404
Views
24
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

IL-2 Enhances Cervical Cancer Cells Proliferation and JAK3/STAT5 Phosphorylation at Low Doses, While at High Doses IL-2 Has Opposite Effects

, , &
Pages 115-125 | Received 01 Jul 2013, Accepted 11 Jan 2014, Published online: 18 Feb 2014

REFERENCES

  • Voss SD, Leary TP, Sondel PM, Robb RJ. Identification of a direct interaction between interleukin 2 and the p64 interleukin 2 receptor gamma chain. Proc Natl Acad Sci USA 1993;90:2428–2432.
  • Rimoldi D, Salvi S, Hartmann F, Schreyer M, Blum S, Zografos L, Plaisance S, Azzarone B, Carrel S. Expression of IL-2 receptors in human melanoma cells. Anticancer Res 1993;13:555–564.
  • Yasumura S, Lin WC, Weidmann E, Hebda P, Whiteside TL. Expression of interleukin 2 receptors on human carcinoma cell lines and tumor growth inhibition by interleukin 2. Int J Cancer 1994;59:225–234.
  • Lai KS, Jin Y, Graham DK, Witthuhn BA, Ihle JN, Liu ET. A kinase-deficient splice variant of the human JAK3 is expressed in hematopoietic and epithelial cancer cells. J Biol Chem 1995;270: 25028–25036.
  • Rocha-Zavaleta L, Huitron C, Cáceres-Cortés JR, Alvarado-Moreno A, Valle-Mendiola A, Soto-Cruz I, Weiss-Steider B, Rangel-Corona R. Interleukin-2 (IL-2) receptor-βγ signalling is activated by c-Kit in the absence of IL-2, or by exogenous IL-2 via JAK3/STAT5 in human papillomavirus-associated cervical cancer. Cell Signal 2004;16:1239–1247.
  • Rangel-Corona R, Rodríguez-Cruz L, Flores-Flores G, Gómez-Ruiz C, Soto-Cruz I, Mendoza-Rincón F, Weiss-Steider B. Differential expression of the two components of the interleukin-2 receptor in cervical cancer cells. In Proceedings of the 17th International Cancer Congress, M Moraes, R Brentani, and R Bevlacqua (eds.). Italy: Monduzzi Editore, 1998, 1239–1243.
  • Rangel-Corona R, Corona-Ortega T, Soto-Cruz I, López-Labra A, Pablo-Arcos T, Torres-Guarneros CF, Weiss-Steider B. Evidence that cervical cancer cells secrete IL-2, which becomes an autocrine growth factor. Cytokine 2010;50:273–277.
  • Miyasaki T, Kawahara A, Fujii H, Nakagawa Y, Minami Y, Liu ZJ, Oishi I, Silvennoinen O, Witthuhn BA, Ihle JN, Taniguchi T. Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 1994;266:1045–1047.
  • Johnston JA, Kawamura M, Kirken RA, Chen YQ, Blake TB, Shibuya K, Ortaldo JR, McVicar DW, O'Shea JJ. Phosphorylation and activation of the Jak-3 Janus kinase in response to inteleukin-2. Nature 1994;370:151–153.
  • Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD, King KL, Sheehan KCF, Yin L, Pennica D, Johnson EM, Jr., Schreiber RD. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998;93:373–383.
  • Johnston A, Bacon CM, Finbloom DS, Rees RC, Kaplan D, Shibuya K, Ortaldo JR, Gupta S, Chen YQ, Giri JD, O'Shea JJ. Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc Natl Acad Sci USA 1995;92:8705–8709.
  • Ihle JN. The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv Immunol 1995;6:1–35.
  • Kirken RA, Rui H, Malabarba GM, Howard ZOM, Kawamura M, O'Shea JJ, Farrar WL. Activation of JAK3, but not JAK1, is critical for IL-2-induced proliferation and STAT5 recruitment by a COOH-terminal region of the IL-2 receptor beta-chain. Cytokine 1995;7:689–700.
  • Wittuhn BA, Williams MD, Kerawalla H, Uckun FM. Differential substrate recognition capabilities of Janus family protein tyrosine kinases within the interleukin 2 receptor (IL2R) system: Jak3 as a potential molecular target for treatment of leukemias with a hyperactive Jak-Stat signaling machinery. Leuk Lymphoma 1999;32:289–297.
  • Oakes SA, Candotti F, Johnston JA, Chen YQ, Ryan JJ, Taylor N, Liu X, Hennighausen L, Notarangelo LD. Signaling via IL-2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and independent pathways. Immunity 1996;5:605–615.
  • Thomis DC, Berg LJ. The role of Jak3 in lymphoid development, activation, and signaling. Curr Op Immunol 1997;9:541–547.
  • Li H, Ahonen TJ, Alanen K, Xie J, LeBaron MJ, Pretlow TG, Ealley EL, Zhang Y, Nurmi M, Singh B, Martikainen PM, Nevalainen MT. Activation of signal transducer and activator of transcription 5 in human prostate cancer is associated with high histological grade. Cancer Res 2004;64:4774–4782.
  • Li H, Zhang Y, Glass A, Zellweger T, Gehan E, Bubendorf L, Gelmann EP, Nevalainen MT. Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence. Clin Cancer Res 2005;11:5863–5868.
  • Nevalainen MT, Xie J, Torhorst J, Bubendorf L, Haas P, Kononen J, Sauter G, Rui HJ. Signal transducer and activator of transcription-5 activation and breast cancer prognosis. Clin Oncol 2004;22:2053–2060.
  • Moriggl R, Sexl V, Kenner L, Duntsch C, Stangl K, Gingras S, Hoffmeyer A, Bauer A, Piekorz R, Wang D, Bunting KD, Wagner EF, Sonneck K, Valent P, Ihle JN, Beug H. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 2005;7:87–89.
  • Levitzki A, Gazit A. Tyrosine kinase inhibition: an approach to drug development. Science 1995;267:1782–1788.
  • Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leder JS, Freedman M, Cohen A, Gazit A, Leviyzki A, Roifman CM. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996;379:645–648.
  • Nielsen M, Kaloft K, Nordahl M, Ropke C, Geisler C, Mustelin T, Dobson P, Svejgaard A, Odum N. Constitutive activation of a slowly migrating isoform of Stat3 in mycosis fungoides: tyrphostin AG490 inhibits Stat3 activation and growth of mycosis fungoides tumor cell lines. Proc Natl Acad Sci USA 1997;94:6764–6769.
  • Wang LH, Kirken RA, Erwin RA, Yu CR, Farrar WL. JAK3, STAT, and MAPK signaling pathways as novel molecular targets for the tyrphostin AG-490 regulation of IL-2-mediated T cell response. J Immunol 1999;162:3897–3904.
  • Kirken RA, Erwin RA, Taub D, Murphy WJ, Behbod F, Wang L, Pericle F, Farrar WL. Tyrphostin AG-490 inhibits cytokine-mediated JAK3/STAT5a/b signal transduction and cellular proliferation of antigen-activated human T cells. J Leuk Biol 1999;65: 891–899.
  • Kirken RA, Erwin RA, Wang L, Wang Y, Rui H, Farrar WL. Functional uncoupling of the Janus kinase 3-Stat5 pathway in malignant growth of human T cell leukemia virus type 1-transformed human T cells. J Immunnol 2000;165:5097–5104.
  • Caceres-Cortes JR, Alvarado-Moreno JA, Waga K, Rangel-Corona R, Monroy-Garcia A, Rocha-Zavaleta L, Urdiales-Ramos J, Weiss-Steider B, Haman A, Hugo P, Brousseau R, Hoang T. Implication of tyrosine kinase receptor and steel factor in cell density-dependent growth in cervical cancers and leukemias. Cancer Res 2001;61:6281–6289.
  • Weidmann ME, Sacchi M, Plaisance S, Heo DS, Yasumura S, Lin WC, Johnson JT, Herberman RB, Azzarone B, Whiteside TL. Receptors for interleukin 2 on human squamous cell carcinoma cell lines and tumor in situ. Cancer Res 1992;52:5963–5970.
  • Oda K, Sugamura K. Regulation of IL-2 signaling. Leukemia 1997;11(Suppl. 3):416–417.
  • Zhou YJ, Hanson EP, Chen YQ, Magnuson K, Chen M, Swann PG, Wanger RL, Cahngelian PS, O'Shea JJ. Distinct tyrosine phosphorylation sites in JAK3 kinase domain positively and negatively regulate its enzymatic activity. Proc Natl Acad Sci USA 1997;94:13850–13855.
  • Eriksen KW, Kaltoft K, Mikkelsen G, Nielsen M, Zhang Q, Geisler C, Nissen MH, Röpke C, Wasik MA, Ødum N. Constitutive STAT3-activation in Sezary syndrome: tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and growth of leukemic Sezary cells. Leukemia 2001;15:787–793.
  • Zhang Q, Nowak I, Vonderheid EC, Rook AH, Kadin ME, Nowell PC, Shaw LM, Wasik MA. Activation of JAK/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA 1996;93:9148–9153.
  • Liu KD, Gaffen SL, Goldsmith MA, Greene WC. Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation. Curr Biol 1997; 17:817–826.
  • Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, Seipp CA, Simpson CG, White DE. A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med 1987;316:889–897.
  • Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ, Aebersold P, Leitman S, Linehan WM, Seipp CA, White DE, Steinberg SM. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993;85:622–632.
  • Chang E, Rosenberg SA. Patients with melanoma metastases at cutaneous and subcutaneous sites are highly susceptible to interleukin-2-based therapy. J Immunother 2001;24:88–90.
  • Ettinghausen SE, Moore JG, White DE, Platanias L, Young NS, Rosenberg SA. Hematologic effects of immunotherapy with lymphokine-activated killer cells and recombinant interleukin-2 in cancer patients. Blood 1987;69:1654–1660.
  • Pockaj BA, Topalian SL, Steinberg SM, White DE, Rosenberg SA. Infectious complications associated with interleukin-2 administration: a retrospective review of 935 treatment courses. Clin Oncol 1993;11:136–147.
  • Schomburg A, Menzel T, Körfer A, Heer G, Dallmann I, Kirchner H, Poliwoda H, Atzpodien J. In vivo and ex vivo antitumor activity in patients receiving low-dose subcutaneous recombinant interleukin-2. Nat Immun 1992;11:133–143.
  • González Cao M, Puig S, Malvehy J, Herrero JE, Martí RM, Conill C, Sánchez M, Mellado B, Gascón P, Castel T. Biochemotherapy with low doses of subcutaneous interleukin-2 in patients with melanoma: results of a phase II trial. Clin Transl Oncol 2005; 7:250–254.
  • Stone RM, DeAngelo DJ, Janosova A, Galinsky I, Canning C, Ritz J, Soiffer RJ. Low dose interleukin-2 following intensification therapy with high dose cytarabine for acute myelogenous leukemia in first complete remission. Am J Hematol 2008;83:771–777.
  • Kim BH, Min YS, Choi JS, Baeg GH, Kim YS, Shin JW, Kim TY, Ye SK. Benzoxathiol derivative BOT-4-one suppresses L540 lymphoma cell survival and proliferation via inhibition of JAK3/STAT3 signaling. Exp Mol Med 2011;43:313–321.
  • Lin Q, Lai R, Chirieac LR, Li C, Thomazy VA, Grammatikakis I, Rassidakis GZ, Zhang W, Fujio Y, Kunisada K, Hamilton SR, Amin HM. Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol 2005;167:969–980.
  • Dagvadorj A, Kirken RA, Leiby B, Karras J, Nevalainen MT. Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo. Clin Can Res 2008;14:1317–1324.
  • Tan SH, Dagvadorj A, Shen F, Gu L, Liao Z, Abdulghani J, Zhang Y, Gelman EP, Zellweger T, Culig Z, Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells. Cancer Res 2008;68:236–248.
  • Yamashita H, Nishio M, Ando Y, Zhang Z, Hamaguchi M, Mita K, Kobayashi S, Fujii Y, Iwase H. Stat5 expression predicts response to endocrine therapy and improves survival in estrogen receptor-positive breast cancer. Endocr Relat Cancer 2006;13:885–893.
  • Liu L, McBride KM, Reich NC. STAT3 nuclear import is independent of tyrosine phosphorylation and mediated by importin-alpha3. Proc Natl Acad Sci USA 2005;102:8150–8155.
  • Iyer J, Reich NC. Constitutive nuclear import of latent and activated STAT5a by its coiled coil domain. FASEB J 2008;22: 391–400.
  • Yang J, Liao X, Agarwal MK, Barnes L, Auron PE, Stark GR. Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev 2007; 21:1396–1408.
  • Yang J, Stark GR. Roles of unphosphorylated STATs in signaling. Cell Res 2008;18:443–451.
  • Reich NC, Liu L. Tracking STAT nuclear traffic. Nat Rev Immunol 2006; 6:602–612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.