147
Views
85
CrossRef citations to date
0
Altmetric
Original Article

Role of Fibronectin in Adhesion, Migration, and Metastasis

, , &
Pages 373-393 | Published online: 11 Jun 2009

References

  • Hynes R. Molecular biology of fibronectin. Ann Rev Cell Biol 1985; 1: 67–90
  • Ruoslahti E, Pierschbacher M D. Arg-Gly-Asp: A versatile cell recognition signal. Cell 1986; 44: 517–518
  • Akiyama S K, Yamada K M. Fibronectin. Advances in Enzymology and Related Areas of Molecular Biology, A Meister. John Wiley & Sons, Inc., New York 1987; 1–57
  • Humphries M J, Yamada K M. Cell interaction sites of fibronectin in adhesion and metastasis. The Cell in Contact: Adhesions and Junctions as Morphogenetic Determinants, G M Edelman, J P Thiery. John Wiley & Sons, Inc., New York 1988; Vol. II
  • Alexander S S, Colonna G, Yamada K M, et al. Molecular properties of a major cell surface protein from chick embryo fibroblasts. J Biol Chem 1978; 235: 5820–5824
  • Colonna G, Alexander S S, Yamada K M, et al. The stability of cell surface protein to surfactants and denaturants. J Biol Chem 1978; 253: 7787–7790
  • Petersen T E, Thogerson H C, Skorstengaard K, et al. Partial primary structure of bovine plasma fibronectin: Three types of internal homology. Proc Natl Acad Sci (USA) 1983; 80: 137–141
  • Schwarzbauer J E, Tamkun J W, Lemischka I R, et al. Three different fibronectin mRNAs arise by alternative splicing within the coding region. Cell 1983; 35: 421–431
  • Kornblihtt A R, Vibe-Pedersen K, Baralle F E. Human fibronectin: Cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats. Nucleic Acids Res 1984; 12: 5853–5868
  • Kornblihtt A R, Umezawa K, Vibe-Pedersen K, et al. Primary structure of human fibronectin: Differential splicing may generate at least 10 polypeptides from a single gene. EMBO J 1985; 4: 1755–1759
  • Odermatt E, Tamkun J W, Hynes R O. The repeating modular structure of the fibronectin gene: Relationship to protein structure and subunit variation. Proc Natl Acad Sci (USA) 1985; 82: 6571–6575
  • Skorstengaard K, Jensen M S, Sahl P, et al. Complete primary structure of bovine plasma fibronectin. Eur J Biochem 1986; 161: 441–453
  • Bernard M P, Kolbe M, Weil D, et al. Human cellular fibronectin: Comparison of the carboxyl-terminal portion with rat identifies primary structural domains separated by hypervariable regions. Biochemistry 1985; 24: 2698–2704
  • Zardi L, Carnemolla B, Siri A, et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J 1987; 6: 2337–2342
  • Gutman A, Kornblihtt A R. Identification of a third region of cell-specific alternative splicing in human fibronectin mRNA. Proc Natl Acad Sci (USA) 1987; 84: 7179–7182
  • Norton P A, Hynes R O. Alternative splicing of chicken fibronectin in embryos and in normal and transformed cells. Mol Cell Biol 1987; 7: 4297–4307
  • Tamkun J W, Schwarzbauer J E, Hynes R O. A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc Natl Acad Sci (USA) 1984; 81: 5140–5144
  • Vibe-Pedersen K, Magnusson S, Baralle F E. Donor and acceptor splice signals within an exon of the human fibronectin gene: A new type of differential splicing. FEBS Lett 1986; 207: 287–291
  • Umezawa K, Kornblihtt A R, Baralle F E. Isolation and characterization of cDNA clones for human liver fibronectin. FEBS Lett 1985; 186: 31–34
  • Sekiguchi K, Alos A M, Kurachi K, et al. Human liver fibronectin complementary DNAs: Identification of two different messenger RNAs possibly encoding the alpha and beta subunits ofs plasma fibronectin. Biochemistry 1986; 25: 4936–4941
  • Hahn L HE, Yamada K M. Isolation and biological characterization of active fragments of the adhesive glycoprotein fibronectin. Cell 1979; 18: 1043–1051
  • Ruoslahti E, Hayman E G. Two active sites with different characteristics in fibronectin. FEBS Lett 1979; 97: 221–224
  • McDonald J A, Kelley D G. Degradation of fibronectin by human leukocyte elastase. Release of biologically active fragments. J Biol Chem 1980; 255: 8848–8858
  • Sekiguchi K, Hakomori S. Functional domain structure of fibronectin. Proc Natl Acad Sci (USA) 1980; 77: 2661–2665
  • Ehrismann R, Chiquet M, Turner D C. Mode of action of fibronectin in promoting chicken myoblast attachment. Mr=60,000 gelatin-binding fragment binds native fibronectin. J Biol Chem 1981; 256: 4056–4062
  • Hayashi M, Yamada K M. Domain structure of the carboxyl-terminal half of human plasma fibronectin. J Biol Chem 1983; 258: 3332–3340
  • Pierschbacher M D, Hayman E G, Ruoslahti E. Location of the cell attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell 1981; 26: 259–267
  • Pierschbacher M D, Ruoslahti E, Sundelin J, et al. The cell attachment domain of fibronectin. Determination of the primary structure. J Biol Chem 1982; 257: 9593–9597
  • Pierschbacher M D, Hayman E G, Ruoslahti E. Synthetic peptide with cell attachment activity of fibronectin. Proc Natl Acad Sci (USA) 1983; 80: 1224–1227
  • Pierschbacher M D, Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984; 309: 30–33
  • Yamada K M, Kennedy D W. Dualistic nature of adhesive protein function: Fibronectin and its biologically active peptide fragments can autoinhibit fibronectin function. J Cell Biol 1984; 99: 29–36
  • Yamada K M, Kennedy D W. Amino acid sequence specificities of an adhesive recognition signal. J Cell Biochem 1985; 28: 99–104
  • Akiyama S K, Yamada K M. The interaction of plasma fibronectin with fibroblastic cells in suspension. J Biol Chem 1985; 260: 4492–4500
  • Akiyama S K, Hasegawa E, Hasegawa T, et al. The interaction of fibronectin fragments with fibroblastic cells. J Biol Chem 1985; 260: 13256–13260
  • Akiyama S K, Yamada K M. Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin. J Biol Chem 1985; 260: 10402–10405
  • Pierschbacher M D, Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci (USA) 1984; 81: 5985–5988
  • Hayman E G, Pierschbacher M D, Ruoslahti E. Detachment of cells from culture substrate by soluble fibronectin peptides. J Cell Biol 1985; 100: 1948–1954
  • Silnutzer J E, Barnes D W. Effects of fibronectin-related peptides on cell spreading. In Vitro Cell Dev Biol 1985; 21: 73–78
  • Pierschbacher M D, Ruoslahti E. Influence of stereochemistry of the sequence Arg-Gly-Asp-Xaa on binding specificity in cell adhesion. J Biol Chem 1987; 262: 17294–17298
  • Obara M, Kang M S, Rocher-Dufour S, et al. Expression of the cell-binding domain of human fibronectin in E. coli. FEBS Lett 1987; 213: 261–264
  • Obara M, Kang M S, Yamada K M. Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 1988; 53: 649–657
  • Boucaut J C, Darribere T, Poole T J, et al. Biologically active synthetic peptides as probes of embryonic development: A competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol 1984; 99: 1822–1830
  • Boucaut J C, Darribere T, Li S D, et al. Evidence for the role of fibronectin in amphibian gastrulation. J Embryol Exp Morphol 1985; 89: 211–227
  • Savagner P, Imhof B A, Yamada K M, et al. Homing of hemopoietic precursor cells to the embryonic thymus: Characterization of an invasive mechanism induced by chemotactic peptides. J Cell Biol 1986; 103: 2715–2727
  • Naidet C, Semeriva M, Yamada K M, et al. Peptides containing the cell-attachment recognition signal Arg-Gly-Asp prevent gastrulation in Drosophila embryos. Nature 1987; 325: 348–350
  • Humphries M J, Akiyama S K, Komoriya A, et al. Identification of an alternatively spliced site in human plasma fibronectin that mediates cell type-specific adhesion. J Cell Biol 1986; 103: 2637–2647
  • Humphries M J, Komoriya A, Akiyama S K, et al. Identification of two distinct regions of the type IJJ connecting segment of human plasma fibronectin that promote cell type-specific adhesion. J Biol Chem 1987; 262: 6886–6892
  • Humphries M J, Akiyama S K, Komoriya A, et al. Neurite extension of chicken peripheral nervous system neurons on fibronectin: Relative importance of specific adhesion sites in the central cell-binding domain and the alternatively-spliced type III connecting segment. J Cell Biol 1988; 106: 1289–1297
  • McCarthy J B, Hagen S T, Furcht L T. Human fibronectin contains distinct adhesion- and motility-promoting domains for metastatic melanoma cells. J Cell Biol 1986; 102: 179–188
  • Pouyssegur J, Willingham M, Pastan I. Role of cell surface carbohydrates and proteins in cell behavior: Studies on the biochemical reversion of an N-acetylglucosamine-deficient fibroblast mutant. Proc Natl Acad Sci (USA) 1977; 74: 243–247
  • Ali I U, Hynes R O. Effect of LETS glycoprotein on cell motility. Cell 1978; 14: 439–446
  • Yamada K M, Olden K, Pastan I. Transformation-sensitive cell surface protein: Isolation, characterization, and role in cellular morphology and adhesion. Ann NY Acad Sci 1978; 312: 256–277
  • Chouchman J R, Rees D A, Green M R, et al. Fibronectin has a dual role in locomotion and anchorage of perimary chick fibroblasts and can promote entry into the division cycle. J Cell Biol 1982; 93: 402–410
  • Rovasio R A, Delouvee A, Yamada K M, et al. Neural crest cell migration: Requirement for exogenous fibronectin and high cell density. J Cell Biol 1983; 96: 462–473
  • Gauss-Muller V, Kleinman H K, Martin G R, et al. Role of attachment factors and attractants in fibroblast chemotaxis. J Lab Clin Med 1980; 96: 1071–1080
  • Postlethwaite A E, Keski-Oja J, Balian G, et al. Induction of fibroblast chemotaxis by fibronectin. Localization of the chemotactic region to a 140,000-molecular weight non-gelatin-binding fragment. J Exp Med 1981; 153: 494–499
  • Seppa H E, Yamada K M, Seppa S T, et al. The cell binding fragment of fibronectin is chemotactic for fibroblasts. Cell Biol Int Rep 1981; 5: 813–819
  • Albini A, Allavena G, Melchiori A, et al. Chemotaxis of 3T3 and SV3T3 cells to fibronectin is mediated through the cell-attachment site in fibronectin and a fibronectin cell surface receptor. J Cell Biol 1987; 105: 1867–1872
  • McCarthy J B, Furcht L T. Laminin and fibronectin promote the haptotactic migration of B16 mouse melanoma cells in vitro. J Cell Biol 1984; 98: 1474–1480
  • Grinnell F. Fibronectin and wound healing. J Cell Biochem 1984; 26: 107–116
  • Critchley D R, England M A, Wakely J L, et al. Distribution of fibronectin in the ectoderm of gastrulating chick embryos. Nature 1979; 280: 498–500
  • Newgreen D, Thiery J P. Fibronectin in early avian embryos: Synthesis and distribution along the migration pathways of neural crest cells. Cell Tissue Res 1980; 211: 269–291
  • Mayer B W, Hay E D, Hynes R O. Immunocytochemical localization of fibronectin in embryonic chick trunk and area vasculosa. Dev Biol 1981; 82: 267–286
  • Duband J L, Thiery J P. Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev Biol 1982; 93: 308–323
  • Thiery J P, Duband J L. Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol 1982; 93: 324–343
  • Duband J L, Thiery J P. Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation. Dev Biol 1982; 94: 337–350
  • Boucaut J C, Darribere T. Fibronectin in early amphibian embryos. Migrating mesodermal cells contact fibronectin established prior to gastrulation. Cell Tissue Res 1983; 234: 135–145
  • Bronner-Fraser M. Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J Cell Biol 1985; 101: 610–617
  • Greve J M, Gottlieb D I. Monoclonal antibodies which alter the morphology of cultured chick myogenic cells. J Cell Biochem 1982; 18: 221–230
  • Neff N T, Lowrey C, Decker C, et al. A monoclonal antibody detaches embryonic skeletal muscle from extracellular matrices. J Cell Biol 1982; 95: 654–666
  • Chapman A E. Characterization of a 140 kD cell surface glycoprotein involved in myoblast adhesion. J Cell Biochem 1994; 25: 109–121
  • Decker C, Greggs R, Duggan K, et al. Adhesive multiplicity in the interaction of embryonic fibroblasts and myoblasts with extracellular matrices. J Cell Biol 1984; 99: 1398–1404
  • Hasegawa T, Hasegawa E, Chen W T, et al. Characterization of a membrane-associated glycoprotein complex implicated in cell adhesion to fibronectin. J Cell Biochem 1985; 28: 307–318
  • Knudsen K A, Horwitz A, Buck C A. A monoclonal antibody identifies a glycoprotein complex involved in cell-substratum adhesion. Exp Cell Res 1985; 157: 218–226
  • Chen W T, Hasegawa E, Hasegawa T, et al. Development of cell surface linkage complexes in cultured fibroblasts. J Cell Biol 1985; 100: 1103–1114
  • Horwitz A, Duggan K, Greggs R, et al. Cell substrate attachment (CSAT) antigen has properties of a receptor for laminin and fibronectin. J Cell Biol 1985; 103: 2134–2144
  • Akiyama S K, Yamada S S, Yamada K M. Characterization of a 140 kD avian cell surface antigen as a fibronectin-binding molecule. J Cell Biol 1986; 102: 442–448
  • Pytela R, Pierschbacher M D, Ruoslahti E. Identification and isolation of a 140 kD cell surface glycoprotein with properties expected of a fibronectin receptor. Cell 1985; 40: 191–198
  • Brown P, Juliano R L. Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell surface glycoprotein. Science 1985; 228: 1448–1451
  • Patel V P, Lodish H F. The fibronectin receptor on mammalian erythroid precursor cells: Characterization and developmental regulation. J Cell Biol 1986; 102: 449–456
  • Giancotti F G, Comoglio P M, Tarone G. A 135,000 molecular weight plasma membrane glycoprotein involved in fibronectin-mediated cell adhesion. Exp Cell Res 1986; 163: 47–62
  • Giancotti F G, Comoglio P M, Tarone G. Fibronectin-plasma membrane interaction in the adhesion of hemopoietic cells. J Cell Biol 1986; 103: 429–437
  • Cardarelli P M, Pierschbacher M D. Identification of fibronectin receptors on T lymphocytes. J Cell Biol 1987; 105: 499–506
  • Springer T A, Dustin M L, Kishimoto T K. The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: Cell adhesion receptors of the immune system. Annu Rev Immunol 1987; 5: 223–252
  • Hynes R O. Integrins: A family of cell surface receptors. Cell 1987; 48: 549–554
  • Buck C A, Horwitz A F. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol 1987; 3: 179–205
  • Ruoslahti E, Pierschbacher M D. New perspectives in cell adhesion: RGD and integrins. Science 1987; 238: 491–497
  • Yamada K M. Fibronectin domains and receptors. Fibronectin, D F Mosher. Academic, New York, in press
  • Hemler M E, Jacobson J G, Strominger J L. Biochemical characterization of VLA-1 and VLA-2 cell surface heterodimers on activated T cells. J Biol Chem 1985; 260: 15246–15252
  • Hemler M E, Huang C, Schwarz L. The VLA protein family. Characterization of five distinct cell surface heterodimers each with a common 130,000 molecular weight beta subunit. J Biol Chem 1987; 262: 3300–3309
  • Pytela R, Pierschbacher M D, Ruoslahti E. A 125/115 kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci (USA) 1985; 82: 5766–5770
  • Phillips D R, Agin P. Platelet plasma membrane glycoproteins. J Biol Chem 1977; 252: 2121–2126
  • Ginsberg M H, Pierschbacher M D, Ruoslahti E, et al. Inhibition of fibronectin binding to platelets by proteolytic fragments and synthetic peptides which support fibroblast adhesion. J Biol Chem 1985; 260: 3931–3936
  • Gardner J M, Hynes R O. Interaction of fibronection with its receptor on platelets. Cell 1985; 42: 439–448
  • Hildreth J EK, Gotch F M, Hildreth P DK, et al. A human lymphocyte-associated antigen involved in cell-mediated lympholysis. Eur J Immunol 1982; 13: 202–208
  • Sanchez-Madrid F, Krensky A M, Ware C F, et al. Three distinct antigens associated with human T lymphocyte-mediated cytolysis: LFA-1, LFA-2 and LFA-3. Proc Natl Acad Sci (USA) 1982; 79: 7489–7493
  • Springer T A, Galfre G, Secher D S, et al. Mac-1: A macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol 1979; 9: 301–306
  • Wright S D, Rao P E, Van Voorhis W C, et al. Identification of the C3bi receptor of human monocytes and macrophages by using monoclonal antibodies. Proc Natl Acad Sci (USA) 1983; 80: 5699–5703
  • Sanchez-Madrid F, Nagy J A, Robbins E, et al. A human leukocyte differentiation antigen family with distinct alpha subunits and a common beta subunit: The lymphocyte function-associated antigen (LFA-1), the C3bi complement receptor (OKM1/Mac-1), and the p 150,95 molecule. J Exp Med 1983; 158: 1785–1803
  • Argraves W S, Suzuki S, Arai H, et al. Amino acid sequence of the human fibronectin receptor. J Cell Biol 1987; 105: 1183–1190
  • Fitzgerald L A, Poncz M, Steiner B, et al. Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha-subunits and platelet glycoprotein lib. Biochemistry, (in press)
  • Tamkun J W, DeSimone D W, Fonda D, et al. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 1986; 46: 271–282
  • Takada Y, Strominger J L, Hemler M E. The very late antigen family of heterodimers is part of a superfamily of molecules involved in adhesion and embryogenesis. Proc Natl Acad Sci (USA) 1987; 84: 3239–3243
  • Takada Y, Huang C, Hemler M E. Fibronectin receptor structures within the VLA family of heterodimers. Nature 1987; 326: 607–609
  • Suzuki S, Argraves W S, Arai H, et al. Amino acid sequence of the vitronectin receptor alpha subunit and comparative expression of adhesion receptor mRNAs. J Biol Chem 1987; 262: 14080–14085
  • Poncz M, Eisman R, Heidenreich R, et al. Structure of the platelet membrane glycoprotein lib. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem 1987; 262: 8476–8482
  • Fitzgerald L A, Steiner B, Rail S C, et al. Protein sequence of endothelial glycoprotein Ilia derived from a cDNA clone. Identity with platelet glycoprotein Ilia and similarity to “integrin.” J Biol Chem 1987; 262: 3936–3939
  • Sastre L, Roman J M, Teplow D B, et al. A partial genomic DNA clone for the alpha subunit of the mouse complement receptor type 3 and cellular adhesion molecule Mac-1. Proc Natl Acad Sci (USA) 1986; 83: 5644–5648
  • Miller L J, Wiebe M, Springer T A. Purification and alpha subunit N-terminal sequences of human Mac-1 and p150,95 leukocyte adhesion proteins. J Immunol 1987; 138: 2381–2383
  • Kishimoto T K, O'Connor K, Lee A, et al. Cloning of the beta subunit of the leukocyte adhesion proteins: Homology to an extracellular matrix receptor defines a novel supergene family. Cell 1987; 48: 681–690
  • Law S K, Gagnon J, Hildreth J E, et al. The primary structure of the beta-subunit of the cell surface adhesion glycoproteins LFA-1, CR3 and p150.95 and its relationship to the fibronectin receptor. EMBO J 1987; 6: 915–919
  • Leptin M, Aebersold R, Wilcox M. Drosophila position-specific antigens resemble the vertebrate fibronectin-receptor family. EMBO J 1987; 6: 1037–1043
  • Duband J L, Rocher S, Chen W T, et al. Cell adhesion and migration in the early vertebrate embryo: Location and possible role of the putative fibronectin receptor complex. J Cell Biol 1986; 102: 160–178
  • Krotoski D M, Domingo C, Bronner-Fraser M. Distribution of a putative cell surface receptor for fibronectin and laminin in the avian embryo. J Cell Biol 1986; 103: 1061–1071
  • Chen W T, Chen J M, Mueller S C, et al. Coupled expression and colocalization of 140K cell adhesion molecules, fibronectin, and laminin during morphogenesis and cytodifferentiation of chick lung cells. J Cell Biol 1986; 103: 1073–1090
  • Bronner-Fraser M. An antibody to a receptor for fibronectin and laminin perturbs cranial neural crest development in vivo. Dev Biol 1986; 117: 528–536
  • Donaldson D J, Mahan J T, Smith G N. Newt epidermal cell migration in vitro and in vivo appears to involve Arg-Gly-Asp-Ser receptors. J Cell Sci 1987; 87: 525–534
  • Nuckolls G H, Duband J L, Ishihara A, et al. Measurements of the lateral motion of integrin on motile and stationary cells. J Cell Biol 1987; 105: 48a
  • Tumor Invasion and Metastasis, L A Liotta, I R Hart. Martinus Nijhoff, Boston 1982
  • Cancer Invasion and Metastasis: Biologic and Therapeutic Aspects, G L Nicolson, L Milas. Raven Press, New York 1984
  • Schirrmacher V. Cancer metastasis: Experimental approaches, theoretical concepts and impact for treatment strategies. Adv Cancer Res 1985; 43: 1–73
  • Principles of Metastasis, L Weiss. Academic, Orlando 1985
  • Poste G. Pathogenesis of metastatiac disease: Implications for current therapy and for the development of new therapeutic strategies. Cancer Treat Rep 1986; 70: 183–199
  • Mechanisms of Cancer Metastasis: Potential Therapeutic Implications, K V Honn, W E Powers, B F Sloane. Martinus Nijhoff, Boston 1986
  • Fidler I J, Gersten D M, Hart I R. The biology of cancer invasion and metastasis. Adv Cancer Res 1978; 28: 149–250
  • Nicolson G L. Cancer metastasis. Organ colonization and the cell-surface properties of malignant cells. Biochim Biophys Acta 1982; 695: 113–176
  • McCarthy J B, Basara M L, Palm S L, et al. The role of cell adhesion proteins-laminin and fibronectin-in the movement of malignant and metastatic cells. Cancer Metastasis Rev 1985; 4: 125–152
  • Liotta L A, Rao C N, Wewer U M. Biochemical interactions of tumor cells with the basement membrane. Ann Rev Biochem 1986; 55: 1037–1057
  • Nicolson G L. Tumor cell instability, diversification, and progression to the metastatic phenotype: From oncogene to oncogetal expression. Cancer Res 1987; 47: 1473–1487
  • Reich E. Activation of plasminogen: A general mechanism for producing localized extracellular proteolysis. Molecular Basis of Biological Degradative Processes, R D Berlin, H Herrmann, I H Lepow, J M Tanzer. Academic, New York 1978; 155–169
  • Liotta L A, Thorgeirsson U P, Garbisa S. Role of collagenases in tumor cell invasion. Cancer Metastasis Rev 1982; 1: 277–288
  • Goldfarb R H, Liotta L A. Proteolytic enzymes in cancer invasion and metastasis. Semin Thromb Hemost 1986; 12: 294–307
  • Nakajima M, Welch D R, Irimura T, et al. Basement membrane degradative enzymes as possible markers of tumor metastasis. Prog Clin Biol Res 1986; 212: 113–122
  • Albrechtsen R, Wewer U M, Liotta L A. Basement membranes in human cancer. Pathol Ann 1986; 21: 251–276
  • Wang B S, McLoughlin G A, Ritchie J P, et al. Correlation of the production of plasminogen activator with tumor metastasis in B16 mouse melanoma cell lines. Cancer Res 1980; 40: 288–292
  • Sloane B F, Dunn J R, Honn K V. Lysosomal cathepsin B: Correlation with metastatic potential. Science 1981; 212: 1151–1153
  • Weiss L, Ward P M. Cell detachment and metastasis. Cancer Metastasis Rev 1983; 2: 111–127
  • Terranova V P, Hie S, Diflorio R M, et al. Tumor cell metastasis. CRC Crit Rev Oncol Hematol 1986; 5: 87–114
  • Fidler I J. Metastasis: Quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst 1970; 45: 773–782
  • Hanna N. The role of natural killer cells in control of tumor growth and metastasis. Biochim Biophys Acta 1985; 780: 213–226
  • Herberman R B. Natural killer cells. Ann Rev Med 1986; 37: 347–352
  • Roder J, Duwe A. The beige mutation in the mouse selectively impairs natural killer cell function. Nature 1979; 278: 451–453
  • Hanna N, Fidler I J. Role of natural killer cells in the destruction of circulating tumor emboli. J Natl Cancer Inst 1980; 65: 801–809
  • Gasic G J. Role of plasma, platelets, and endothelial cells in tumor metastasis. Cancer Metastasis Rev 1984; 3: 99–116
  • Terranova V P, Hujanen E S, Martin G R. Basement membrane and the invasive activity of metastatic tumor cells. J Natl Cancer Inst 1986; 77: 311–316
  • Knisely W H, Mahaley M S. Relationship between size and distribution of “spontaneous” metastases and three sizes of intravenously injected VX2 caracinoma. Cancer Res 1958; 18: 900–905
  • Fidler I J. The relationship of embolic homogeneity, number, size, and viability to the incidence of experimental metastasis. Eur J Cancer 1973; 9: 233–237
  • Liotta L A, Kleinerman J, Saidel G M. The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 1976; 36: 889–894
  • Gasic G J, Tuszynski G P, Gorelik E. Interaction of the hemostatic and immune systems in the metastatic spread of tumor cells. Int Rev Exp Pathol 1986; 29: 173–212
  • Gasic G J, Gasic T B, Galanti N, et al. Platelet-tumor cell interactions in mice: The role of platelets in the spread of malignant disease. Int J Cancer 1973; 11: 704–718
  • Pearlstein E, Salk P L, Yogeeswaran G, et al. Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line. Proc Natl Acad Sci (USA) 1980; 77: 4336–4339
  • Honn K V, Cavanaugh P, Evens C, et al. Tumor cell-platelet aggregation induced by cathepsin B-like protease and inhibited by prostacyclin. Science 1982; 217: 540–542
  • Fidler I J. General considerations for studies of experimental metastasis. Methods Cancer Res 1978; 15: 399–439
  • Fidler D. Selection of successive tumor lines for metastasis. Nature New Biol 1973; 242: 148–149
  • Butler T, Gullino P. Quantitation of cell-shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975; 35: 512–517
  • Humphries M J, Olden K, Yamada K M. A synthetic peptide from fibronectin inhibits experimental metastasis of murine melanoma cells. Science 1986; 233: 467–470
  • Fidler I J, Poste G. The cellular heterogeneity of malignant neoplasms: Implications for adjuvant chemotherapy. Semin Oncol 1985; 12: 207–221
  • Fidler I J. Review: Biologic heterogeneity of cancer metastases. Breast Cancer Res Treat 1987; 9: 17–26
  • Humphries M J, Yamada K M, Olden K. Investigation of the biological effects of anti-cell adhesive synthetic peptides that inhibit experimental metastasis of B16-F10 murine melanoma cells. J Clin Invest, (in press)
  • McCoy J P, Lloyd R V, Wicha M S, et al. Identification of a laminin-like substance on the surface of high-malignant murine fibrosaracoma cells. J Cell Sci 1984; 65: 139–151
  • Malinoff H L, McCoy J P, Varani J, et al. Metastatic potential of murine fibrosarcoma cells is influenced by cell surface laminin. Int J Cancer 1984; 33: 651–655
  • Vlodavsky I, Gospodarowicz D. Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature 1981; 289: 304–306
  • Terranova V P, Liotta L A, Russo R G, et al. Role of laminin in the attachment and metastasis of murine tumor cells. Cancer Res 1982; 42: 2265–2269
  • McCarthy J B, Palm S L, Furcht L T. Migration by haptotaxis of a Schwann cell tumor line to the basement membrane glycoprotein laminin. J Cell Biol 1983; 97: 772–777
  • Situ R, Lee E C, McCoy J P, et al. Stimulation of murine tumour cell motility by laminin. J Cell Sci 1984; 70: 167–176
  • Barsky S H, Rao C N, Williams J E, et al. Laminin molecular domains which alter metastasis in a murine model. J Clin Invest 1984; 74: 843–848
  • Turpeeniemi-Hujanen T, Thorgeirsson U P, Rao C N, et al. Laminin increases the release of type IV collagenase from malignant cells. J Biol Chem 1986; 261: 1883–1889
  • Graf J, Iwamoto Y, Sasaki M, et al. Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis, and receptor binding. Cell 1987; 48: 989–996
  • Iwamoto Y, Robey F A, Graf J, et al. YIGSR, a synthetic laminin pentapeptide, inhibits experimental metastasis formation. Science 1987; 238: 1132–1134
  • Saga S, Chen W T, Yamada K T. Enhanced fibronectin receptor expression in Rous sarcoma virus-induced tumors. Cancer Res 1988; 48: 5510–5513
  • Akiyama S K, Yamada K M. Fibronectin in disease. Connective Tissue Diseases, D H Wagner. Williams and Wilkins, Baltimore 1983; 55–96
  • Humphries M J, Olden K, Yamada K M. Cell adhesion to fibronectin: Implications for tumor metastasis. Fibronectin in Health and Disease, S Carsons. CRC Press, New York, in press
  • Chen W T, Olden K, Bernard B A, et al. Expression of transformation-associated protease(s) that degrade fibronectin at cell contact sites. J Cell Biol 1984; 98: 1546–1555
  • Fairbairn S, Gilbert R, Ojakian G, et al. The extracellular matrix of normal chick embryo fibroblasts: Its effect on transformed chick fibroblasts and its proteolytic degradation by the transformants. J Cell Biol 1985; 101: 1790–1798
  • Sas D F, McCarthy J B, Furcht L T. Clearing and release of basement membrane proteins from substrates by metastatic tumor cell variants. Cancer Res 1986; 46: 3082–3089
  • Chen J M, Chen W T. Fibronectin-degrading proteases from the membranes of transformed cells. Cell 1987; 48: 193–203
  • Pollanen J, Hedman K, Nielsen L S, et al. Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J Cell Biol 1988; 106: 87–95
  • Fidler I J. Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer Metastasis Rev 1986; 5: 29–49
  • Vollmers H P, Birchmeier W. Monoclonal antibodies inhibit the adhesion of mouse B 16 melanoma cells in vitro and block lung metastasis in vivo. Proc Natl Acad Sci (USA) 1983; 80: 3729–3733
  • Vollmers H P, Birchmeier W. Monoclonal antibodies that prevent adhesion of B 16 melanoma cells and reduce metastases in mice: Crossreaction with human tumor cells. Proc Natl Acad Sci (USA) 1983; 80: 6863–6867
  • Vollmers H P, Imhof B A, Braun S, et al. Monoclonal antibodies which prevent experimental lung metastases. Interference with the adhesion of tumour cells to laminin. FEBS Lett 1984; 172: 17–20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.