18
Views
6
CrossRef citations to date
0
Altmetric
Miscellaneous Article

Lymphokine-Activated Killer Cells: Biology and Relevance to Disease

Pages 420-439 | Published online: 11 Jun 2009

References

  • Grimm E. A., Mazumber A., Zhang H. Z., et al. Lymphokine activated killer cell phenomenon. I. Lysis of natural killer resistant fresh solid tumor cells by interleukin-2 activated autologous human peripheral blood lymphocytes. J Exp Med 1982; 155: 1823–1841
  • Grimm E. A., Rosenberg S. A. The human lymphokine-activated killer cell phenomenon. Lymphokines, Vol 9, E. Pick. Academic Press, New York 1984; 279–311
  • Rosenberg S. A., Lotze M. T. Cancer immunotherapy using interleukin-2 activated lymphocytes. Annual Review of Immunology, Vol 4, W. E. Paul, C. G. Fathman, H. Metzger, Palo Alto, CA 1986; 681–709, Annual Reviews
  • Peace D. J., Kern D. E., Schultz K. R., et al. IL-4-induced lymphokine-activated killer cells: Lytic activity is mediated by phenolypically distinct natural killer-like and T cell-like large granular lymphocytes. J Immunol 1988; 140: 3679–3685
  • Mule J. J., Krosnick J. A., Rosenberg S. A. IL-4 regulation of murine lymphokine-activated killer activity in vitro: Effects on the IL-2-induced expansion, cytotoxicity and phenotype of LAK effectors. J Immunol 1989; 142: 726–733
  • Mule J. J., Smith K. A., Rosenberg S. A. Interleukin-4 (B cell stimulating factor-1) can mediate the induction of lymphokine activated killer cell activity directly against fresh tumor cells. J Exp Med 1987; 166: 792–804
  • Sone S., Utsugi T., Nii A., et al. Effects of human alveolar macrophages on the induction of lymphokine-activated killer cells. J Immunol 1987; 139: 29–34
  • Roth M. D., Golub S. H. Inhibition of lymphokine-activated killer cell function by human alveolar macrophages. Cancer Res 1989; 49: 4690–4695
  • Hiserodt J. C., Vujanovic N. L., Reynolds C. W., . Studies on lymphokine activated killer cells in the rat: Analysis of precursor and effector cell phenotype and relationship to natural killer cells. Cellular Immunotherapy of Cancer, R. L. Truitt, R. P. Gale, M. M. Bortin, et al. Alan R Liss, New York 1987; 137–146
  • Vujanovic N. L., Herberman R. B., Hiserodt J. C. Lymphokine-activated killer cells in rats: Analysis of tissue and strain distribution, ontogeny and target specificity. Cancer Res 1988; 48: 878–883
  • Djeu J., Blanchard K. Lysis of human monocytes by lymphokine activated killer cells. Cell Immunol 1988; 111: 55–65
  • Strominger J. L. Developmental biology of T cell receptors. Science 1989; 244: 943–950
  • Borst J., VandeGriend R. J., Van Oostveen J. W., et al. A T cell re-pector gamma/CD3 complex found on cloned functional lymphocytes. Nature 1987; 325: 683–687
  • Matus L. A., Fry A. M., Cron R. Q., et al. Structure and specificity of a class II MHC alloreactive gamma/delta T cell receptor heterodimer. Science 1989; 245: 746–749
  • Spits H., Paliard X., DeVries J. E. Antigen-specific, but not natural killer activity of T cell receptor gamma/delta cytotoxic T lymphocyte clones involves secretion of BTL-esterase and influx of Ca++ ions. J Immunol 1989; 143: 1506–1510
  • Fitzgerald-Bocarsky P., Herberman R. B., Hiserodt J. C., . A definition of natural killer cells. Natural Killer Cells and Host Defense, E. W. Ades, C. Lopez, et al. Karger, New York 1989; 13
  • Reynolds C. W., Bonyhardi M., Herberman R. B., et al. Lack of gene rearrangement and mRNA expression of the beta chain of the T cell receptor in spontaneous rat large granular lymphocyte leukemia lines. J Exp Med 1985; 161: 1249–1254
  • Lanier L. L., Cwirla S., Federspiel N., et al. Human natural killer cells isolated from peripheral blood do not rearrange T cell antigen receptor beta cain genes. J Exp Med 1986; 163: 209–218
  • Biron C. A., Vanden Elson P., Tutt M., et al. Murine natural killer cells stimulated in vivo do not express T cell receptor alpha, beta, gamma, T3 delta or T3 epsilon genes. J Immunol 1987; 139: 1704–1709
  • Tutt M., Kujiel W. A., Hackett J., et al. Murine natural killer cells do not express functional transcripts of the alpha, beta or gamma chain genes of the T cell receptor. J Immunol 1986; 137: 2998–3004
  • Ritz J., Campen J., Schmidt R. E., et al. Analysis of T cell receptor gene rearrangements and expression in human natural killer cell clones. Science 1985; 228: 1540–1541
  • Karre K., Ljunggren H., Prontek G., et al. Selective rejection of H-2 deficient lymphoma varients suggests an alternative immune defense strategy. Nature 1986; 319: 679–681
  • Gorelik E., Gunji Y., Herberman R. B. H-2 antigen expression and sensitivity of BL6 melanoma cells to natural killer cell cytotoxicity. J Immunol 1988; 140: 2096–2102
  • Henkart P. Mechanism of lymphocyte mediated cytotoxicity. Annual Review of Immunology, Vol 3, W. E. Paul, C. G. Fathman, H. Metzger, Palo Alto, CA 1985; 31–58, Annual Reviews
  • Ortaldo J. R., Hiserodt J. C. Mechanism of cytotoxicity by natural killer cells. Current Opinion in Immunology, H. J. Muller. Eberhard, London, 2: 39
  • Perussia B., Trinchieri G. Antibody 3G8, specific for human neu-trophil Fc receptor, reacts with natural killer cells. J Immunol 1984; 132: 1410–1415
  • Phillips J. H., Babcock G. F. NKP-15: A monoclonal antibody against purified human natural killer cells and granulocytes. Immunol Lett 1983; 6: 143–147
  • Hercend T., Griffen J. D., Bensussan, et al. Generation of monoclonal antibodies to human NK clones: Characterization of two NK associated antigens NKH1 and NKH2, expressed on subsets of large granular lymphocytes. J Clin Invest 1985; 75: 932–938
  • Koo G. C., Peppard J. R., Hatzfield A. Ontogeny of NK-1+ natural killer cells I. Proportion of NK-1 cells in fetal, baby and mice. J Immunol 1981; 10: 175–179
  • Kasai M., Iwamori M., Nasai Y., et al. A glycolipid on the surface of mouse natural killer cells. Eur J Immunol 1981; 10: 175–179
  • Chambers W. H., Vujanovic N. L., DeLeo A. B., et al. Monoclonal antibody to a triggering structure expressed on rat natural killer cells and adherent lymphokine-activated killer cells. J Exp Med 1989; 169: 1373–1379
  • Reynolds C. W., Sharrow S. O., Ortaldo J. R., et al. Natural killer activity on the rat. II. Analysis of surface antigens on LGL by flow cytometry. J Immunol 1981; 127: 2204–2210
  • Woda B. A., McFadden M. L., Walsh R. M., et al. Separation and isolation of rat natural killer cells from T cells with monoclonal antibodies. J Immunol 1984; 132: 2132–2186
  • Herberman R. B., Ortaldo J. R. Natural killer cells: Their roles in defense against disease. Science 1981; 214: 24–30
  • Hiserodt J. C., Herberman R. B. Natural killer cells and tumor immunity, 1989. The Year in Immunology, J. Cruse. Karger, New York 1989; 201–207
  • Grimm E. A., Ramsey K. M., Mazumder A., et al. Lymphokine activated killer cell phenomenon. II. The precursor cells are serologically distinct from peripheral T lymphocytes, memory CTL and NK cells. J Exp Med 1983; 157: 884–897
  • Ballas Z. K. Lymphokine activated killer (LAK) cells. I. Differential recovery of LAK, natural killer cells and cytotoxic T lymphocytes after a sublethal dose of cyclophosphamide. J Immunol 1986; 137: 2380–2389
  • Andriole G. L., Mul J. J., Hansen C. T., et al. Evidence that lymphokine activated killer cells and natural killer cells are distinct based on an analysis of congenitally immunodeficient mice. J Immunol 1985; 135: 2911–2913
  • Merluzzi V. J., Smith D. M., Last-Barney K. Similarities and distinctions between murine natural killer cells and lymphokine activated killer cells. Cell Immunol 1986; 100: 563–572
  • Ballas Z. K., Rasmussen W., VanOteghan J. K. Lymphokine activated killer cells. II. Delineation of distinct murine LAK precursor subpopulations. J Immunol 1986; 138: 1647–1652
  • Herberman R. B., Hiserodt J. C., Vujanovic N. K., et al. Lymphokine activated killer cell activity: Characteristics of effector cells and progenitor cells in blood and spleen. Immunol Today 1987; 8: 178–181
  • Ortaldo J. R., Mason A., Overton R. Lymphokine activated killer cells. Analysis of progenitors and effectors. J Exp Med 1986; 165: 1193–1205
  • Phillips J. H., Lanier L. L. Dissection of the lymphokine activated killer phenomenon. Relative contribution of peripheral blood natural killer cells and T lymphocytes to cytolysis. J Exp Med 1986; 164: 814–825
  • Itoh K., Tilten B., Kumagai K., et al. Leu 11+ lymphocytes with natural killer activity are precursors of recombinant interleukin-2 (rIL-2) induced activated killer cells. J Immunol 1985; 134: 802–807
  • Lanier L. L., Benika J., Phillips J. H., et al. Recombinant interleukin-2 enhanced natural killer cell mediated cytotoxicity in human lymphocyte subpopulations expressing Leu7 and Leul 1 antigens. J Immunol 1985; 134: 794–801
  • Schmidt R. E., Murray C., Daley J. F., et al. A subset of natural killer cells in peripheral blood displays a mature T cell phenotype. J Exp Med 1986; 164: 351–357
  • Lanier L. L., Kipps T. J., Phillips J. H. Functional properties of a unique subset of cytotoxic CD3+ T lymphocytes that express Fc receptors for IgG (CD16/Leull antigen). J Exp Med 1985; 163: 2089–2016
  • Anderson P. M., Blazar B., Bach F. H., et al. Anti-CD3 plus IL-2 stimulated murine killer cells. In vitro generation and in vivo anti-tumor activity. J Immunol 1989; 142: 1383–1394
  • Morris D. G., Pross H. F. Studies on lymphokine activated killer cells. Evidence using novel monoclonal antibodies that most human LAK precursor cells share in common surface marker. J Exp Med 1989; 169: 717–736
  • Shau H., Golub S. H. Depletion of NK cells with the lysosomotrophic agent L-leucine methyl ester and the in vitro generation NK activity from NK precursor cells. J Immunol 1985; 143: 1136–1141
  • Yang J. C., Mule J. J., Rosenberg S. A. Murine lymphokine activated killer (LAK) cells: Phenotypic characterization of the precursor and effector cells. J Immunol 1986; 137: 715–722
  • Salup R. R., Matheson B. J., Wiltrout R. H. Precursor phenotype of lymphokine activated killer (LAK) cells in the mouse. J Immunol 1987; 138: 3635–3639
  • Vujanovic N. K., Herberman R. B., Olszowy M. W., et al. Lymphokine activated killer cells in rats: Analysis of progenitor and effector cell phenotype and relationship to natural killer cells. Cancer Res 1988; 48: 884–890
  • Vujanovic N. K., Herberman R. B., Hiserodt J. C. Lymphokine activated killer cells in rats. II. A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine activated killer cells. J Exp Med 1988; 167: 15–29
  • Muul L. M., Director E. P., Hyatt C. L., et al. Large scale production of human lymphokine activated killer cells for use in adoptive immunotnerapy. J Immunol Methods 1986; 88: 625–634
  • Gunji Y., Vujanovic N. L., Hiserodt J. C., et al. Generation and characterization of purified adherent lymphokine activated killer cells in mice. J Immunol 1989; 142: 1748–1754
  • Chang H. L., Zaroukian M. H., Morrison M. H., et al. Adherent lymphokine activated natural killer cells in normal and SCID mice: Large granular lymphocytes with natural killer phenotype and high cytolytic activity. Nat Immun Cell Growth Regul 1989; 8: 89–99
  • Melder R. J., Whiteside T. L., Vujanovic N. L., et al. A new approach to generating anti-tumor effectors for adoptive immunotherapy using human adherent lymphokine activated killer cells. Cancer Res 1988; 48: 1461–1469
  • Schwarz R. E., Hiserodt J. C. The importance of splenectomy for the adoptive immunotherapy of cancer. Med Hypotheses 1989; 28: 165–168
  • Whiteside T. L., Wang Y. L., Selker R. S., et al. In vitro generation and anti-tumor activity of adherent lymphokine activated killer cells from the blood of patients with brain tumors. Cancer Res 1988; 48: 6069–6075
  • Timonen T., Ortaldo J. R., Herberman R. B. Characteristics of human large granular lymphocytes and relationship to natural killer cells and K cells. J Exp Med 1981; 153: 569–582
  • Itoh K., Suzaki R., Umeyu Y., et al. Studies on murine large granular lymphocytes. II. Tissue, strain, age and distributions of LGL and LAL. J Immunol 1982; 129: 395–399
  • Hackett J. M., Bennett M., Kumar V. Origin and differentiation of natural killer cells. I. Characteristics of a transplantable NK cells precursor. J Immunol 1985; 134: 3731–3735
  • Hackett J. M., Tutt M., Lipscomb M., et al. Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK1.1+ cells. J Immunol 1986; 136: 124–128
  • Shau H., Golub S. H. Depletion of NK cells with the iysoso-motrophic agent L-leucine methyl ester and the in vitro generation of NK activity from NK precursor cells. J Immunol 1985; 134: 1136–1140
  • Maghazachi A. A., Vujanovic N. K., Herberman R. B., et al. Lymphokine activated killer cells in rats. IV. Developmental relationships among large agranular lymphocytes, large granular lymphocytes and lymphokine activated killer cells. J Immunol 1988; 140: 2846–2852
  • Koo G. C., Peppard J. R., Lattine E. C. Characterization of cytotoxic cells generated for bone marrow culture. Cell Immunol 1986; 98: 172–181
  • Migliorati G., Cannarile L., Herberman R. B., et al. Role of IL-2 and hemopoietin-1 in the generation of mouse natural killer cells from primitive bone marrow precursors. J Immunol 1987; 138: 2618–2624
  • Kaltand T. Generation of natural killer cells from bone marrow precursors in vitro. Immunology 1986; 57: 493–504
  • Sarneva M., Vujanovic N. L., Van Den Brink M. RM, et al. Lymphokine activated killer cells in rats: Generation of natural killer cells and lymphokine activated killer cells from bone marrow progenitor cells. Cell Immunol 1989; 118: 448–457
  • Van Den Brink M. RM, Boggs S. S., Hiserodt J. C. Characterization of NK/LAK progenitor cells in long term rat bone marrow cultures. Nat Immun Cell Growth Regul 1989; 8: 124–126
  • Van Den Brink M. RM, Boggs S. S., Hiserodt J. C. The generation of natural killer cells from enriched progenitor cells in rat long term bone marrow cultures. J Exp Med 1990; 172: 303–313
  • Shau H., Shen D., Golub S. H. The role of transferrin receptors in natural killer cell and IL-2 induced cytotoxic cell function. Cell Immunol 1985; 112: 121–130
  • Shau H., Golub S. H. Inhibition of lymphokine activated killer and natural killer cytotoxicity by neutrophils. J Immunol 1989; 143: 1066–1072
  • Shau H., Golub S. H. Modulation of natural killer mediated lysis by red blood cells. Cell Immunol 1988; 116: 60–72
  • Owen-Schaub L. B., Gutterman J. U., Grimm E. A. Effect of tumor necrosis factor alpha and IL-2 in the generation of human lymphokine activated killer cell cytotoxicity. Cancer Res 1988; 48: 788–792
  • Ochoa A. C., Giomo G., Alter R. J., et al. Long term growth of LAK cells: Role anti-CD3, IL-1, interferon-gamma and beta. J Immunol 1987; 138: 2728–2732
  • Mule J. J., Schwarz S. L., Robert J., et al. Transforming growth factor beta inhibits the generation of lymphokine activated killer cells and cytotoxic T cells. Cancer Immunol Immunother 1988; 26: 95–103
  • Grimm E. A., Cruppin W. L., Durett A., et al. TGF-beta inhibits the induction of lymphokine activated killer activity. Cancer Immunol Immunother 1988; 27: 53–62
  • Greene W. C., Bohnlein E., Ballard D. W. HIV-1, HTLV-1 and normal T cell growth: Transcriptional strategies and surprises. Immunol Today 1989; 10: 272–278
  • Robb R. T., Rusk C. M., Yodi J., et al. Interleukin-2 binding molecules distinct from the Tac protein: Analysis of its role in formation of high-affinity receptors. Proc Natl Acad Sci USA 1987; 94: 2002–2006
  • Bich-Thuy L. T., Dakovich M., Peffer N. J., et al. Direct activation of human resting T cells by IL-2: The role of an IL-2 receptor distinct from the TAC protein. J Immunol 1987; 139: 1550–1556
  • Phillip J. H., Takeshita T., Sugamora K., et al. Activation of natural killer cells via the p75 interleukin-2 receptor. J Exp Med 1989; 170: 291–296
  • Hiserodt J. C., Chambers W. H. Role of soluble cytotoxic factors in lymphokine activated killer cell mediated cytotoxicity. Ann NY Acad Sci 1988; 532: 395–404
  • Hiserodt J. C. Some thoughts on the cytolytic activity of natural killer lymphocytes. Cancer Cells 1991; 3(12)530
  • Timonen T., Patrarroyo M., Gahmberg C. G. CDlla-c/CD18 and GP84 (LB-2) adhesion molecules on human large granular lymphocytes and their participation in natural killing. J Immunol 1988; 141: 1041–1046
  • Girodo R., Rudert W. A., Vavassori C., et al. NKR-P1, a novel signal transduction molecule on NK cells. Science 1990; 249: 1298–1301
  • Ryan J. C., Niemi E. C., Hiserodt J. C. NKR-PI, an activating molecule on rat NK cells, simulates phosphoinositide turnover and a rise in intracellular calcium. J Immunol 1991; 147: 3244–3250
  • Felgar R. E., Hiserodt J. C. Identification and partial characterization of a novel plasma membrane-associated lytic factor isolated from highly purified adherent lymphokine-activated killer cells. Cell Immunol 1992; 141: 32–46
  • DeFries R. U., Golub S. H. Interferon-gamma reduces the sensitivity of cultured and fresh human tumor cells to lysis by lymphokine activated killer cells. Nat Immun Cell Growth Regul 1988; 7: 65–76
  • Adler A., Chervenick P. A., Whiteside T. L., et al. IL-2 induction of LAK activity in acute leukemia patients. I. Feasibility of LAK generation in adult patients with active disease and in remission. Blood 1988; 71: 709–716
  • Hiserodt J. C., Van Den Brink M. RM, Schwarz R. E. Surface structures involved in target recognition by lymphokine activated killer cells. Interleukin-2 Activated Killer Cells, E. Lotzova, R. B. Herberman. CRC Press, Boca Raton, FL 1990; 351–361
  • Bukowski J. F., Biron C. A., Welsh R. M. Elevated natural killer cell mediated cytotoxicity, plasma interferon, and tumor cell rejection in mice persistently infected with lymphocytic choriomeningitis virus. Immunology 1983; 131: 991–997
  • Minato N., Bloom B. R., Jones C., et al. Mechanism of rejection of virus persistently infected tumor cells by athymic nude mice. J Exp Med 1979; 194: 1117–1128
  • Ojo E. Positive correlation between the levels of natural killer cells and the in vivo resistance to syngeneic tumor transplant as influenced by various routes of administration of Corynebacterium parvum bacteria. Cell Immunol 1979; 45: 182–190
  • Habu S., Fukui H., Shimamura K., et al. In vivo effects of antiasialo GMI I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol 1981; 127: 34–38
  • Pollack S. B., Hallenbeck L. A. In vivo reduction of NK activity with anti-NKl serum: Direct evaluation of NK cells in tumor clearance. Int J Cancer 1982; 29: 203–207
  • Pollack S. B. Direct evidence of anti-tumor activity by NK cells in vivo: Growth of B16 melanoma in anti-NK 1.1 treated mice. NK Cells and Other Natural Effector Cells, R. B. Herberman. Academic Press, New York 1982; 1347–1352
  • Seaman W. E., Sleisenger M., Koo G. C. Depletion of natural killer cells in mice by monoclonal antibody to NK-1.1 Reduction in host defense against malignancy without loss of cellular or humoral immunity. J Immunol 1987; 138: 4359–4546
  • Van Den Brink M. RM, Hunt L. E., Hiserodt J. C. In vivo treatment with monoclonal antibody 3.2.3 selectively eliminates natural killer cells in rats. J Exp Med 1990; 171: 197–209
  • Talmadge J. E., Meyers K. M., Prieur D. J. Role of NK cells in tumor growth metastasis in beige mice. Nature 1980; 284: 622–624
  • Gorelik I., Fogel M., Feldman D., et al. Differences in resistance of metastatic tumor cells and cells from local tumor growth to cytotoxicity of natural killer cells. JNCI 1979; 63: 1397–1402
  • Hanna N., Burton R. D. Definitive evidence that natural killer (NK) cells inhibit experimental tumor metastatic in vivo. J Immunol 1981; 127: 1754–1759
  • Barlozzarri T., Leonhardt J., Wiltrout R. H. Direct evidence for the role of LGL in the inhibition of experimental tumor me-tastases. J Immunol 1985; 134: 2783–2787
  • Mazumder A., Rosenberg S. A. Successful immunotherapy of NK-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin-2. J Exp Med 1984; 159: 495–507
  • La Freneire R., Rosenberg S. A. Successful immunotherapy of murine experimental hepatic metastases with lymphokine activated killer cells and recombinant interleukin-2. Cancer Res 1985; 45: 3735–3741
  • Mule J. J., Shu S., Schwarz S. L., et al. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant inierleukin-2. Science 1984; 225: 1487–1489
  • Rosenberg S. A. Adoptive immunotherapy of cancer using lymphokine activated killer cells and recombinant interleukin-2. Important Advances in Oncology, V. T. DeVita, S. Hell-Man, S. A. Rosenberg. Lippincott, Philadelphia 1986; 55–91
  • Salup R. R., Wiltrout R. H. Adjuvant immunotherapy of established murine renal cancer by interleukin-2 stimulated cytotoxic lymphocytes. Cancer Res 1986; 46: 3358–3363
  • Rosenberg S. A. A progress report on the treatment of 157 patients with advanced cancer using lymphokine activated killer cells and interleukin-2 or high dose interleukin-2 alone. N Engl J Med 1987; 316: 88–8987
  • Lotze Mt, Chang A. E., Seipp C. A., et al. High dose recombinant interleukin-2 in the treatment of patients with disseminated cancer: Responses, treatment related morbidity and histologic findings. JAMA 1986; 256: 3117–3124
  • Gemlo B. T., Palladino M. A., Jaffe H. S., et al. Circulating cytokines in patients with metastatic cancer treated with recombinant interleukin-2 and lymphokine activated killer cells. Cancer Res 1988; 48: 5864–5867
  • Kotasek D., Vercallotti G. M., Ochoa A. C., et al. Mechanisms of cultured endothelial injury by lymphokine activated killer cells. Cancer Res 1988; 48: 5528–5532
  • West W. H., et al. Constant infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987; 316: 898–905
  • Nishimura T., Togashi Goto M., et al. Augmentation of the therapeutic efficacy of adoptive tumor immunotherapy by in vivo administration of slowly released recombinant interleukin-2. Cancer Immunol Immunother 1986; 21: 12–18
  • Schoof D. D., Gramolini B. A., Davidson D. L., et al. Adoptive immunotherapy of human cancer using low dose recombinant interleukin-2 and lymphokine activated killer cells. Cancer Res 1988; 48: 5007–5010
  • Schwarz R. E., Hiserodt J. C. The importance of splenectomy for adoptive immunotherapy of cancer. Med Hypothesis 1989; 28: 165–168
  • Schwarz R. E., Vujanovic N. L., Hiserodt J. C. Enhanced antimeta-static activity of lymphokine activated killer cells purified and expanded by their adherence to plastic. Cancer Res 1989; 49: 1141–1446
  • Maghazachi A. A., Vujanovic N. L., Herberman R. B., et al. In vivo distribution and tissue localization of high purified rat lymphokine activated killer cells. Cell Immunol 1988; 115: 179–193
  • Rolstad B., Herberman R. B., Reynolds C. W. Circulation patterns and tissue localization of peripheral blood large granular lymphocyte (LGL). J Immunol 1986; 136: 2800–2808
  • Felgar R. E., Hiserodt J. C. In vivo migration patterns of highly purified adherent lymphokine activated killer cells in tumor bearing rats. Cell Immunol 1992; 141: 32
  • Hornung R. L., Salup R. R., Wiltrout R. H. Tissue distribution and localization of IL-2 activated killer cells after adoptive transfer in vivo. Interleukin-2 and Killer Cells in Cancer, E. Lotzova, R. B. Herberman. CRC Press, Boca Raton, FL 1990; 245–258
  • Basse P., Herberman R. B., Nannmark U. Accumulation of adoptively transferred adherent lymphokine-activated killer cells in murine metastases. J Exp Med 1991; 174: 479–488
  • Long G. S., Harnaha J., Hiserodt J. C., et al. Lymphokine activated killer cell purging of leukemic bone marrow prior to autologous bone marrow transplantation. Transplantation 1988; 46: 433–438
  • Van Den Brink M. RM, Voogt P. J., Marift W. AF, et al. Lymphokine activated killer cells selectively kill tumor cells in bone marrow without compromising bone marrow stem cell functions in vitro. Blood 1989; 74: 354–360
  • Van Den Brink M. RM, Voogt P. J., Long G. S., . LAK cells and autologous bone marrow transplantation: Towards a cure for leukemia. Interleukin-2 Activated Cells, E. Lotzova, R. B. Herberman, et al. CRC Press, Boca Raton, FL 1990; 219–233
  • Voogt P. J., Falkenberg J. H., Fibbe W. E., et al. Normal hematopoietic progenitor cells and malignant lymphohematopoietic cells show different susceptibility to direct cell melted MHC nonre-stricted lysis by TcR-/CD3-, TcR gamma/delta+/CD3 + and TcR alpha/beta+/CD3+ lymphocytes. J Immunol 1989; 142: 1779–1780
  • Long G. S., Cramer D. V., Hiserodt J. C. Lymphokine-activated killer cell purging of leukemic bone marrow: Range of activity against different hematopoietic neoplasms. Bone Marrow Transplant 1990; 8: 294–304
  • Bukowski J. F., Warner J., Dennert G., et al. Adoptive transfer studies demonstrating the antiviral effect of NK cells in vivo. J Exp Med 1985; 161: 40–52
  • Bukowski J. F. Antiviral effects of lymphokine activated killer cells. Natural Killer Cells and Host Defense, E. W. Ades, C. Lopex. Karger, Basel 1989; 131–135

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.