85
Views
79
CrossRef citations to date
0
Altmetric
Review Article

Boron Neutron Capture Therapy of Brain Tumors: Past History, Current Status, and Future Potential

, &
Pages 534-550 | Published online: 11 Jun 2009

References

  • Advances in Neutron Capture Therapy, A H Soloway, R F Barth, D E Carpenter. Plenum Press, New York 1994
  • Boron Neutron Capture Therapy, D Gabel, R Moss. Plenum Press, New York 1992
  • Cancer Neutron Capture Therapy, Y Mishima. Plenum Press, New York 1996
  • Barth R F, Soloway A H, Fairchild R G, Brugger R M. Boron neutron capture therapy for cancer: Realities and prospects. Cancer 1992; 70: 2995–3007
  • Hawthorne M F. The role of chemistry in the development of boron neutron capture therapy of cancer. Angew Chem Int Ed Engl 1994; 32: 950–984
  • Dorn R V. Boron neutron capture therapy (BNCT): A radiation oncology perspective. Int J Radiat Oncol Biol Phys 1994; 28: 1189–1201
  • Hatanaka H, Kamano S, Amano K, . Clinical experience of boron-neutron capture therapy for glionias:a comparison with conventional chemo-immuno-radio-therapy. Boron Neutron Capture Therapy for Tumors, H Hatanaka, et al. Nishimura Co., Niigata, Japan 1986; 349–378
  • Hatanaka H. Boron neutron capture therapy for tumors. Glioma, A BMF Karim, E Laws. Springer Verlag, New York 1991; 233–249
  • Hatanaka H, Nakagawa Y. Clinical results of long-surviving brain tumor patients who underwent boron capture therapy. Int J Radiat Oncol Biol Phys 1994; 28: 1061–1066
  • Mishima Y, Ichihashi M, Tsuji M, et al. Treatment of malignant melanoma by single thermal neutron capture therapy with melanoma-seeking 10B-compound. Lancet 1989; 2: 388–389
  • Mishima Y, Ichihashi M, Hatta S, et al. New thermal neutron capture therapy for malignant melanoma: Melanogenesis-seeking 10B molecule-melanoma cell interaction from in vitro to first clinical trial. Pigment Cell Res 1989; 2: 226–234
  • Mishima Y, Honda C, Ichihashi M, . Selective melanoma thermal neutron capture therapy for lymph node metastases. Advances in Neutron Capture Therapy, A H Soloway, R F Barth, D E Carpenter, et al. Plenum Press, New York 1993; 705–710
  • Davis M A, Little J B. Relative biological effectiveness of the 10B(n,α)7Li reaction in HeLa cells. Radiat Res 1970; 43: 534–553
  • Javid M, Brownell G L, Sweet W H. The possible use of neutroncapture isotopes such as boron-10 in the treatment of neoplasms. II. Computation of the radiation energy and estimates of effects in normal and neoplastic brain. J Clin Invest 1952; 31: 603–610
  • Tolpin El, Wellum G. R., Dohan F C, Jr, et al. Boron neutron capture therapy of cerebral gliomas. II. Utilization of the blood-brain barrier and tumor-specific antigens for the selective concentration of boron in gliomas. Oncology (Basel) 1975; 32: 223–246
  • Barth R F, Alam F, Soloway A H, . Delivery of boron-10 for neutron capture therapy by means of polyclonal and monoclonal antibodies: Progress and problems. Neutron Capture Therapy, H. Hatanaka, et al. Nishimura, NiigataJapan 1986; 8–16
  • Gupta N, Gahbauer R A, Blue T E, Wambersie A. Dose prescription in boron neutron capture therapy. Int J Radiat Oncol Biol Phys 1994; 28: 1157–1166
  • Hiratsuka J, Fukuda H, Kobayashi T, et al. The relative biological effectiveness of 10B-neutron capture therapy for early skin reaction in the hamster. Radiat Res 1991; 128: 186–191
  • Fukuda H, Kobayashi T, Matsuzawa T, et al. RBE of a thermal neutron beam and the 10(Bn,α)7Li reaction on cultured B-16 melanoma cells. Int J Radiat Biol 1987; 1: 167–175
  • Gahbauer R A, Fairchild R G, Goodman J H, Blue T E. RBE in normal tissue studies. Boron. Neutron Capture Therapy, D. Gabel, R. Moss. Plenum Press, New York 1992; 123–128
  • Solares G R, Guillermo C, Palano J. Zamenhof High resolution quantitative autoradiography and its application to microdosimetry of boron neutron capture therapy. Topics in Dosimetry and Treatment Planning for Neutron Capture Therapy, R G Zamenhof, G R Solares, O K Harling. Advanced Medical Publishing, Madison, WI 1994; 13–27
  • Ausserer W A, Ling Y -C, Chandra S, Morrison G H. Quantitative imaging of boron, calcium, magnesium, potassium, and sodium distributions in cultured cells with ion microscopy. Anal Chem 1989; 61: 2690–2695
  • Bendayan M, Barth R F, Gingras D, et al. Electron spectroscopic imaging for high resolution immunocytochemistry: Use of boronated protein A. J Histochem Cytochem 1989; 37: 573–580
  • Kobayashi T, Kanda K. Analytical calculation of boron-10 dosage in cell nucleus for neutron capture therapy. Radiat Res 1982; 91: 77–94
  • Gabel D, Fosler S, Fairchild R G. The Monte Carlo simulation of the biological effect of the 10B(n,α)7Li reaction in cells and tissue and its implication for boron neutron capture therapy. Radiat Res 1987; 111: 14–25
  • Charlton D E. Energy deposition in small ellipsoidal volumes by high-LET particles: Application to thermal neutron Dosimetry. Int J Radiat Biol 1991; 59: 827–42
  • Wuu C S, Amols H I, Kliauga P. MicroDosimetry for boron neutron capture therapy. Radiat Res 1992; 130: 355–9
  • Kalend A M, Bloomer W D, Epperly W. Dosimetric consequences of 10B(n,α)Li reaction occurring at the cellular membrane. Int J Radiat Oncol Biol Phys 1995; 31: 171–178
  • Utsumi H, Ichihashi M, Kobayashi T, Elkind M R. Sublethal and potentially lethal damage repair on thermal neutron capture therapy. Pigment Cell Res 1989; 2: 337–42
  • Rofstad E. Radiation biology of malignant melanoma. Acta Radiol 1986; 15: 1–10
  • Leibel S A, Sheline G E. Radiation therapy for neoplasms of the brain. J Neurosurg 1987; 66: 1–22
  • Hatanaka H, Masuzawa T, Amano K, et al. Basic and clinical sludies on boroii-neutron capture therapy. Nippon Acta Neuropathol 1968; 9: 37–40
  • Barth R F. Biologic considerations in targeting brain tumors for boron neutron capture therapy. Cancer neutron Capture Therapy, Y Mishima. Plenum Press, New York 1996; 533–540
  • Gavin P R, Wheeler F J, Huiskamp R, et al. Large animal normal tissue tolerance using an epithermal neutron beam and borocaptate sodium. Strahlenther Onkol 1993; 169: 48–51
  • Gabel D. Radiobiological considerations concerning the development of compounds for boron neutron capture therapy. Strahlenther Oncol 1993; 169: 65–70
  • Allen B J. Maximum therapeutic depth in thermal neutron capture therapy. Strahlenther Onkol 1993; 169: 34–41
  • Mirkovic N, Meyn R E, Hunter N R, Milas L. Radiation-induced apoptosis in a murine lymphoma in vivo. Radiother Oncol 1994; 33: 11–16
  • Farr L E, Sweet W H, Robertson J S, et al. Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am J Roentgenol 1954; 71: 279–293
  • Asbury A K, Ojemann R G, Nielson S L, Sweet W H. Neuropathologic study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation. J Neuropathol Exp Neurol 1972; 31: 278–303
  • Spielvogel B F. Choose a new path: boron biologicals. Biotechnology in the Feed Industry, T D Lyons, K A Jacques. Nottingham University Press, Nottingham, UK 1994; 303–321
  • Coderre J A, Bergland R, Chadha M, . Boron neutron capture therapy of glioblastoma multiforme using p-boronophenylalanine-fructose complex and epithermal neutrons. Cancer Neutron Capture Therapy, Y. Mishima, et al. Plenum Press, New York 1996; 553–562
  • Snyder H R, Reedy A J, Lennary W J. Synthesis of aromatic boronic acids: Aldehyde boronic acids and a boronic acid analog of tyrosine. J Am Chem Soc 1958; 80: 835–838
  • Belkhou R, Abbé Ch J, Pham P, et al. Uptake and metabolism of boronophenylalanine in human uveal melanoma cells in culture. Relevance to boron neutron capture therapy of cancer cells. Amino Acids 1995; 8: 217–229
  • Zakharkin L I, Grefennikov A V, Luvov A I. Synthesis of some nitrogenous boron derivatives. Izv Akad Nauk SSSR Ser Khim 1970; 1: 106–112
  • Petterson O -A, Olsson D, Lindström P, et al. Penetration and binding L- and D-carboranylalanine in human melanoma spheroids. Melanoma Res 1993; 3: 369–376
  • Yong J H, Barth R F, Wyzlic I M, et al. In vitro and in vivo evaluation of o-carboranylalanine as a potential boron delivery agent for neutron capture therapy. Anticancer Res 1995; 15: 2039–2044
  • Fauchere J L, Do K Q, Jow P YC, Hansch C. Universally strong lipophilicity of “fat” or “super” amino acids, including a new reference value for glycine. Experientia 1980; 36: 1203–1204
  • Wyzlic I M, Beeson J C, Soloway A H, . New unnatural boron-containing amino acids and peptides as potential delivery agents for neutron capture therapy. Cancer Neutron Capture Therapy, Y Mishima, et al. Plenum Press, New York 1966, in press
  • Schinazi R F, Prusoff W H. Synthesis of 5–(dihydroxyboryl)-2′-deoxyuridine and related boron-containing pyrimidines. J Org Chem 1985; 50: 841–847
  • Yamamoto Y, Seko T, Nakamura H, Nemoto H. Synthesis of carborane-containing nucleoside bases. Heteroatom Chem 1992; 3: 239–244
  • Tjarks W, Anisuzzaman A KM, Liu L, et al. Synthesis and in vitro evaluation of boronated undine and glucose derivates for neutron capture therapy. J Med Chem 1992; 35: 1628–1633
  • Rong F G, Soloway A H, Ikeda S, Ives D H. Synthesis and biochemical activity of 5-tethered carborane-containing pyrimidine nucleosides as potential agents for DNA incorporation. Nucleosides Nucleotides 1995; 14: 1873–1887
  • Kahl S B, Koo M S. Synthesis of tetrakis-carborane-carboxylate esters of 2,4-bis-(α,β-dihydroxyethyl)-deuteroporphyrin IX. J Chem Soc Chem Commun 1990; 24: 1769–1771
  • Lemmen P, Werner B, Streicher B. Ether lipids as potential boron carriers for boron neutron capture therapy: Synthesis of rac-1–(9–0-carboranyl) nonyl-2-methyl-glycero-3-phosphocholine (B-Et-11-OMe). Advances in Neutron Capture Therapy, A H Soloway, R F Barth, D E Carpenter. Plenum Press, New York 1993; 297–300
  • Scobie M, Threadgill M D. Synthesis of carbonne- containing nitroimidazole compounds via mild 1,3-dipolar cycloaddition. J Chem Soc Chem Commun 1992; 13: 939–941
  • Fairchild R G, Kahl S B, Laster B H, et al. In vitro determination of uptake, retention, distribution, biological efficacy and toxicity of boronated compounds for neutron capture therapy: A comparison of porphyrins and sulfhydryl boron hydrides. Cancer Res 1990; 51: 4860–4865
  • Kahl S B, Joel D D, Nawrocky M M, et al. Uptake of a certain nidocarboranyl porphyrins by human glioma xenografts in athymic nude mice and by syngeneic ovarian carcinomas in immunocompetent mice. Proc Natl Acad Sci USA 1990; 87: 7265–7269
  • Hill J S, Kahl S B, Kaye A H, et al. Selective tumor uptake of a boronated porphyrin in an animal model of cerebral glioma. Proc Natl Acad Sci USA 1992; 89: 1785–1789
  • Laster B H, Kahl S B, Warkentien L, Bond V P. In vivo studies in NCT with a boronated porphyrin and tumor growth delay as end point. Advances in Neutron Capture Therapy, A H Soloway, R F Barth, D E Carpenter. Plenum Press, New York 1993; 535–539
  • Holley J L, Mather A, Wheelhouse R T, et al. Targeting of tumor cells and DNA by a chlorambucil-spermidine conjugate. Cancer Res 1992; 52: 4190–4195
  • Yuan Z M, Egorin M J, Rosen D M, et al. Cellular pharmacology of N1 and N8-aziridinyl analogues of spermidine. Cancer Res 1994; 54: 742–748
  • Marton L J, Pegg A E. Polyamines as targets for therapeutic intervention. Annu Rev Pharmacol Toxicol 1995; 35: 55–91
  • Hariharan J R, Wyzlic I M, Soloway A H. Synthesis of novel boron-containing polyamines—Agents for DNA targeting in neutron capture therapy. Polyhedron 1995; 14: 823–825
  • Hawthorne M F, Wiersema R J, Takasugi M. Preparation of tumor-specific boron compounds. 1. In vitro studies using boron-labeled antibodies and elemental boron as neutron targets. J Med Chem 1972; 15: 449–453
  • Barth R F, Johnson C W, Wei W -Z, et al. Neutron capture using boronated monoclonal antibody directed against tumor-associated antigens. Cancer Detect Prev 1982; 5: 315–323
  • Alam F, Soloway A H, Barth R F. Boronation of antibodies with mercaptoundecahydro-c/oso-dodecaborale (2–) anion for potential use in boron neutron capture therapy. Int J Radiat Appl Instrum Part A 1987; 38: 503–506
  • Barth R F, Alam F, Soloway A H, Adams D M, Steplewski Z. Boronated monocloncal antibody 17–1A for potential neutron capture therapy of colorectal cancer. Hybridoma 1986; 5: S43–S50
  • Barth R F, Adams D M, Soloway A H, et al. Boronated starburst dendrimer-monoclonal antibody as a potential delivery system for neutron capture therapy. Bioconjugate Chem 1994; 5: 58–66
  • Liu L, Barth R F, Adams D M, Soloway A H, Reisfeld R A. Bispecific antibodies as targeting agents for boron neutron capture therapy of brain tumors. J Hematother 1995; 4: 477–483
  • Pak R H, Primus F J, Rickard-Dickson K J, et al. Preparation and properties of nido-carborane-specific monoclonal antibodies for potential use in boron neutron captures therapy for cancer. Proc Natl Acad Sci USA 1995; 92: 6986–6990
  • Libermann T A, Razon N, Bartal A D, et al. Expressionof epidermal growth factor receptors in human brain tumors. Cancer Res 1984; 44: 753–760
  • Wong A J, Bigner S H, Signer D D, et al. Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proc Natl Acad Sci USA 1987; 84: 6899–6903
  • Epenetos A, Courtenay-Luck N, Pickering D, et al. Antibody guided irradiation of brain glioma by arterial infusion of radioactive monoclonal antibody against epidermal growth factor receptor and blood group A antigen. Br Med J 1985; 280: 1463–1466
  • Herlyn D, Bender H, Adachi K, . Monoclonal antibody targeting of epidermal growth factor receptor on human malignant gliomas. Monoclonal Antibodies and Applications, A Epenetos, et al. Chapman and Hall Medical, London 1993; 219–226
  • Kalofonos H P, Pawlikowska T R, Hemingway A, et al. Antibody guided diagnosis and therapy of brain gliomas using radiolabeled monoclonal antiodies against epidermal growth factor receptor and placental alkaline phosphatase. J Nucl Med 1989; 30: 1636–45
  • Andersson A, Capala J, Carlsson J. Effects of EGF-dextran-tyrosine-131I conjugates on the clonogenic survival of cultured glioma cells. J Neuro-oncol 1992; 14: 213–223
  • Lindström A, Lundqvist H, Carlsson J. Distribution of 125I after administration of 125I-labeled epidermal growth factor-dextran conjugates in mice. Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science. Acta Univ Upsaliensis, Uppsala, Sweden 1993; 428
  • Carlsson J, Gedda L, Grönvik C, et al. Strategy for boron neutron capture therapy against tumor cells with over-expression of the epidermal growth factor-receptor. Int J Radiat Oncol Biol Phys 1994; 30(1)105–115
  • Capala J, Barth R F, Bendayan M, et al. Boronated epidermal growth factor as a potential targeting agent for boron neutron capture therapy of brain tumors. Bioconjugate Chem 1996; 7–15
  • Smith M D, Setiawan Y, Moore D E. Optimisation of drug anchor for ortho-carborane in reconstitution of low density lipoproteins for neutron capture therapy. Cancer Neutron Capture Therapy, Y Mishima. Plenum Press, New York 1996; 143–150
  • Shelly K, Feakes D A, Hawthorne M F, et al. Model studies directed toward the boron neutron capture therapy of cancer:boron delivery to murine tumors with liposomes. Proc Natl Acad Sci USA 1992; 89: 9039–9043
  • Feakes D A, Shelly K, Hawthorne M. Selective boron delivery to murine tumors by lipophilic species incorporated in the membranes of unilamellar liposomes. Proc Natl Acad Sci USA 1995; 92: 1367–1370
  • Richardson R B, Davies A G, Bourne S P. Radioimmunolocalisation of human brain tumours: Biodistribution of radiolabelled monoclonal antibody UJ13A. Eur J Nucl Med 1986; 12: 313–320
  • Agamemnon A, Epenetos A, Snook D, et al. Limitations ol radiolabeled monoclonal antibodies for localization of human neoplasms. Cancer Res 1986; 46: 3183–3191
  • Lee Y, Bullard D E, Wikstrand C J, et al. Comparison of monoclonal antibody delivery to intracranial glioma xenografts by intravenous and intracarotid administration. Cancer Res 1987; 47, 1941–1946
  • Neuwelt E A, Barnett P A, Hellström I, et al. Delivery of melanomaassocialed immunoglobulin monoclonal antibody and Fab fragments to normal brain utilizing osmotic blood-brain barrier disruption. Cancer Res 1988; 48: 4725–4729
  • Yang W, Barth R F, Carpenter D E, et al. Enhanced delivery of boronophenylalanine to brain tumors for neutron capture therapy by means of carotid injection and blood-brain barrier disruption. Neurosurgery 1996; 38: 985–992
  • Yang W, Barth R F, Rotaru J, et al. Enhanced survival of F98 glioma bearing rats following neutron capture therapy with either sodium borocaptate or boronophenylalanine and osmotic blood brain barrier disruption. Anticancer Res 1995; 15(5A)1659
  • Yang Y, Barth R F, Rotaru J H, et al. Enhanced survival of F98 glioma bearing rats following boron neutron capture therapy with blood brain barrier disruption and intracarotid injection of boronophenylalanine. J Neuro-oncol 1996, in press
  • Barth R F, Rotaru J, Staubus A E, . Sodium borocaptate and boronophenylalanine alone or in combination as capture agents for BNCT of the F98 rat glioma. Cancer Neutron Capture Therapy, Y Mishima, et al. Plenum Press, New York 1996; 553–590
  • Sweet W H, Soloway A H, Brownell G L. Studies relevant to slow neutron capture therapy of brain tumor. Acta Union Int Cancer 1960; 16: 1216–1219
  • Sweet W H, Soloway A H, Brownell G L. Boron-slow neutron capture therapy of gliomas. Acta Radiol 1963; 1: 114–121
  • Farr L E, Haymaker W, Konikowski T, Lippincott S W. Effects of alpha particles randomly induced in the brain in the neutron-capture treatment of intracramal neoplasms. Int J Neurol 1962; 3: 564–576
  • Farr L E, Robertson J S. Therapy with neutrons. Handb Med Radiol 1961; XI: 1–23
  • Slatkin D N. A history of boron neutron capture therapy of brain tumors. Brain 1991; 114: 1609–1629
  • Proceedings of the First International Workshop on Accelerator-based Neutron Sources for Boron Neutron Capture Therapy. US Department of Energy Conference Report CONF-940976, D Nigg. 1994
  • Fairchild R G, Kalef-Ezra J A, Firaman S, et al. Optimization of an epithermal beam for NCT at the Brookhaven Medical Research Reactor (BMRR). Stralenther Onkol 1989; 165: 84–86
  • Brugger R M, Less T D. A progress report. Neutron Capture Therapy, H Hatanaka. Nishimura Co., NiigataJapan 1986; 110–116
  • Fairchild R F, Kalef-Ezra J A, Saraf S K, . Installation and testing of an optimized epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR). neutron Beam Design, Devel-opment and Performance for neutron Capture Therapy, O K Harling, J A Bernard, R G Zamenhof, et al. Plenum Press, New York 1990; 185–189
  • Wheeler F J, Parsons D K, Nigg D W, . Physics design for the Brookhaven Medical Research development and performance for NCT. Neutron Beam Design, Development and Performance for Neutron Capture Therapy, O K Harling, J A Bernard, R G Zamenhof, et al. Plenum Press, New York 1990; 83–95
  • Choi J R, Clement S D, Harling O K, . neutron capture therapy beams at the MIT research reactor. Neutron Beam Design, Development and Performance for neutron capture Therapy, O K Harling, J A Bernard, R G Zamenhof, et al. Plenum Press, New York 1990; 201–218
  • Clement S D, Choi J R, Zamenhof R G, . Monte Carlo methods of neutron design for neutron capture therapy at the MIT research reactor (MITR-II). neutron Beam Design, Development and Performance for neutron capture Therapy, O K Harling, J A Bernard, R G Zamenhof, et al. Plenum Press, New York 1990; 51–69
  • Moss R L. Progress towards boron neutron capture therapy at the high flux reactor Petten. Neutron Beam Design, Development and Performance for Neutron Capture Therapy, O K Harling, J A Bernard, R G Zamenhof. Plenum Press, New York 1990; 169–183
  • Wheeler F J, Wessol D E, Babcock R. Improvements in patient treatment planning systems. Cancer neutron Capture Therapy, Y Mishima, 1996; 289–294
  • Wallace S A, Allen B J, Mathur J N. Monte Carlo neutron photon treatment planning calculations: modelling from CT scans with variable voxel size. Cancer Neutron Capture Therapy, Y Mishima. Plenum Press, New York 1996; 295–302
  • Wierzbicki J G, Maruyama Y. Treatment planning methods with Cf-252 at the University of Kentucky. Nucl Sci Appl 1991; 4: 19–27
  • Maruyama Y. Clinical radiobiology of Cf-252 for bulky tumor therapy. Nucl Sci Appl 1991; 4: 29–43
  • Laramore G E (1994) Nonreactor sources of epithermal neutron beams for boron neutron capture therapy (BNCT): A user's perspective. Proceedings of the First International Workshop on Accelerator-Based Neutron Sources for Boron Neutron Capture Therapy. Sept 11–14, 1994, W Y Jackson. Vol I: 25–33, D Nigg. US Dept of Energy Conference Report CONF-940976
  • Liu H B, Brugger R M. Upgrades of the epithermal neutron beam at the Brookhaven medical research reactor. Cancer Neutron Capture Therapy, Y Mishima, 1996; 343–356
  • Harling O K. 1995, personal communication
  • Joint Research Centre, Petten 1994, Annual Report. Operation of the High Flux Reactor
  • Brugger R M, Shih J L, Liu H B. An epithermal neutron beam for neutron capture therapy at the Missouri University Research Reactor. Nucl Technol 1992; 98: 322–332
  • Less T J, Brugger R M. Reactor moderated intermediate neutron beams for neutron capture therapy. Strahlenther Onkol 1989; 165: 87–90
  • Matsumoto T, Liu H B, Brugger R M. Design of epithermal neutron beams using spent fuel elements at the Mushahi reactor. Cancer Neutron Capture Therapy, Y Mishima. Plenum Press, New York 1996; 419–424
  • Anterinem I, Hiismaki P. Construction of the epithermal BNCT station at the FIPI. Abstracts of Sixth International Symposium on Cancer neutron Capture Therapy, KobeJapan, Oct 31-Nov. 4, 1994; 64
  • Su L, Liu Y -WH, Peir J -J, . Epithermal neutron beam design for neutron capture therapy at Tsing Hua open-pool reactor. Cancer neutron Capture Therapy, Y Mishima, et al. Plenum Press, New York 1996; 337–342
  • Liu H -M. Epithermal-neutron beam design for neutron capture therapy at the Tsing-Hua Open Pool Reactor (THOR). Cancer Neutron Capture Therapy, Y Mishima. Plenum Press, New York 1996; 385–392
  • Yamada T. 1994, personal communication
  • Dreweil N H, Lawrence C B, KcKeown J, (1994) 600 kW electron-beam power for boron neutron capture therapy with IMPELA. Proceedings of the First International Workshop on Accelerator-Based Neutron Sources for Boron Neutron Capture Therapy. Sept. 11–14, 1994, D Nigg, et al. 67–77, Jackson, Wyoming, US Department of Energy Conference Report CONF-940976
  • Klee K A, Karam R A. Conceptual design for an epithermal neutron beam facility at the Georgia Tech Research Reactor. Cancer Neutron Capture Therapy, Y Mishima. Plenum Press, New York 1996; 357–364
  • Sweet W H, Soloway A H, Brownell G L. Boron-slow neutron capture therapy of gliomas. Acta Radiologica 1963; 1: 114–121
  • Slatkin D N. A history of boron neutron capture therapy of brain tumors. Brain 1991; 114: 1696–1629
  • Laramore G E, Spence A, Boron M. neutron capture therapy (BNCT) for high grade gliomas of the brain A cautionary note. Int J Radiat Oncol Biol Phys, in press
  • Curran W J, Jr, Scott C B, Horton J, et al. Recursive partitioning analysis of prognostic factors in three radiation therapy oncology group malignant glioma trials. J Natl Cancer Inst 1993; 85: 704–710
  • Takagaki M, Oda Y, Koda Y, . Effectiveness of borocaptate sodium for boron neutron capture therapy in malignant brain tumors. Cancer Neutron Capture Therapy, Y. Mishirna, et al. Plenum Press, New York 1996; 571–578
  • Stragliotto G, Fankhauser H. Biodistribution of boron sulfhydryl for boron neutron capture therapy in patients with intracranial tumors. Neurosurgery 1995; 36: 285–293
  • Haritz D, Gabel D, Huiskamp R. Clinical phase-I study of NA2B12H11SH(BSH) in patients with malignant glioma as precondition for boron neutron capture therapy (BNCT). Int J Radiat Oncol Biol Phys 1994; 28: 1175–1181
  • Haselsberger K, Radner H, Pendl G. Boron neutron capture therapy: Boron biodistribution and pharmacokinetics of Na2,B12H11SH in patients with glioblastoma. Cancer Res 1994; 54: 6318–6320
  • Ceberg C P, Persson A, Brun A, et al. Performance of sulfhydryl boron hydride in patients with grade III and IV astrocytoma: a basis for boron neutron capture therapy. J Neurosurgery 1995; 83: 79–85
  • Watkins P, Harker Y, Amaro C. Nuclear characterization of the HFR Petten BNCT facility. Advances in Neutron Capture Therapy, edited by AH Soloway, R F Barth, D E Carpenter. Plenum Press, New York 1993; 59–65
  • Coderre J A, Glass J D, Fairchild R G, et al. Selective delivery of boron by the melanin precursor analogue p-boronopheny-lalanine to tumors other than melanoma. Cancer Res 1990; 50: 138–141
  • Coderre J A, Joel D D, Micca P L, et al. Control of intracerebral gliomsarcomas in rats by boron neutron capture therapy with p-boronophenylalanine. Radiat Res 1992; 129: 290–296
  • Saris S C, Solares G R, Wazer D E, et al. Boron neutron capture therapy for murine malignant gliomas. Cancer Res 1992; 52: 4672–4677
  • Matalka K Z, Bailey M Q, Barth R F, et al. Boron neutron capture therapy of intracerebral melanoma using boronophenylalanine as a capture agent. Cancer Res 1993; 53: 3308–3313
  • Matalka K Z, Bailey M Q, Barth R F, et al. Boron neutron capture therapy of a rat glioma using boronphenylalanine as a capture agent. Radiat Res 1994; 137: 44–51
  • Barth R F, Matalka K Z, Bailey M Q, et al. A nude rat model for neutron capture therapy of human inlracerebral melanoma. Int J Radiat Oncol Biol Phys 1994; 28(5)1079–1088
  • Coderre J A, Button T M, Micca P L, et al. Neutron capture therapy of the 9L gliosarcoma using the p-boronophenylalanine-fructose complex. Int J Oncol Biol Phys 1994; 30: 643–652
  • Codcrre J A, Bergland R, Capala J, et al. Boron neutron capture therapy for glioblastoma multiforme using p-boronophenylalanine and epithermal neutrons: trial design and early clinical results. J Neuro-oncol 1997, in press
  • Zamenhof R, Harling O, Wazer D, et al. Proceedings of an invited review panel to comment on the proposed NEMC/MIT clinical protocol for phase-1 BNCT studies. Topics in Dosimetry and Treatment Planning for Neutron Capture Therapy. Advanced Medical Publishing, Madison, WI 1994; 67–79
  • Nigg D W, Wheeler F J, Wessol D E, et al. Radiation physics and treatment planning for boron neutron capture therapy of glioblastoma multiforme. J Neuro-oncol 1997, in press
  • Bendel P, Zilberstein J, Salomon Y. In vivo detection of a boron-neutron-capture agent in melanoma by proton observed 1H-10B double resonance. Magn Reson Med 1994; 32: 170–174
  • Bradshaw K M, Schweizer M P, Glover G H. BSH distributions in the canine head and a human patient using 11B MRI. Magn Reson Med 1995; 34: 48–56
  • Harling O K, Rogus R, Choi J R. Dosimetry and dose control for clinical trials of neutron capture therapy at the MITR-II reactor. Topics in Dosimetry and Treatment Planning for Neutron Capture Therapy. Advanced Medical Publishing, Madison, WI 1994; 67–79
  • Wheeler F J, Nigg D W. Three dimensional radiation distribution analysis for boron neutron capture therapy. Nucl Sci Eng 1992; 110: 16–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.