12
Views
19
CrossRef citations to date
0
Altmetric
Miscellaneous Article

Membranes and Cancer Chemotherapy

&
Pages 439-451 | Published online: 11 Jun 2009

References

  • Nicolson G L, Poste G. The cancer cell: dynamic aspects and modifications in cell-surface organization. New Engl J Med 1976; 295: 197–203; 253–258
  • Wallach D FH. Membrane anomalies of tumor cells. Prog Exp Tumor Res 1978; 22: 1–38
  • Holley R W, Kiernan J A. “Contact inhibition” of cell division of 3T3 cells. Proc Natl Acad Sci (USA) 1968; 60: 303–312
  • Wright T C, Ukena T E, Campbell R, et al. Rates of aggregation, loss of anchorage dependence, and tumorigenkity of cultured cells. Proc Natl Acad Sci (USA) 1977; 74: 258–262
  • Ukena T E, Goldman E, Benjamin T L, et al. Lack of correlation between agglutinability, the surface distribution of Con A and post-confluence inhibition of cell division in ten cell lines. Cell 1976; 7: 213–222
  • Shin S, Freedman V H, Risser R, et al. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proc Natl Acad Sci (USA) 1975; 72: 4435–4439
  • Shields R, Pollock K. The adhesion of BHK and PyBHK cells to the substratum. Cell 1974; 3: 31–38
  • Hakomori S. Tumor-associated glycolipid markers in experimental and human cancer. Membrane Alterations in Cancer, A Mikita, S Tsuiki, S Fujii, L Warren. Plenum Press, New York 1983; 113–127
  • Anderson W B, Johnson G S, Pastan I. Transformation of chick-embryo fibroblasts by wild-type and temperature-sensitive Rous sarcoma virus alters adenylate cyclase activity. Proc Natl Acad Sci (USA) 1973; 70: 1055–1059
  • Unkeless J C, Tobia A, Ossowski L, et al. An enzymatic function associated with transformation of fibroblasts by oncogenic viruses I. Chick embryo fibroblast cultures transformed by avian RNA tumor viruses. J Exp Med 1973; 137: 85–111
  • Folkman J. How is blood vessel growth regulated in normal and neoplastic tissue? GHA Clowes Memorial Lecture. Cancer Res 1986; 46: 467–473
  • Poutsiaka D D, Black P H. Shedding from cancer cells and its importance in determining the pathophysiology of cancer. Membrane Alterations in Cancer, A Mikita, S Tsuiki, S Fujii, L Warren. Plenum Press, New York 1983; 47–57
  • Rothman J E, Lenard J. Membrane asymmetry. Science 1977; 195: 743–753
  • Bergelson L D, Barsukov L I. Topological asymmetry of phospholipids in membranes. Science 1977; 197: 224–230
  • Karnovsky M J, Kleinfeld A M, Hoover R L, et al. The concept of lipid domains in membranes. J Cell Biol 1982; 94: 1–6
  • Seelig J, Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys 1980; 13: 19–61
  • Smith R L, Oldfield E. Dynamic structure of membranes by deuterium NMR. Science 1984; 225: 280–288
  • Weltzien H U. Cytolytic and membrane-perturbing properties of lysosphatidylcholine. Biochim Biophys Acta 1979; 559: 259–287
  • Munder P G, Modolell M. Adjuvant induced formation of lysophosphatides and their role in immune response. Int Arch Allergy 1973; 45: 133–135
  • Arnold B, Reuther R, Weltzien H U. Distribution and metabolism of synthetic alkyl analogs of lysophosphatidylcholine in mice. Biochim Biophys Acta 1978; 530: 45–55
  • Arnold D, Weltzien H U, Westphal O. Uber die Synthese von Lysolecithinen und ihren Atheranaloga. Liebigs Ann Chem 1967; 709: 234–239
  • Munder P G, Weltzien H U, Modolell M. Lysolecithin analogs: a new class of immunopotentiators. Immunopathology, VIIth International Symposium, P A Miescher. Schwabe and Co. Publishers, Basel 1977; 411–423
  • Andreesen R, Modolell M, Weltzien H U, et al. Selective destruction of human leukemic cells by alkyl-lysophospholipids. Cancer Res 1978; 38: 3894–3899
  • Modolell M, Andreesen R, Pahlke W, et al. Disturbance of phospholipid metabolism during the selective destruction of tumor cells induced by alkyl-lysophospholipids. Cancer Res 1979; 39: 4681–4686
  • Vogler W R, Whigham E, Bennett W D, et al. Effect of alkyl-lysophospholipids on phosphatidylcholine biosynthesis in leukemic cell lines. Exp Hematol 1985; 13: 629–633
  • Herrmann D BJ, Ferber E, Munder P G. Ether phospholipids as inhibitors of the arachidonoyl-CoA: 1-acyl-M-glycero-3-phosphocholine acyltransferase in macrophages. Biochim Biophys Acta 1986; 876: 28–35
  • Berdel W E, Fromm M, Fink U, et al. Cytotoxicity of thioether-lysophospholipids in leukemias and tumors of human origin. Cancer Res 1983; 43: 5538–5543
  • Morris-Natschke S, Surles J R, Daniel L W, et al. Synthesis of sulfur analogous of alkyl lysophospholipid and neoplastic cell growth inhibitory properties. J Med Chem 1986; 29: 2114–2117
  • Noseda A, Berens M E, Piantadosi C, et al. Neoplastic cell inhibition with new ether lipid analogs. Lipids 1987; 22: 878–883
  • Berdel W E, Von Hoff D D, Unger C, et al. Ether lipid derivatives antineoplastic activity in vitro and the structure-activity relationship. Lipids 1986; 21: 301–304
  • Hoffman D R, Hajdu J, Snyder F. Cytotoxicity of platelet activating factor and related alkyl-phospholipid analogs in human leukemia cells, polymorphonuclear neutrophils, and skin fibroblasts. Blood 1984; 63: 545–552
  • Houlihan W J, Lee M L, Munder P G, et al. Antitumor activity of SRI 62–834, a cyclic ether analog of ET-18-OCH3. Lipids 1987; 22: 884–890
  • Soodsma J F, Piantadosi C, Snyder F. The biocleavage of alkyl glyceryl ethers in Morris hepatomas and other transplantable neoplasms. Cancer Res 1970; 30: 309–311
  • Berdel W E, Greiner E, Fink U, et al. Cytotoxicity of alkyl-lysophosphoiipid derivatives and low-alkyl-cleavage enzyme activities in rat brain rumor cells. Cancer Res 1983; 43: 541–545
  • Berdel W E, Fink U, Egger B, et al. Inhibition by alkyl-lysophosopholipids of tritiated thymidine uptake in cells of human malignant urologic tumors. J Natl Cancer Inst 1981; 66: 813–817
  • Hoffman D R, Hoffman L H, Snyder F. Cytotoxicity and metabolism of alkyl phospholipid analogues in neoplastic cells. Cancer Res 1986; 46: 5803–5809
  • Unger C, Eibl H, Kim D J, et al. Sensitivity of leukemia cell lines to cytotoxic alkyl-lysophospholipids in relation to O-alkyl cleavage enzyme activities. J Natl Cancer Inst 1987; 78: 219–222
  • Lee T-C, Blank M L, Fitzgerald V, et al. Substrate specificity in the biocleavage of the O-alkyl bond: l-alkyl-2-acetyl-sn-glycero-3-phosphocholine (a hypotensive and platelet-activating lipid) and its metabolites. Arch Biochem Biophys 1981; 208: 353–357
  • Berdel W E, Andreesen R, Munder P G. Synthetic alkyl-phospholipid analogs: a new class of antitumor agents. Phospholipids and Cellular Regulation, J F Kuo. CRC press, Inc., Boca Raton, FL 1985; 41–73
  • Fleer E AM, Unger C, Kim D J, et al. Metabolism of ether phospholipids and analogs in neoplastic cells. Lipids 1987; 22: 856–861
  • Kotting J, Unger C, Eibl H. Substrate specificity of 0-alkylglycerol monooxygenase (E.C. 1.14.16.5), solubilized from rat liver microsomes. Lipids 1987; 22: 831–835
  • Storme G A, Berdel W E, Van Blitterswijk W J, et al. Antiinvasive effect of racemic 1-O-octadecyl-2-O-methylglycero-3-phosphocholine on MO4 mouse fibrosarcoma cells in vitro. Cancer Res 1985; 45: 351–357
  • Long R C, Small W C, Brynes R K, et al. Effects of alkyl-lysophospholipids on human leukemic cell lines measured by nuclear magnetic resonance. Cancer Res 1983; 43: 770–775
  • Noseda A, White J G, Modest E J. Effects of ether lipid analogs of platelet activating factor on the physical properties of model membranes (abstr). Proc Am Assoc Cancer Res 1987; 28: 13
  • Berdel W E, Greiner E, Fink U, et al. Cytotoxic effects of alkyl-lysophospholipids in human brain tumor cells. Oncology 1984; 41: 140–145
  • Van Blitterswijk W J, Hilkmann H, Storme G A. Accumulation of an alkyl lysophospholipid in tumor cell membranes affects membrane fluidity and tumor cell invasion. Lipids 1987; 22: 820–823
  • Helfman D M, Barnes K C, Kinkade J M, et al. Phospholipid' sensitive Ca2+-dependent protein phosphorylation system in various types of leukemic cells from human patients and in human leukemic cell lines HL-60 and K562, and its inhibition by alkyl-lysophospholipid. Cancer Res 1983; 43: 2955–2961
  • Kiss Z, Deli E, Vogler W R, et al. Antileukemic agent alkyllysophospholipid regulates phosphorylation of distinct proteins in HL60 and K562 cells and differentiation of HL60 cells promoted by phorbol ester. Biochem Biophys Res Comm 1987; 142: 661–666
  • King M T, Eckhardt K, Gocke E, et al. Failure to detect mutagenic effects of anti-tumor alkyl-lysophospholipids. Cancer Lett 1981; 12: 217–222
  • Andreesen R, Modolell M, Oepke G HF, et al. Studies on various parameters influencing leukemic cell destruction by alkyl-lysophospholipids. Anticancer Res 1982; 2: 95–100
  • Berdel W E, Bausert W R, Weltzien H U, et al. The influence of alkyl-lysophospholipids and lysophospholipid-activated macrophages on the development of metastasis of 3-Lewis lung carcinoma. Eur J Cancer 1980; 16: 1199–1204
  • Berdel W E, Munder P G. Metastatic growth of 3-Lewis lung carcinoma in mice treated with alkyl-lysophospholipids and lysophospholipid-induced peritoneal macrophages. Anticancer Res 1981; 1: 397–402
  • Berdel W E, Fink U, Egger B, et al. Growth inhibition of malignant hypernephroma cells by autologous lysophospholipid incubated macrophages obtained by a new method. Anticancer Res 1981; 1: 135–140
  • Berdel W E, Fink U, Thiel E, et al. Purification of human monocytes by adherence to polymeric fluorocarbon. Characterization of the monocyte-enriched cell fraction. Immunobiology 1982; 163: 511–520
  • Andreesen R, Osterholz J, Luckenbach G A, et al. Tumor cytotoxicity of human macrophages after incubation with synthetic analogues of 2-lysophosphatidylcholine. J Natl Cancer Inst 1984; 72: 53–59
  • Munder P G, Modolell M, Bausert W, . Alkyllysophospholipids in cancer therapy. Progress in Cancer Research and Therapy, Vol 16, Augmenting Agents in Cancer Therapy, E M Hersh, M A Chirigos, M J Mastrangelo, et al. Raven Press, New York 1981; 441–458
  • Tidwell Guzman T. G, Vogler W R. The effects of alkyl-lysophospholipids on leukemic cell lines. I. Differential action on two human leukemic cell lines, HL-60 and K562. Blood 1981; 57: 794–797
  • Berdel W E, Bausert W RE, Fink U, et al. Anti-tumor action of alkyl-lysophospholipids (Review). Anticancer Res 1981; 1: 345–352
  • Weltzien H U, Munder P G. Synthetic alkyl analogs of lysophosphatidylcholine: Membrane activity, metabolic stability, and effects on immune response and tumor growth. Ether Lipids: Biochemical and Biomedical Aspects, H K Mangold, F Paltauf. Academic Press, New York 1983; 277–308
  • Runge M H, Andreesen R, Pfleiderer A, et al. Destruction of uman solid tumors by alkyl lysophospholipids. J Natl Cancer Inst 1980; 64: 1301–1306
  • Berger M R, Schmahl D. Modulation of chemical carcinogenesis in rats by alkyl lysophospholipids. Lipids 1987; 22: 935–942
  • Berdel W E, Luz A, Rastetter J, et al. Alkyl-lysophospholipids lack influence on the occurrence of radiation-induced lymphomas and AKR-leukemia. Cancer Lett 1983; 20: 215–221
  • Berdel W E, Schlehe H, Fink U, et al. Early tumor and leukemia response to alkyl-lysophospholipids in a phase I study. Cancer 1982; 50: 2011–2015
  • Herrmann D BJ, Neumann H A, Berdel W E, et al. Phase I trial of the thioether phospholipid analogue BM 41.440 in cancer patients. Lipids 1987; 22: 962–966
  • Okamoto S, Olson A C, Vogler W R, et al. Purging leukemic cells from simulated human remission marrow with alkyllysophospholipid. Blood 1987; 69: 1381–1387
  • Glasser L, Somberg L B, Vogler W R. Purging murine leukemic marrow with alkyl-phospholipids. Blood 1984; 64: 1288–1291
  • Vogler W R, Somberg L B, Glasser L. Effect of cryopreservation on purging of leukemic marrow with alkyl-lysophospholipids. Exp Hematol 1987; 15: 360–364
  • DiMarco A. Adriamycin (NSC-123127): mode and mechanism of action. Cancer Chemother Rep 1975; 6(Part 3)91–106
  • Zwelling L A, Kerrigan D, Michaels S. Cytotoxicity and DNA strand breaks by 5-iminodaunorubicin in mouse leukemia L1210 cells: comparison with Adriamycin and 4′-(9-acridinylamino) methanesulfon-m-anisidide. Cancer Res 1982; 42: 2687–2691
  • Siegfried I M, Sartorelli A C, Tritton T R. Evidence for the lack of relationship between inhibition of nucleic acid synthesis and cytotoxicity of Adriamycin. Cancer Biochem Biophys 1983; 6: 137–142
  • Sengupta S K, Seshadri R, Modest E I, et al. Comparative DNA-binding studies with Adriamycin (ADR), N-trifIuoroacetyladriamycin-14-valerate (AD32), and related compounds (abstr). Proc Am Assoc Cancer Res 1976; 17: 109
  • Acton E M. N-alkylation of anthracyclines. Anthracyclines: Current Status and New Developments, S T Crooke, S D Reich. Academic Press, Inc., New York 1980; 15–25
  • Burke T G, Morin M J, Sartorelli A C, et al. Function of the an-thracycline amino group in cellular transport and cytotoxicity. Mol Pharmacol 1987; 31: 552–556
  • Burke T G, Tritton T R. Location and dynamics of anthracyclines bound to unilamellar phosphatidylcholine vesicles. Biochemistry 1985; 24: 5972–5980
  • Goormaghrigh E, Chatelain P, Caspers J, et al. Evidence of a specific complex between Adriamycin and negatively-charged phospholipids. Biocnim Biophys Acta 1980; 597: 1–14
  • Duarte-Karim M, Ruysschaert J M, Hildebrand J. Affinity of adriamycin to phospholipids A possible explanation for cardiac mitochondrial lesions. Biochim Biophys Res Comm 1976; 71: 658–663
  • Murphree S A, Murphy D, Sartorelli A C, et al. Adriamycin-liposome interactions A magnetic resonance study of the differential effects of cardiolipin on drug-induced fusion and permeability. Biochem Biophys Acta 1982; 691: 97–105
  • Burns C P, North J A, Mossman C J, et al. Fatty acid modification of subcellular organelles of L1210 leukemia cells and lack of effect on doxorubicin (DOXO) localization (abstr). Proc Am Assoc Cancer Res 1988; 29: 10
  • Murphree S A, Tritton T R, Smith P L, et al. Adriamycin-induced changes in the surface membrane of sarcoma 180 ascites cells. Biochim Biophys Acta 1981; 649: 317–324
  • Siegfried J A, Kennedy K A, Sartorelli A C, et al. The role of membranes in the mechanism of action of the antineoplastic agent adriamycin: Spin labeling studies with chronically hypoxic and drug resistant tumor cells. J Biol Chem 1983; 258: 339–343
  • Kennedy K A, Siegfried J A, Sartorelli A C, et al. Effects of anthracyclines on oxygenated and hypoxic tumor cells. Cancer Res 1983; 43: 54–59
  • Ramu A, Claubiger O, Magrath I T, et al. Plasma membrane lipid structural order in doxorubicin-sensitive and -resistant P388 cells. Cancer Res 1983; 43: 5533–5537
  • Ramu A, Glautriger D, Weintraub H. Differences in lipid composition of doxorubicin-sensitive and -resistant P388 cells. Cancer Treat Rep 1984; 68: 637–641
  • Vrignaud P, Montaudon D, Londos-Gagliardi D, et al. Fatty acid composition transport and metabolism in doxorubicin-sensitive and -resistant rat glioblastoma cells. Cancer Res 1986; 46: 3258–3261
  • Tritton T R, Hickman J A. Cell surface membranes as chemotherapeutic target. Experimental and Clinical Progress in Cancer Chemotherapy, F M Muggia. Martinus Nijhoff Publishers, Boston 1985; 81–131
  • Gosalvez M, Pezzi L, Vivero C. Inhibition of capping of surface immunoglobulins at femtomolar concentrations of adriamycin, compound ICRF-159 and tetrodotoxin. Biochem Soc Trans 1978; 6: 659–661
  • Crane F L, MacKellar W C, Moore D J, et al. Adriamycin affects plasma membrane redox functions. Biochem Biophys Res Comm 1980; 93: 746–754
  • Sinha B K, Chignell C F. Interaction of antitumor drugs with human erythrocyte ghost membranes and mastocytoma P815:A spin label study. Biochem Biophys Res Comm 1979; 86: 1051–1057
  • Kessel D. Enhanced glycosylation induced by Adriamycin. Mol Pharmacol 1979; 16: 306–312
  • Ohuchi K, Levine L. Adriamycin stimulates canine kidney (MOCK) cells to deacylate cellular lipids and to produce prostaglandins. Prostaglandins and Medicine 1978; 1: 433–439
  • Zuckier G, Tritton T R. Adriamycin causes up regulation of epidermal growth factor receptors in actively growing cells. Exp Cell Res 1983; 148: 155–161
  • Tokes Z A, Rogers K E, Rembaum A. Synthesis of adriamyuncoupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity. Proc Natl Acad Sci (USA) 1982; 79: 2026–2030
  • Tritton T R, Yee G. The anticancer agent Adriamycin can be actively cytotoxic without entering cells. Science 1982; 217: 248–250
  • Lane P, Vichi P, Bain D L, Tritton T R. Temperature dependence studies of Adriamycin uptake and cytotoxicity. Cancer Res 1987; 47: 4038–4042
  • Furth J J, Cohen S S. Inhibition of mammalian DNA polymerase by the 5′-triphosphate of 1-β-D-arabinofuranosylcytosine and the 5′-triphosphate of 9-β-D-arabinosyladenine. Cancer Res 1968; 28: 2061–2067
  • Kufe D, Spriggs D, Egan E M, et al. Relationships among ara-CTP pools, formation of (ara-C)DNA, and cytotoxicity of human leukemic cells. Blood 1984; 64: 54–58
  • Raetz C RH, Chu M Y, Srivastava S P, et al. Aphospholipid derivative of cytosine arabinoside and its conversion to phosphatidylinositol by animal tissue. Science 1977; 196: 303–305
  • Ryu E K, Ross R J, Matsushita T, et al. Phospholipid-nucleoside conjugates. 3. Synthesis and preliminary biological evaluation of l-β-D-arabinofuranosylcytosine 5′-monophosphate-L-1,2-dipalmitin and selected 1–0-D-arabinofuranosylcytosine 5′-diphosphate-L-1,2-diacylglycerols. J Med Chem 1982; 25: 1322–1329
  • Hauser G, Eichberg J. Identification of cytidine diphosphate-diglyceride in the pineal gland of the rat and its accumulation in the presence of DL-propranolol. J Biol Chem 1975; 250: 105–112
  • Turcotte J G, Srivastava S P, Steim J M, et al. Cytotoxic liponuclec-tide analogs. U. Antitumor activity of CDP-diacylglycerol analogs containing the cytosine arabinoside moiety. Biochim Biophys Acta 1980; 619: 619–631
  • Hong C I, An S, Buchheit D J, et al. 1-β-D-arabinofuranosylcytc-sine-phospholipid conjugates as prodrugs of ara-C. Cancer Drug Delivery 1984; 1: 181–190
  • Berdel W E, Danhauser S, Schick H D, et al. Antineoplastic activity of conjugates of lipids and l-13-D-arabinofuranosylcytosine. Lipids 1987; 22: 943–946
  • Hong C I, Kirisits A J, Nechaev A, et al. Nucleoside conjugates. 6. Synthesis and comparison of antitumor activity of 1-β-D-arabinofuranosylcytosine conjugates of corticosteroids and selected lipophilic alcohols. J Med Chem 1985; 28: 171–177
  • Hong C I, Kirisits A J, Buchheit D J, et al. 1-β-D-arabino-furanosylcytosine conjugates of thioether phospholipids as a new class of potential antitumor drugs. Cancer Drug Delivery 1986; 3: 101–113
  • Hong C I, An S, Buchheit D J, et al. Nucleoside conjugates. 7. Synthesis and antitumor activity of 1-β-D-arabinoruranosylcytosine conjugates of ether lipids. J Med Chem 1986; 29: 2038–2044
  • Hwang K M, Sartorelli A C. Use of plant lectin-induced agglutination to detect alterations in surface architecture of sarcoma 180 caused by antineoplastic agents. Biochem Pharmacol 1975; 24: 1149–1152
  • Wildenauer D, Weger N. Reactions of the trifunctional nitrogen mustard tris(2-chloroethyl)-amine(HN3) with human erythrocyte membranes in vitro. Biochem Pharmacol 1979; 28: 2761–2769
  • Dilenfeldt M, Gantner G, Harrer M, et al. Interaction of the alkylating antitumor agent 2,3,5-tris(emyleneimino)-benzoquinone with the plasma membrane of Ehrlich ascites tumor cells. Cancer Res 1981; 41: 289–293
  • Baxter M A, Chahwala S B, Hickman J A, et al. The effects of nitrogen mustard (HN2) on activities of the plasma membrane of PC6A mouse plasmacytoma cells. Biochem Pharmacol 1982; 31: 1773–1778
  • Grunicke H, Putzer H, Scheidl F, et al. Inhibition of tumor growth by aklylation of the plasma membrane. Bioscience Rep 1982; 2: 601–604
  • Wildenauer D B, Oehlmann C E. Interaction of cyclophosphamide metabolites with membrane proteins: an in vitro study with rabbit liver microsomes and human red blood cells. Effect of thiols. Biochem Pharmacol 1982; 31: 3535–3541
  • Grunicke H, Doppler W, Hofmann J, et al. Plasma membrane as target of alkylating agents. Adv Enzyme Reg 1985; 24: 247–261
  • Sun I L, Crane F L. Bleomycin control of transplasma membrane redox activity and proton movement in HeLa cells. Biochem Pharmacol 1985; 34: 617–622
  • Schroeder F, Fontaine R N, Feller D J, et al. Drug-induced surface membrane phospholipid composition in murine fibroblasts. Biochim Biophys Acta 1981; 643: 76–88
  • Rozengurt E. Early signals in the mitogenic response. Science 1986; 234: 161–166
  • Fico R M, Chen T K, Canellakis E S. Bifunctional intercalaters: Relationship of antitumor activity of diacridines to the cell membrane. Science 1977; 198: 53–56
  • Canellakis E S, Chen T-K. Relationship of biochemical drug effects to their antitumor activity. 1. Diacridines and the cell membrane. Biochem Pharmacol 1979; 28: 1971–1976
  • Ralph R K. On the mechanism of action of 4′[(9-acridinyl)-amino] methanesulphon-m-anisidide. Eur J Cancer 1980; 16: 595–600
  • Kessel D. Cell surface alterations associated with exposure of leukemia L1210 cells to fluorouracil. Cancer Res 1980; 40: 322–324
  • Lazo J S, Shansky C W, Sartorelli A C. Reduction in cell surface concanavalin A binding and mannose incorporation into glycoproteins of sarcoma 180 by 6-thioguanine. Biochem Pharmacol 1979; 28: 583–588
  • Koehler K A, Hines J, Mansour E G, et al. Comparison of the membrane-related effects of cytarabine and other agents on model membranes. Biochem Pharmacol 1985; 34: 4025–4031
  • Prasad S B, Sodhi A. Effect of cis-dichlorodiammine platinum (IT) on the agglutinability of tumor and normal cells with concanavalin A and wheat germ agglutinin. Chem Biol Int 1981; 36: 355–367
  • Van den Berg E K, Brazy P C, Huang A T, et al. Cisplatin-induced changes in sodium, chloride, and urea transport by the frog skin. Kidney Int 1981; 19: 8–14
  • Scanlon K J, Safirstein R L, Thies H, et al. Inhibition of amino acid transport by cis-diamminedichloroplatinum (II) derivatives in L1210 murine leukemia cells. Cancer Res 1983; 43: 4211–4215
  • Aggarwal S K, Niroomand-Rad I. Effect of cisplatin on the plasma phosphatase activities in ascites sarcoma-180 cells: a cytochemical membrane study. J Histochem Cytochem 1983; 31: 307–317
  • Okada K, Yamada S, Kawashima Y, et al. Ceil injury by antineoplastic agents and influence of coenzyme Q” on cellular potassium activity and potential difference across the membrane in rat liver cells. Cancer Res 1980; 40: 1663–1667
  • Burns C P, Rozengurt E. Extracellular Na+ and initiation of DNA synthesis: Role of intracellular pH and K+. J Cell Biol 1984; 98: 1082–1089
  • Lazo J S. Endothelial injury caused by antineoplastic agents. Biochem Pharmacol 1986; 35: 1919–1923
  • Berdel W E, Schick H D, Fink U, et al. Cytotoxicity of the alkyl-linked lipoidal amine 4-aminomethyl-1-[2,3-(di-n-decyloxy)-n-propyl]-4 phenylpiperdine (CP-46,665) in cells from human tumors and leukemias. Cancer Res 1985; 45: 1206–1213
  • Shqji M, Vogler W R, Kuo J F. Inhibition of phospholipid/Ca2+-dependent protein kinase and phosphorylation of leukemic cell proteins by CP-46,665–1, a novel antineoplastic lipoidal amine. Biochem Biophys Res Commun 1985; 127: 590–595
  • Bernacki R, Porter C, Korytnyk W, et al. Plasma membrane as a site for chemotherapeutic intervention. Adv Enzyme Reg 1978; 16: 217–237
  • Bernacki R J, Korytnyk W. Development of membrane sugar and nucleotide sugar analogs as potential inhibitors or modifiers of cellular glycoconjugates. The Gycoconjugates, M I Horowitz. Academic Press, New York 1982; Volume IV: 245–263
  • Medoff G, Valeriote F, Little J R, . Antitumor effects of amphotericin B. Progress in Cancer Research and Therapy, Vol. 16, Augmenting Agents in Cancer Therapy, E M Hersh, M A Chirigos, M I Mastrangelo, et al. Raven Press, New York 1981; 479–495
  • Friedman R M. Antiviral activity of interferons. Bacteriol Rev 1977; 41: 543–567
  • Gresser I, Tovey M G. Antitumor effects of interferon. Biochim Biophys Acta 1978; 516: 231–247
  • Pfeffer L M, Landsberger F R, Tamm I. Beta-interferon-induced time-dependent changes in the plasma membrane lipid bilayer of cultured cells. J Interferon Res 1981; 1: 613–620
  • Chandrabose K, Cuatrecasas P, Pottathil R. Changes in fatty acyl chains of phospholipids induced by interferon in mouse sarcoma S-180 cells. Biochem Biophys Res Comm 1981; 98: 661–668
  • Pfeffer L M, Wang E, Tamm I. Interferon inhibits the redistribution of cell surface components. J Exp Med 1980; 152: 469–474
  • Chang E H, Jay F T, Friedman R M. Physical, morphological and biochemical alterations in the membrane of AKR mouse cells after interferon treatment. Proc Natal Acad Sci (USA) 1978; 75: 1859–1863
  • Grimley P M, Aszalos A. Early plasma membrane depolarization by alpha interferon: biologic correlation with antiproliferative signal. Biochem Biophys Res Comm 1987; 146: 300–306
  • Knight E, Korant B D. A cell surface alteration in mouse L cells induced by interferon. Biochem Biophys Res Comm 1977; 74: 707–713
  • Burns C P, Spector A A. Membrane fatty acid modification in tumor cells: A potential therapeutic adjunct. Lipid 1987; 22: 178–184
  • Spector A A, Bums C P. Perspectives in cancer research-Biological and therapeutic potential of membrane lipid modification in tumors. Cancer Res 1987; 47: 4529–4537
  • Brcnneman D E, Kaduce T, Spector A A. Effect of dietary fat saturation on acylcoenzyme A: cholesterol acyltransferase activity of Ehrlich cell microsomes. J Lipid Res 1977; 18: 582–591
  • Burns C P, North J A, Mossman C J, et al. Modification of the fatty acid composition of L1210 leukemia subcellular organelles. Lipids 1988; 23: 615–618
  • Kaduce T L, Awad A B, Fontenelle L I, et al. Effect of fatty acid saturation on α-aminoisobutyric acid transport in Ehrlich ascites cells. J Biol Chem 1977; 252: 6624–6630
  • Burns C P, Luttenegger D G, Dudley D T, et al. Effect of modification of plasma membrane fatty acid composition on fluidity and methotrexate transport in L1210 murine leukemia cells. Cancer Res 1979; 39: 1726–1732
  • King M E, Spector A A. Effect of specific fatty acyl enrichments on membrane physical properties detected with a spin label probe. J Biol Chem 1978; 253: 6493–6501
  • Gould R J, Ginsberg B H, Spector A A. Lipid effects on the binding properties of a reconstituted insulin receptor. J Biol Chem 1982; 257: 477–484
  • Love J A, Saum W R, McGee R. The effects of exposure to exogenous fatty acids and membrane fatty acid modification on the electrical properties of NG108–15 cells. Cell Mol Neurobiol 1985; 5: 333–352
  • Levine L, Worth N. Eicosapentaenoic acid: Its effects on arachidonic acid metabolism by cells in culture. J Allergy Clin Immunol 1984; 74: 430–436
  • Bums C P, Dudley D T. Temperature dependence and effect of membrane lipid alteration on melphalan transport in L1210 murine leukemia cells. Biochem Pharmacol 1982; 31: 2116–2119
  • Burns C P, North J A. Adriamycin transport and sensitivity in fatty acid-modified leukemic cells. Biochim Biophys Acta 1986; 888: 10–17
  • Burns C P, Luttenegger D G, Spector A A. Effect of dietary fat saturation on survival of mice with L1210 leukemia. J Natl Cancer Inst 1978; 61: 513–515
  • Guffy M M, North J A, Burns C P. Effect of cellular fatty acid alteration on Adriamycin sensitivity in cultured L1210 leukemia cells. Cancer Res 1984; 44: 1863–1866
  • Grundy S M, Ahrens E H, Jr. The effects of unsaturated dietary fats on absorption, excretion, synthesis, and distribution of cholesterol in man. J Clin Invest 1970; 49: 1135–1152
  • Lee T H, Hoover R L, Williams J D, et al. Effect of dietary enrichment with eicosapentaenoic and docosahexaenoic acids on in vitro neutrophil and monocyte leukotriene generation and neutrophil function. N Engl J Med 1985; 312: 1217–1224
  • Burns C P, Rosenberger J A, Luttenegger D G. Selectivity in modification of the fatty acid composition of normal mouse tissues and membranes in vivo. Ann Nutr Metab 1983; 27: 268–277

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.