6
Views
5
CrossRef citations to date
0
Altmetric
Original Article

Retroviruses and Cancer: Models for Cancer in Animals and Humans

&
Pages 70-79 | Published online: 11 Jun 2009

References

  • RNA Tumor Viruses: Molecular Biology of Tumor Viruses, 2nd ed, R Weiss, N Teich, H Varmus, et al. Cold Spring Harbor Laboratory, New York 1985
  • Weiss RA. Retroviruses and human disease. J Clin Pathol 1987; 40: 1064–1069
  • Varmus H. Retroviruses. Science 1988; 240: 1427–1435
  • Coffin JM. Retroviridae and their replication. Fields Virology, BN. Fields, DM. Knipe. Raven Press, New York 1990; Vol 2: 1437–1500
  • Retrovirus Biology and Human Disease, RC Gallo, F Wong-Staal. Marcel Dekker, New York 1990
  • Rous P. An experimental comparison of transplanted tumor and a transplanted normal tissue capable of growth. J Exp Med 1910; 12: 544–366
  • Hu W-S., Temin HM. Retroviral recombination and reverse transcription. Science 1990; 250: 1227–1233
  • Varmus HE. Regulation of HIV and HTLV gene cxpression. Genes Dev 1988; 2: 1055–1962
  • Cann AJ, Chen ISY. Human T-cell leukemia viruses typea I and II. Fields Virology, BN. Fields, DM. Knipe. Raven Press, New York 1990; Vol 2: 1501–1527
  • Wong-Staal F. Human immunodeficiency viruses and their replication. Fields Virology, BN. Fields, DM. Knipe. Raven Press, New York 1990; Vol 2.: 1529–1543
  • Cann AJ, Rosenblatt JD, Wachsman W, et al. Identification of the gene responsible for human T-cell leukemia virus transcriptional regulation. Nature 1985; 318: 571–574
  • Felber BK, Pdskahs H, Kleinman-Ewing C, et al. The pX protein of HTLV-I is a transcriptional activator of its long terminal repeats. Science 1985; 229: 675–679
  • Fujisawa J, Seiki M, Kiyokawa T, et al. Functional activation of the long terminal repeat of human T-cell leukemia virus type 1 by trans-activating factor. Proc Natl Acad Sci USA 1985; 82: 2277–2281
  • Sodroski J, Rosen C, Goh WC., et al. A transcriptional activator protein encoded by the x-lor region of the human T-cell leukemia virus. Science 1985; 228: 1430–1434
  • Seiki M, Inoue J-I, Takeda T, et al. Direct evidence that p40 of human T-cell leukemia virus type I is a trans-acting transcriptional activator. EMBO J 1986; 5: 561–565
  • Leung K, Nabel GJ. HTLV-I transactivator induces interleukin-2 receptor expression through an NF-KB-like factor. Nature 1988; 333: 776–778
  • Ruben S, Poteat H, Tan T-H, et al. Cellular transcription factors and regulation of IL-2 receptor gene expression by HTLV-I tax gene product. Science 1988; 241: 89–92
  • Inouc J, Seike M, Yoshida M. The second pX product p27dH of HTLV-I is required for gug gene expression. FEBS Lett 1986; 209: 187–190
  • Inoue JI, Yoshida M, Seiki M. Transcriptional (p40) and post-transcriptional (p27dH) regulators are required for the expression and replication of human T-cell leukemia virus type I genes. Proc Natl Acad Sci USA 1987; 84: 3653–3657
  • Hidaka M, Inuue J, Yoshida M, et al. Post-transcriptional regulator (rex) of HTLV-I initiates cxpression of viral structural proteins but suppresses expression of regulatory proteins. EMBO J 1988; 519–523
  • Cullen BR, Greene WC. Regulator) pathways governing HIV-1 replication. Cell 1989; 58: 423–426
  • Levy JA. Human immunodeficiency viruses and the pathogenesis of AIDS. JAMA 1989; 261: 2997–3006
  • McCune JM. HIV-I: The infective process in vivo. Cell 1991; 64: 351–363
  • Cullen BR. Trans-activation of human immunodeficiency virus occurs via a bimodal mechanism. Cell 1986; 46: 973–982
  • Cullen BR. The HIV-I tat protein: An RNA sequence-specific processivity factor?. Cell 1990; 63: 655–657
  • Marciniak RA, Calnan BJ, Frankel AD, et al. HIV-I Tat protein trans-activates transcription in vitro. Cell 1990; 63: 791–802
  • Roy S, Agy M, Hovanessian AG, et al. The integrity of the stem structure of human immunodeficiency virus type I Tat-responsive sequence RNA is required for interaction with the interferon-induced 68,000-M1 protein kinase. J Virol 1991; 65: 632–640
  • Feinberg MB, Jarrett RF, Aldovini A, et al. HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 1986; 46: 807–817
  • Rosen CR, Terwilliger E, Dayton AI, et al. Intragenic cis-acting art gene-responsive sequences of the human immunodeficiency virus. Proc Natl Acad Sci USA 1988; 85: 2071–2075
  • Malim MH, Hauber J, Le S-Y., et al. The HIV-I rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 1989; 338: 254–257
  • Malim MH, Tiley LS, McCam DF, et al. HIV-1 structural gene cxpreshion requires binding of the rev trans-activator to its RNA target sequence. Cell 1990; 60: 675–683
  • Hcaphy S, Dingwall C, Ernberg I, et al. HIV-I regulator of virion cxprcssion (Rev) binds to an RNA stem-loop structure located within the rev response element region. Cell 1990; 60: 685–693
  • Ahmad N, Venkateson S. Nef protein of HIV-I is a transcriptional repressor of HIV-I LTR. Science 1988; 241: 1481–1485
  • Fisher AG, Ensoli B, Looney D, et al. Biologically diverse molecular variants within a single HIV-I isolate. Nature 1988; 334: 444–447
  • Strebel K, Daugherty D, Clouse K, et al. The HIV “A” (Sor) gene product is essential for virus infectivity. Nature 1987; 328: 728–730
  • Strebel K, Kimblat T, Martin MA. A novel gene of HIV-I, vpu. and its 16-kilodalton product. Science 1988; 241: 1221–1223
  • Sefton BM. The viral tyrosine protein kinases. Curr Topics Microhiol Immunol 1986; 123: 39–72
  • Cooper JA. Oncogenes and anti-oncogenes. Curr Opin Cell Biol 1990; 2: 285–295
  • Bishop JM. Molecular themes in oncogenesis. Cell 1991; 64: 235–248
  • Robinson HL, Gagnon GC. Patterns of proviral insertion inavian leukosis-induced lymphomas. J Virol 1986; 57: 28–36
  • Goodcnow MM, Hayward WS. 5' long terminal repeats of myc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosis viruses. J Virol 1987; 61: 2489–2498
  • Hayward WS, Benjamin GN, Astrin SM. Activation of a cellular one gene by promoter insertion in ALV-induced lymphoid leukosis. Nature 1981; 290: 475–480
  • Neel BG, Hayward WS, Robinson HL, et al. Avian leukosis virus-induced tumors have common proviral integration sites and hynthesize discrete new RNAs: Oncogenesis by promoter insertion. Cell 1981; 23: 323–334
  • Payne GS, Courtneidge SA, Crittenden LB, et al. Analysis of avian Icukosis virus DNA and RNA in bursal tumors: viral gene expression is not required for maintenance of the tumor state. Cell 1981; 22: 311–322
  • Payne GS, Bishop JM, Varmus HE. Multiple arrangements of viral DNA and an activated hostoncogene in bursal lymphomas. Naturc 1982; 295: 209–214
  • Tsichlis PN, Strauss PG, Hu LF. A common region for proviral DNA integration in MoMuLV-induced rat thymic lymphomas. Nature 1983; 302: 445–449
  • Cuypers HT, Selten G, Quint W, et al. Murine leukemia virus-induced T-cell lymphomagenesis: Integration of proviruses in a distinct chromosomal region. Cell 1984; 37: 141–150
  • Seltcn G, Cuypers HT, Zijlstra M, et al. Involvement of c-myc in MuLV-induced T cell lymphomas in mice: Frequency and niechanims of activation. EMBO J 1984; 3: 3215–3222
  • Selten G, Cuypers HT, Beins A. Proviral activation of the putative oncogene pim,-1 in MuLV induced T-cell lymphomas. EMBO J 1985; 4: 1793–1798
  • Selten G, Cuypers HT, Boelens W, et al. The primary structure of the putative oncogene pim-I shows extensive homology with protein kinascs. Cell 1986; 46: 603–611
  • te Rick H, Maandag ER, Clarke A, et al. Consecutive inactivation of both alleles of the pim-1 proto-oncogene by homologous recombination in embryonic stem cells. Nature 1990; 348: 649–651
  • van Lohuizen M, Verbeek S, Krimpenfort P, et al. Predisposition to lymphomagenesis inpim-I transgenic mice: cooperation with c-myc and N-myc in murint: leukemia virus-induced tumors. Cell 1989; 56: 673–682
  • Breuer M, Slebos R, Vertieek S, et al. Very high frequency of lymphoma induction by a chemical carcinogen in pim- I transgenic mice. Nature 1989; 340: 61–63
  • Blackwell TK, Kretzner L, Blackwood EM, et al. Sequcnce-specific DNA binding by the c-myc protein. Science 1990; 250: 1149–1151
  • Luscher B, Eisenman RN. New light on myc, myb: I. myc. Gene Dev 1990; 4: 2025–2035
  • Blackwood EM., Eisenman RN. Max—A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with my. Science 1991; 252: 1211–1217
  • Nusse R, Varmus HE. Many tumors induced by the mouse mammary tumor virus contain a provirus integrated in the same region of the host genome. Cell 1982; 31: 99–109
  • Peters G, Brookes S, Smith R, et al. Tumorigenesis by mouse mammary tumor virus: evidence for a common region for provirus integration in mammary tumors. Cell 1983; 33: 369–377
  • Dickson C, Smith R, Brookes S, et al. Tumorigenesis by mouse mammary tumor virus: Proviral activation of a cellular gene in the common integration rcgion int-2. Cell 1984; 37: 529–536
  • Nusse R, van Ooyen A, Cox D, et al. Mode of proviral activation of a putative mammary oncogene (int-1) on niouse chromsoonie 15. Nature 1984; 307: 131–136
  • Acland P, Dixon M, Peters G, et al. Subcellular fate of the Int 2 oncoprotein is determined by choice of initiation codon. Nature 1990; 343: 662–665
  • Dickson C, Peters G. Potential oncogene product related to growth factors. Nature 1987; 326: 833
  • Inoue J-I, Seiki M, Tanigiichi T, et al. Induction of interleukin 2 receptor gene expression of p40 encoded by human T-cell leukemia virus type I. EMBO J 1986; 5: 2883–2888
  • Greene WC, Leonard WJ, Wano Y, et al. Trans-activator gene of HTLV-II induces IL-2 receptor and II-2 cellular gene expression. Science 1986; 232: 877–880
  • Siekevitz M, Feinberg MB, Holbrook N, et al. Activation of interleukin 2 and interleukin 2 receptor (Tac) promoter expression by the trans-activator (tat) gene product of human T-cell leukemia virus, type I. Proc Natl Acad Sci USA 1987; 84: 5389–5393
  • Cross SL, Feinberg MB, Wolf JB, et al. Regulation of the human interleukin-2 receptor Q chain promoter: Activation of a nonfunctional promoter by the transactivator gene of HTLV-I. Cell 1987; 49: 47–56
  • Hoyos B, Ballard DW, Eiohnlein E, et al. Kappa B-specific DNA binding proteins: role in the regulation of human interleukin-2. gene expression. Science 1989; 244: 457–460
  • Wano Y, Feinberg M, Hosking JB, et al. Stable expression of the tar gene of type I human T-cell leukemia virus in human T cells activates specific cellular genes involved in growth. Proc Natl Acad Sci USA 1988; 85: 9733–9737
  • Chan JY, Slamon DJ, Nimer SD, et al. Regulation of expression of human granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci USA 1986; 83: 3669–8673
  • Fujii M, Sassone-Corsi P, Verma IM. c-fos promoter Trans-activation by the tax, protein of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 1988; 85: 8526–8530
  • Miyatake S, Seiki M, Yoshida M, et al. T-cell activation signals and human T-cell leukemia virus type I-encoded p40 protein activate the mouse granulocyte-niacrophage colony-stimulating factor gene through a common DNA element. Mol Cell Biol 1988; 8: 5581–5587
  • Nimer SD, Gasson JC, Hu K, et al. Activation of the GM-CSF promoter by HTLV-I and -II Tax proteins. Oncogene 1989; 4: 671–676
  • Miyatake S, Seike M, dc Waal Malefijt R., et al. Activation of T cell-derived lymphokine genes in T cells and fibroblasts: Effects of human T cell leukemia virus type I p40 protein and bovine papilloma virus encoded E2 protein. Nucleic Acids Res 1988; 16: 6547–6566
  • Arya SK, Wong-Staal F, Gallo RC. T-cell growth factor gene: lack of expression in human T-cell leukemia-lymphoma virus-infected cells. Science 1984; 223: 1086–1087
  • Arima N, Daitoku Y, Ohgaki S, et al. Autocrine growth of interleukin 2-producing leukemic cells in a patient with adult T cell leukemia. Blood 1986; 68: 779–782
  • Maeda M, Arima N, Daitoku Y, et al. Evidence for the inter-leukin-2 dependent expansion of leukemic cells in adult T cell leukemia. Blood 1987; 70: 1407–1411
  • Arya SK, Guo C, Josephs SF, et al. Trans-activator gene of HTLV-III. Science 1985; 229: 69–73
  • Hauber J, Perkins A, Heimer EP, et al. Transactivation of human immunodeficcncy virus gene expression is niediatcd by nuclear events. Proc Natl Acad Sci USA 1987; 84: 6364–6368
  • Kao SY, Calman AF, Luciw PA, et al. Anti-termination of transcription within the long terminal repeat of HIV-I by tat gene product. Nature 1987; 330: 489–493
  • Greene WC, Bohnlein E, Ballard DW. HIV-I, HTLV-I and normal T cell growth: Transcriptional strategies and surprises. Immunol Today 1989; 10: 272
  • Ensoli B, Barillari G, Salahuddin SZ, et al. Tat protein of HIV-I stimulates growth of cell derived from Kaposi's sarcoma lesions of AIDS patients. Nature 1990; 345: 84–86
  • Gallo RC. The human T-cell leukemia/lymphotropic retroviruses (HTLV) family: Past, present. and future. Cancer Res 1985; 45: 4524S–4533S, Suppl 9
  • Wong-Staal F, Gallo RC. Human T-lymphotropic retroviruses. nature 1985; 317: 395–403
  • Murphy EL, Blattner WA. HTLV-1-associated leukemia: A model for chronic retroviral diseases. Ann Neurol 1988; 23: S174–S180
  • Sarma PS, Gruber J. Human T-cell lyinphotropic viruses in human diseases. J Natl Cancer lnst 1990; 82(13)1100–1106
  • Tsudo M, Uchiyama T, Uchino H, et al. Failure of regulation of Tac antigen/TCGF receptor on adult T-cell leukemia cells by anti-tac. monoclonal antibody. Blood 1983; 61: 1014–1016
  • Depper JM, Leonard WJ, Kronke M, et al. Augmented T cell growth factor receptor expression in HTLV-I-infected human leukemic T cells. J Immunol 1984; 133: 1691–1695
  • Nikaido T, Shimizu A, Ishida N, et al. Molecular cloning of cDNA encoding human interleukin receptor. Nature 1984; 311: 631–635
  • Kronke M, Leonard WJ, Depper JM, et al. Deregulation of interleukin-2 receptor gene expression in HTLV-I infected adult C-cell leukemia. Science 1985; 228: 1215–1217
  • Goebels N, Waase I, Pfizenmaier K, et al. IL-2 production in human T lymphotropic virus I -infected leukemic T lymphocytes analyzed by in situ hybridization. J Inimunol 1988; 141: 1231–1235
  • Franza BR, Josephs SF, Gilman MZ, et al. Characterization of cellular proteins recognizing the HIV enhancer using a micro-scale DNA affinity precipitation assay. Nature 1987; 330: 391–395
  • Ballard DW, Bohnlein E, Lowcnthal JW, et al. HTLV-I tax induces cellular proteins that activate the kB element in the II-2 receptor α gene. Science 1988; 241: 1652–1655
  • Bohnlein E, Lowenthal JW, Siekevitz M, et al. The same in-ducible nuclear proteins regulates niitogen activation of both the interleukin-2 receptor-alpha gene and type I HIV. Cell 1988; 53: 327–836
  • Kawakami K, Scheidereit C, Roeder RG. Identification and purification of a human immunoglobulin-enhancer-binding protein (NF-kB) that activates transcription from a human immunodeficiency virus type I promoter in vitro. Proc Natl Acad Sci USA 1988; 85: 4700–4704
  • De Waal Malefyt R, Yssel H, Spits H, et al. Human T cell leukemia virus type I prevents cell surface expression of the T cell receptor through down-regulation of the CD-γ-δ-ϵ and -ζ genes. J Immunol 1990; 145: 2297–2303
  • Jeang K-T, Widen SG, Seninies OJ, et al. HTLV-I trans-activator protein. tax. is a trans-repressor of the human β-polymerase gene. Science 1990; 247: 1082–1084
  • Fukuhara S, Hinuma Y, Gotoh YI, et al. Chromosomc aberrations in T lymphocytes carrying adult T-cell leukemia-associated antigens (ATLA) from healthy adults. Blood 1983; 61: 205–207
  • Miyamoto K, Tomita N, Ishu A, et al. Chromosome abnormalities of leukemia cells in adult patients with T-cell leukemia. J Natl Cancer lnst 1984; 73: 353–362
  • Hinuma Y, Nagata K, Hanaoka M, et al. Adult T-cell leukemia antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA 1981; 78: 6474–6480
  • Hinrichs SH, Nereberg M, Reynolds RK, et al. A transgenic mouse model for human neurofibrumatosis. Science 1987; 237: 1340–1343
  • Nerenberg M, Hinrichs SH, Reynolds RK, et al. The tat gene of human T-lyniphotropic virus type I induces mesenchynial tumors in transgenic mice. Science 1987; 237: 1324–1329
  • Frankel AD, Pabo CO. Cellular uptake of the Tat protein from human immunodeficiency virus. Cell 1988; 55: 1189–1193
  • Brake DA, Debouck C, Biesecker C. Identification of an Arg-Gly-Asp (RGD) cell adhesion site in human immunodeficiency virus type 1 transactivation protein, Tat. J Cell Biol 1990; 111: 1275–1281
  • Delli Bovi P, Donti E, Knowles DM, et al. Presence of chromosomal abnormalities and lack of AIDS retrovirus DNA sequences in AIDS-associated Kaposi's sarcoma. Cancer Re 1986; 46: 6333–6338
  • Jahan N, Razzaque A, Grcenspan J, et al. Analysis of human KS biopsies and cloned cell lines for cytomegalovirus. HIV-I. and other selected DNA virus sequences. AIDS Res Human Retroviruses 1989; 5: 225–231
  • Salahuddin SZ, Nakamura S, Biberfeld P, et al. Angiogenic properties of Kaposi's sarcoma-derived cells after long-term culture in vitro. Science 1988; 242: 430–433
  • Nakaniura S, Salahuddin SZ., Biberfeld P, et al. Kaposi's sancoma cells: Long-term culture with growth factor from retrovirus-infected CD4+ T cells. Science 1988; 242: 426–430
  • Vogel J, Hinrichs SH, Reynolds RK, et al. The HIV tat gene induces dermal lesions resembling Kaposi's sarcoma in trans-genic mice. Nature 1988; 335: 606–611
  • Reiss P, Ldnge JMA, Kuiken CL, et al. Kaposi's sarcoma and AIDS. Nature 1990; 346: 801
  • Ensoli B, Nakaniura S, Salahuddin SZ, et al. AIDS-Kaposi's sarcoma-derived cells express cytokines with autocrine and par-acrine growth effects. Science 1989; 243: 223–226
  • Miles SA, Rezai AR, Salamr-Gonzales JF, et al. AIDS Kaposi sarcoma-derived cells produce and respond to interleukin 6. Proc Natl Acad Sci USA 1990; 87: 4068–4072
  • Newbold RF, Overell RW, Clonnell JR. Induction of immortality is an early event in malignant transformation of nianinialian cells by carcinogens. Nature 1982; 299: 633–635
  • Land H, Pdrdda LF, Weinberg RA. Cellular oncogenes and multistep carcinogenesis. Science 1983; 22: 771–777
  • Nowell PC. Mechanisms of tumor progression. Cancer Res 1986; 46: 2203–2207
  • Meuth M. The structure of mutation in mammalian cells. Biochim Biophys Acta 1990; 1032: 1–17

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.