166
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Up-Regulation of Two Distinct p53-DNA Binding Functions by Covalent Poly(ADP-ribosyl)ation: Transactivating and Single Strand Break Sensing

, , &
Pages 563-570 | Received 19 Dec 2012, Accepted 30 Aug 2013, Published online: 28 Oct 2013

REFERENCES

  • Soussi T, Ishioka C, Claustres M, Beroud C. Locus-specific mutations data bases: pitfalls and good practice based on the p53 experience. Nat Rev Cancer 2006;6:83–90.
  • Beroud C, Soussi T. The UMD-p53 database: new mutations and analysis tools. Hum Mutat 2003;21:176–181.
  • Hainaut P, Hollstein M. p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 2000;77:81–137.
  • Buttler JS, Loh SN. Kinetic partitioning during folding of the p53 DNA binding domain. J Mol Biol 2005;350:906–918.
  • Demma M, Maxwell E, Ramos R, Liang L, Li C, Hesk D, Rossman R, Mallams A, Doll R, Liu M, Seidel-Dugan C, Bishop WR, Dasmahapatra B. SCH529074, a small molecule activator of mutant p53, which binds p53 DNA binding domain (DBD), restores growth suppressive function to mutant p53, and interrupts HDM2 mediated ubiquitination of wild type p53. J Biol Chem 2010;285(10):198–212.
  • Lee, M.-H, Na H, Kim EJ, Lee HW, Lee MO. Poly(ADP-ribosyl)ation of p53 induces gene-specific transcriptional repression of MTA1. Oncogene 2012;31:5099–5107.
  • Okorokov AL, Orlova EV. Structural biology of the p53 tumor suppressor. Curr Opin Struct Biol 2009;19:1–6.
  • Reed M, Woelker B, Wang P, Anderson ME, Tegtmeyer P. The C-terminal domain of p53 recognizes DNA damaged by ionizing radiation. Proc Natl Acad Sci (USA) 1995;92:9455–9459.
  • El-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B. Definition of a consensus sequence binding site for p53. Nat Genet 1992;1:45–49.
  • Mendoza-Alvarez H, Alvarez-Gonzalez. Regulation of p53 sequence-specific DNA binding by covalent poly(ADP-ribosyl)ation. J Biol Chem 2001;276:36425–36430.
  • Alvarez-Gonzalez R. Genomic maintenance: the p53 poly(ADP-ribosyl)ation connection. Science STKE 2007;415:pe68.
  • Alvarez-Gonzalez R. Poly(ADP-ribosyl)ation of chromosomal proteins, epigenetic regulation and human genomic integrity in health and disease. Prot Rev 2010;13:411–424.
  • Alvarez-Gonzalez R, Jacobson MK. Quantification of poly(ADP-ribose) in vitro: determination of chain length and branching pattern. Methods Mol Biol 2011;780:35–46.
  • Kameshita I, Matsuda Z, Taniguchi T, Shizuta Y. Poly(ADP-ribose) synthetase. Separation and identification of three proteolytic fragments as the substrate binding domain, the DNA binding domain, and the automodification domain. J Biol Chem 1986;59:4770–4776.
  • Alvarez-Gonzalez R, Spring H, Muller M, Burkle A. Selective loss of poly(ADP-ribose) and the 85 kDa fragment of poly(ADP-ribose) polymerase in nucleoli during alkylation-induced apoptosis of HeLa cells. J Biol Chem 1999;274:32122–32126.
  • Menissier-de Murcia J, Molinete M, Gradwohl G, Simonin F, de Murcia G. Zinc-binding domain of poly(ADP-ribose) polymerase participates in the recognition of single stranded breaks on DNA. J Mol Biol 1989;210:2229–2237.
  • Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M. The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA strand breaks and nicks and the consequent enzyme activation. J Biol Chem 1991;265:21907–21913.
  • Eustermann S, Videler H, Yang J.-C, Cole PT, Gruszka D, Veprintsev D, Neuhaus D. The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J Mol Biol 2011;407:149–170.
  • Langelier MF, Ruhl DD, Planck JL, Lee Kraus W, Pascal JM. The Zn-3 domain of human poly(ADP-ribose) polymerase-1 (PARP-1) functions in both DNA-dependent poly(ADP-ribose) synthesis activity and chromatin compaction. J Biol Chem 2010;285:18877–18887.
  • Mendoza-Alvarez H, Alvarez-Gonzalez R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 1993;268:22575–22580.
  • Buki KG, Bauer PI, Hakam A, Kun E. Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J Biol Chem 1995;270:3370–3377.
  • Rolli V, O'Farrell M, Menissier de Murcia J, de Murcia G. Random mutagenesis of the poly(ADP-ribose) polymerase catalytic domain reveals amino acids involved in polymer branching. Biochemistry 1997;36:12147–12154.
  • Menissier-de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, Schreiber V, Ame, J-C, Dierich A, LeMeur M, Sabatier M, Chambon P, de Murcia G. Functional interaction between PARP-1 & PARP-2 in chromosome stability & embryonic development in mouse. EMBO J 2003;22:2255–2263.
  • Lane DP. p53, guardian of the genome. Nature (London) 1992;358:15–16.
  • Chatterjee S, Berger SJ, Berger NA. Poly (ADP-ribose) polymerase: a guardian of the genome that facilitates DNA repair by protecting against DNA recombination. Mol Cell Biochem 1999;193:23–30.
  • Kumari SR, Mendoza-Alvarez H, Alvarez-Gonzalez R. Functional interactions of p53 with poly(ADP-ribose) polymerase (PARP) during apoptosis following DNA damage: covalent poly(ADP-ribosyl)ation of p53 by exogenous PARP and non-covalent binding of p53 to the M(r) 85,000 proteolytic fragment. Cancer Res 1998;58:5075–5078.
  • Kanai M, Hanashiro K, Kim SH, Hanai S, Boulares AH, Miwa M, Fukasawa K. Inhibition of crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat Cell Biol 2007;9:1175–1183.
  • De Murcia G, Menissier de Murcia J. Poly(ADP-ribose) polymerase, a molecular nick sensor. Trends Biochem Sci 1994;19:172–176.
  • Yamane K, Katayama E, Tsuruo T. p53 contains a DNA break-binding motif similar to the functional part of BRCT-related region of Rb. Oncogene 2001;20:2859–2867.
  • Le Cam E, Fack F, Menissier de Murcia J, Cognet JA, Barbin A, Sarantoglou V, Rebet B, Delain E, de Murcia G. Conformational analysis of a 139 bp DNA fragment containing a single stranded break and its interaction with human poly(ADP-ribose) polymerase. J Mol Biol 1994;235:1062–1071.
  • Cherny DA, Striker G, Subramaniam V, Jett SD, Palecek E, Jovin TM. Bending of DNA due to specific p53 and p53-core domain–DNA interactions visualized by electron microscopy. J Mol Biol 1999;294:1015–1026.
  • Nedbal W, Frey M, Willemann B, Zentgraf H, Sczakiel G. Mechanistic insights into p53-mediated RNA-RNA annealing. J Mol Biol 1997;266:677–687.
  • Vaziri H, West MD, Allsopp RC, Davison TS, Wu YS, Arrowsmith CH, Poirier GG, Benchimol S. ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. EMBO J 1997;16:6018–6033.
  • Simbulan-Rosenthal CM, Rosenthal DS, Luo R, Smulson ME. Poly(ADP-ribosyl)ation of p53 during apoptosis in human osteosarcoma cells. Cancer Res 1999;59:2190–2194.
  • Wieler S, Gagne J-P, Vaziri H, Poirier GG, Benchimol S. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J Biol Chem 2003;278:18914–18921.
  • Mendoza-Alvarez H, Chavez-Bueno S, Alvarez-Gonzalez R. Chain length analysis of the auto-poly(ADP-ribosyl)ation reaction products generated by poly(ADP-ribose) polymerase (PARP) as a function of the substrate concentration. IUBMB Life 2000;50:145–149.
  • Malanga M, Pleschke JM, Kleczkowska HE, Althaus FR. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 1998;273:11839–11843.
  • Alvarez-Gonzalez R. 3′-deoxyNAD +as a substrate for poly(ADP-ribose) polymerase and the reaction mechanism of poly(ADP-ribose) elongation. J Biol Chem 1988;263:17690–17696.
  • Alvarez-Gonzalez R. (Editorial). Free radicals, oxidative stress, DNA-metabolism and human cancer. Cancer Invest 1999;17(5):376–377.
  • Mendoza-Alvarez H, Alvarez-Gonzalez R. Biochemical characterization of mono(ADP-ribosyl)ated poly(ADP-ribose) polymerase. Biochemistry (USA) 1999;38:3948–3953.
  • Kumari SR, Alvarez-Gonzalez R. Expression of c-jun and c-fos in apoptotic HeLa cells following DNA-damage. Cancer Invest 2000;18(8):715–721.
  • Rubbi CP, Milner J. p53 is a chromatin accessibility factor for nucleotide excision repair of DNA damage. EMBO J 2003;22:975–986.
  • Sala A, La Rocca G, Burgio G, Kotova E, Di Geso D, Collesano M, Ingrassia AMR, Tulin AV, Corona DFV. The nucleosome-remodeling ATPase SIWI is regulated by poly(ADP-ribosyl)ation. PLOS Biol 2008;6:2329–2342.
  • Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, Washburn MP, Florens L, Ladurner AG, Conaway JW, Conaway RC. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc Natl Acad Sci (USA) 2009;106:13770–13774.
  • Krishnakumar R, Kraus WL. The PARP side of the nucleus: molecular actions, physiological outcomes, and clinical targets. Mol Cell 2010;39:8–24.
  • de Murcia G, Huletsky A, Lamarre D, Gaudreau A, Pouyet J, Daune M, Poirier GG. Modulation of chromatin superstructure induced by poly(ADP-ribose) synthesis and degradation. J Biol Chem 1986;261:7011–7017.
  • Alvarez-Gonzalez R, Althaus FR. Poly(ADP-ribose) catabolism in mammalian cells exposed to DNA-damaging agents. Mutat Res 1989;218:67–74.
  • Althaus FR. Poly(ADP-ribosyl)ation: a histone shuttle mechanism in DNA excision repair. J Cell Sci 1992;102:663–670.
  • Pérez-Lamigueiro MA, Álvarez-González R. Polynucleosomal synthesis of poly(ADP-ribose) causes chromatin unfolding as determined by Micrococcal nuclease digestion. Ann NY Acad Sci (USA) 2004;1030:593–598.
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307–310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.