ophthalmol Vis Sci 2010;51:5804–16
  • Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res 2002;21:15–34
  • Kaur IP, Kakkar S. Topical delivery of antifungal agents. Expert Opin Drug Deliv 2010;7:1303–27
  • Kalam MA, Alshamsan A, Aljuffali IA, et al. Delivery of gatifloxacin using microemulsion as vehicle: formulation, evaluation, transcorneal permeation and aqueous humor drug determination. Drug Deliv 2014. [Epub ahead of print]. doi:10.3109/10717544.2014.920432
  • Bozkir A, Denli ZF, Basaran B. Effect of hydroxypropyl-β-cyclodextrin on the solubility, stability and in-vitro release of ciprofloxacin for ocular drug delivery. Acta Pol Pharm Drug Res 2012;69:719–24
  • Bernatchez SF, Tabatabay C, Gurny R. Sodium hyaluronate 0.25% used as a vehicle increases the bioavailability of topically administered gentamicin. Graefe's Arch Clin Exp Ophthalmol 1993;231:157–61
  • Velpandian T. Intraocular penetration of antimicrobial agents in ophthalmic infections and drug delivery strategies. Expert Opin Drug Deliv 2009;6:255–70
  • Zhang X, Soontornworajit B, Zhang Z, et al. Enhanced loading and controlled release of antibiotics using nucleic acids as an antibiotic-binding effector in hydrogels. Biomacromolecules 2012;13:2202–10
  • Srividya B, Cardoza RM, Amin P. Sustained ophthalmic delivery of ofloxacin from a pH triggered in situ gelling system. J Control Release 2001;73:205–11
  • Sultana Y, Aqil M, Ali A. Ion-activated, Gelrite®-based in situ ophthalmic gels of pefloxacin mesylate: comparison with conventional eye drops. Drug Deliv 2006;13:215–19
  • Taravella MJ, Balentine J, Young DA, Stepp P. Collagen shield delivery of ofloxacinto the human eye. J Cataract Refract Surg 1999;25:562–5
  • Willoughby C, Batterbury M, Kaye S. Collagen corneal shields. Surv Ophthalmol 2002;47:174–82
  • Rootman DS, Jantzen J, Gonzalez J, et al. Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Invest Ophthalmol Vis Sci 1988;29:1397–401
  • Güngör S, Delgado-Charro MB, Ruiz-Perez B, et al. Trans-scleral iontophoretic delivery of low molecular weight therapeutics. J Control Release 2010;147:225–31
  • Rupenthal ID. Sector overview: ocular drug delivery technologies: exciting times ahead. ONdrugDelivery 2015;54:7–11
  • Kalam MA, Sultana Y, Ali A, et al. Part II: enhancement of transcorneal delivery of gatifloxacin by solid lipid nanoparticles in comparison to commercial aqueous eye drops. J Biomed Mater Res A 2013;101:1828–36
  • Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm 2013;39:508–19
  • Zimmer A, Kreuter J. Microspheres and nanoparticles used in ocular delivery systems. Adv Drug Deliv Rev 1995;16:61–73
  • Bu H, Gukasyan HJ, Goulet L, et al. Ocular disposition, pharmacokinetics, efficacy and safety of nanoparticle-formulated ophthalmic drugs. Curr Drug Metab 2007;8:91–107
  • Alonso MJ, Sánchez A. The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 2003;55:1451–63
  • Rajendran N, Natrajan R, Kumar R, Selvaraj S. Acyclovir-loaded chitosan nanoparticles for ocular delivery. Asian J Pharm 2010;4:220–6
  • Calderón L, Harris R, Cordoba-Diaz M, et al. Nano and microparticulate chitosan-based systems for antiviral topical delivery. Eur J Pharm Sci 2013;48:216–22
  • Gubernator J. Active methods of drug loading into liposomes: recent strategies for stable drug entrapment and increased in vivo activity. Expert Opin Drug Deliv 2011;8:565–80
  • Kaasgaard T, Andresen TL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 2010;7:225–43
  • Brandl M. Liposomes as drug carriers: a technological approach. Biotechnol Annu Rev 2001;7:59–85
  • Kaur IP, Rana C, Singh H. Development of effective ocular preparations of antifungal agents. J Ocular Pharm Ther 2008;24:481–94
  • Liu S, Jones L, Gu FX. Nanomaterials for ocular drug delivery. Macromol Biosci 2012;12:608–20
  • Kambhampati SP, Kannan RM. Dendrimer nanoparticles for ocular drug delivery. J Ocular Pharmacol Ther 2013;29:151–65
  • Mignani S, El Kazzouli S, Bousmina M, Majoral J. Expand classical drug administration ways by emerging routes using dendrimer drug delivery systems: a concise overview. Adv Drug Deliv Rev 2013;65:1316–30
  • Mohan K, Pravin S, Atul B. Ophthalmic microemulsion: a comprehensive review. Int J Pharm Biol Sci 2012;3:P1–3
  • Del Valle E. Cyclodextrins and their uses: a review. Process Biochem 2004;39:1033–46
  • Challa R, Ahuja A, Ali J, Khar R. Cyclodextrins in drug delivery: an updated review. AAPS Pharmscitech 2005;6:E329–57
  • Di Colo G, Zambito Y, Burgalassi S, et al. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin. Int J Pharm 2004;273:37–44
  • Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 2000;50:27–46
  • Chetoni P, Di Colo G, Grandi M, et al. Silicone rubber/hydrogel composite ophthalmic inserts: preparation and preliminary in vitro/in vivo evaluation. Eur J Pharm Biopharm 1998;46:125–32
  • Lo R, Li P, Saati S, et al. A refillable microfabricated drug delivery device for treatment of ocular diseases. Lab Chip 2008;8:1027–30
  • Yasukawa T, Ogura Y, Kimura H, et al. Drug delivery from ocular implants. Expert Opin Drug Deliv 2006;3:261–73
  • Pijls RT, Sonderkamp T, Daube GW, et al. Studies on a new device for drug delivery to the eye. Eur J Pharm Biopharm 2005;59:283–8
  • Pijls RT, Cruysberg LP, Nuijts RM, et al. Capacity and tolerance of a new device for ocular drug delivery. Int J Pharm 2007;341:152–61
  • Choonara YE, Pillay V, Danckwerts MP, et al. A review of implantable intravitreal drug delivery technologies for the treatment of posterior segment eye diseases. J Pharm Sci 2010;99:2219–39
  • Pijls R, Hanssen H, Nuijts R, et al. In vivo tolerance and kinetics of a novel ocular drug delivery device. J Control Release 2006;116:e47–9
  • Rootman DS, Willoughby RP, Bindlish R, et al. Continuous flow contact lens delivery of gentamicin to rabbit cornea and aqueous humor. J Ocular Pharmacol Ther 1992;8:317–23
  • Alvarez-Lorenzo C, Yañez F, Barreiro-Iglesias R, Concheiro A. Imprinted soft contact lenses as norfloxacin delivery systems. J Control Release 2006;113:236–44
  • Garhwal R, Shady SF, Ellis EJ, et al. Sustained ocular delivery of ciprofloxacin using nanospheres and conventional contact lens materials. Invest Ophthalmol Vis Sci 2012;53:1341–52
  • Sarraf D, Lee DA. The role of iontophoresis in ocular drug delivery. J Ocular Pharmacol Ther 1994;10:69–81
  • Pathak MK, Chhabra G, Pathak K. Design and development of a novel pH triggered nanoemulsified in-situ ophthalmic gel of fluconazole: ex-vivo transcorneal permeation, corneal toxicity and irritation testing. Drug Dev Ind Pharm 2013;39:780–90
  • Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 2010;17:467–89

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.