91
Views
10
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLEPreclinical Therapeutics

Augmentation of Radiation-Induced Apoptosis by Ellagic Acid

, , , , &
Pages 323-330 | Published online: 28 Oct 2009

REFERENCES

  • Ahmad, N.; Adhami, V.M.; Afaq, F.; Feyes, D.K.; Mukhtar, H. Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res 2001, 7, 1466–1473.
  • Potter, J.D. Cancer prevention: epidemiology and experiment. Cancer Lett 1997, 114, 7–9.
  • Sergediene, E.; Jonsson, K.; Szymusiak, H.; Tyrakowsa, B.; Rietjens, I.M.; Cenas, N. Prooxidant toxicity of polyphenolic antioxidants to HL-60 cells description of quantitative structure activity relationships. FEBS Lett 1999, 462, 392–396.
  • Bestwick, C.S.; Milne, L. Quercetin modifies reactive oxygen levels but exerts only partial protection against oxidative stress within HL-60 cells. Biochemica et Biophysica Acta 2001, 1528, 49–59.
  • Skaper, S.D.; Fabris, M.; Ferrar, V.; Carbonare, M.D.; Leon, A. Quercetin protects cutaneous tissue associated cell types including sensory neurons from oxidative stress induced by glutathione depletion: co-operative effect of ascorbic acid. Free Radic Biol Med 1997, 22, 669–678.
  • Van Acker, F.A.; Schouten, O.; Haenen, R.M.; van der Vijh, W.J.F.; Bast, A. Flavonoid can replace tocopherol as an antioxidant. FEBS Lett 2000, 473, 145–148.
  • Duthie, S.J.; Collins, A.R.; Duthie, G.G.; Dobson, V.L. Quercetin and myricetin protect against hydrogen peroxide induced DNA damage (strand breaks and oxidized pyrimidines) in human lymphocytes. Mutat Res 1997, 393, 223–231.
  • Youdim, K.A.; Shukitt-hale, B.; Mackinnon, S.; Kalt, W.; Joseph, J.A. Polyphenolics enhance red blood cell resistance to oxidative stress: in vitro and in vivo. Biochemica et Biophysica Acta 2000, 1523, 117–122.
  • Zoberi, I.; Bradbury, C.M.; Curry, H.A.; Bisht, K.S.; Goswami, P.C.; Roti Roti, J.L.; Gius, D. Radiosensitizing and antiproliferative effects of resveratrol in two human cervical tumor cell lines. Cancer Lett 2002, 175, 165–173.
  • Serrano, A.; Palacios, C.; Roy, G.; Cespón, C.; Villar, M.L.; Nocito, M.; González-Porqué, P. Derivatives of gallic acid induce apoptosis in tumoral cell lines and inhibit lymphocyte proliferation. Arch Biochem Biophys 1998, 350(1), 49–54.
  • Bradbury, C.M.; Markovina, S.; Wei, S.J.; Rene, L.M.; Zoberi, I.; Horikoshi, N.; Gius, D. Indomethacin-induced radiosensitization and inhibition of ionizing radiation-induced NF-κB activation in HeLa cells occur via a mechanism involving p38 MAP kinase. Cancer Res 2001, 61, 7689–7696.
  • Palayoor, S.T.; Youmell, M.Y.; Calderwood, S.K.; Coleman, C.N.; Price, B.D. Constitutive activation of I- κB kinase and NF- κB in prostate cancer cells inhibited by ibuprofen. Oncogene 1999, 18, 7389–7394.
  • Yamamoto, Y.; Yin, J.M.; Lin, K.M.; Gaynor, R.B. Sulindac inhibits activation of the NF-κB pathway. J Biol Chem 1999, 274, 27307–27314.
  • Palayoor, S.T.; Bump, E.A.; Calderwood, S.K.; Bartol, S.; Coleman, C.N. Combined antitumor effect of radiation and ibuprofen in human prostate cancer cells. Clin Cancer Res 2000, 4, 763–771.
  • Chendil, D.; Ranga, R.S.; Meigooni, D.; Satishkumar, S.; Ahmed, M.M. Curcumin confers radiosensitizing effect in prostate cancer cell line PC-3. Oncogene 2004, 23, 1599–1607.
  • Li, T.M.; Chen, G.W.; Su, C.C.; Lin, J.G.; Yeh, C.C.; Cheng, K.C.; Chung, J.G. Ellagic acid induced p53/p21 expression, G1 arrest and apoptosis in human bladder cancer T24 cells. Anticancer Res 2005, 25, 971–979.
  • Narayanan, B.A.; Re, G.G. IGF-II down regulation associated cell cycle arrest in colon cancer cells exposed to phenolic antioxidant ellagic acid. Anticancer Res 2001, 21, 359–364.
  • Bhosle, S.M.; Huilgol, N.G.; Mishra, K.P. Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid. Clin Chim Acta 2005, 359(1-2), 89–100.
  • Hockenbery, D.M.; Oltvai, Z.N.; Yin, X.M.; Milliman, C.L.; Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993, 75, 241–251.
  • Jang, J.H.; Surh, Y.J. Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function. Biochem Pharm 2003, 66, 1371–1379.
  • Gupta, A.; Butts, B.; Kwei, K.A.; Dvorakova, K.; Stratton, S.P.; Briehl, M.M.; Bowden, G.T. Attenuation of catalase activity in the malignant phenotype plays a functional role in an in vitro model for tumor progression. Cancer Lett 2001, 173, 115–125.
  • Terakado, N.; Shintani, S.; Nakahara, Y.; Mihara, M.; Tomizawa, K.; Suzuki, K.; Taniguchi, N.; Matsumura, T. Expression of Cu, Zn-SOD, Mn-SOD and GST-∏ in oral cancer treated with preoperative radiation therapy. Oncology Rep 2000, 7, 1113–1117.
  • Ong, F.; Moonen, L.M.F.; Gallee, M.P.W.; Bosch, C.T.; Zerp, S.F.; Hart, A.A.M.; Bartelink, H.; Verheij, M. Prognostic factors in transitional cell cancer of the bladder: an emerging role for Bcl-2 and p53. Radiother Oncol 2001, 61, 169–175.
  • Kamradt, M.C.; Walter, S.; Koudelik, J.; Shafer, L.; Weijzen, S.; Velders, M.; Vaughan, A.T.M. Steroid-mediated inhibition of radiation-induced apoptosis in C4-1 cervical carcinoma cells is p53-dependent. Eur J Cancer 2001, 37, 2240–2246.
  • Morita, M.; Yoshiki, F.; Kudo, Y. Simultaneous imaging of phosphatidyl inositol metabolism and Ca2 + levels in PC12h cells. Biochem Biophys Res Comm 2003, 308, 673–678.
  • Oancea, E.; Meyer, T. Reversible desensitization of inositol triphosphate-induced calcium release provides a mechanism for repetitive calcium spikes. J Biol Chem 1996, 271, 17253–17260.
  • Sargeev, I.N. Calcium as a mediator of 1,25-dihydroxyvitamin D_3-induced apoptosis. J. Steroid Biochem Mol Biol 2004, 89-90, 419–425.
  • Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193, 265–275.
  • Sun, M.; Zigman, S. An improved spectrophotometric assay for superoxide dismutase based on epinephrine oxidation. Anal Biochem 1978, 90, 81–89.
  • Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967, 70, 158–169.
  • Bhosle, S.M.; Huilgol, N.G.; Mishra, K.P. Apoptotic index as predictive marker for radiosensitivity of cervical carcinoma: evaluation of membrane fluidity, biochemical parameters and apoptosis after the first dose of fractionated radiotherapy to patients. Cancer Detect Prev 2005, 29(4), 369–375.
  • Schuler, M.; Bossy-Wetzel, E.; Goldstein, J.C.; Fitzgerald, P.; Green, D.R. p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. J Biol Chem 2000, 275, 7337–7342.
  • Miyashita, T.; Reed, J.C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995, 80, 293–299.
  • Oda, E.; Ohki, R.; Murasawa, H.; Nemoto, J.; Shibue, T.; Yamashita, T.; Tokino, T.; Taniguchi, T.; Tanaka, N. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000, 288, 1053–1058.
  • Schuler, M.; Green, D.R. Mechanism of p53-dependent apoptosis. Biochem Soc Trans 2001, 29, 684–688.
  • Bhattacharyya, A.; Choudhuri, T.; Pal, S.; Chattopadhyay, S.; Datta, G. K.; Sa, G.; Das, T. Apoptogenic effects of black tea on Ehrlich's ascites carcinoma cell. Carcinogenesis 2003, 24(1), 75–80.
  • Thornberry, N.A.; Lazebnik, Y. Caspases: enemies within. Science 1998, 281, 1312–1316.
  • Sitailo, L.A.; Tibudan, S.S.; Denning, M.F. Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes. J Biol Chem 2002, 277, 19346–19352.
  • Li, P.; Nijhawan, D.; Budihardjo, I.; Srinivasula, S.M.; Ahmad, M.; Alnemri, E.S.; Wang, X. Cytochrome C and dATP- dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997, 91, 479–489.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.