35
Views
4
CrossRef citations to date
0
Altmetric
Original Article

Cytogenetics of Leukemia

Pages 127-134 | Published online: 11 Jun 2009

References

  • Heim S, Mitelman F. Primary chromosome abnormalities in human neoplasia. Adv Cancer Res 1989; 52: 1–43
  • Heim S, Mitelman F. Secondary chromosome aberrations in the acute leukemias. Cancer Genet Cytogenet 1986; 22: 331–338
  • Rowley J D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973; 243: 290–293
  • De Braekeleer M. Variant Philadelphia translocations in chronic myeloid leukemia. Cytogenet Cell Genet 1987; 44: 215–222
  • Van der Plas D C, Grosveld G, Hagemeijer A. Review of clinical, cytogenetic, and molecular aspects of Ph-negative CML. Cancer Genet Cytogenet 1991; 52: 143–156
  • Kantarjian H M, Deisseroth A, Kurzrock R, et al. Chronic myelogenous leukemia: A concise update. Blood 1993; 82: 691–703
  • First International Workshop. on Chromosomes in Leukaemia 1977: Chromosomes in Ph'-positive chronic granulocytic leukaemia. Br J Haematol 1978; 39: 305–310
  • Groffen J, Stephenson J R, Heisterkamp N, et al. Philadelphia chromosomal breakpoints are clustered with a limited region, bcr, on chromosome 22. Cell 1984; 36: 93–99
  • Heisterkamp N, Stam K, Groffen J, et al. Structural organization of the bcr gene and its role in the Ph' translocation. Nature 1985; 315: 758–761
  • Shtivelman E, Lifshitz B, Gale R P, et al. Fused transcripts of abl and bcr genes in chronic myelogenous leukaemia. Nature 1985; 315: 550–554
  • Grosveld G, Verwoerd T, Van Agthoven T, et al. The chronic myelocytic cell line K562 contains a breakpoint in bcr and produces a chimeric bcr/c-abl transcript. J Mol Cell Biol 1986; 6: 607–616
  • Gale R P, Goldman J M. Rapid progress in chronic myelogenous leukemia. Leukemia 1988; 2: 321–324
  • Travis L B, Pierre R V, Dewald G W. Ph'-negative chronic granulocytic leukemia: A nonentity. Am J Clin Pathol 1986; 85: 186–193
  • Yunis J J, Lobell M, Arnesen M A, et al. Refined chromosome study helps define prognostic subgroups in most patients with primary myelodysplastic syndrome and acute myelogenous leukaemia. Br J Haematol 1988; 68: 189–194
  • Fourth International Workshop on Chromosomes in Leukemia. A prospective study of acute nonlymphocytic leukemia. Cancer Genet Cytogenet 1984; 11: 249–360
  • Marosi C, Köller U, Koller-Weber E, et al. Prognostic impact of karyotype and immunologic phenotype in 125 adult patients with de novo AML. Cancer Genet Cytogenet 1992; 61: 14–25
  • Heim S, Bekassy A N, Garzicz S, et al. Bone marrow karyotypes in 94 children with acute leukemia. Eur J Haematol 1990; 44: 227
  • Heinonen K, Rautonen J, Slimes M A, et al. Cytogenetic study of 105 children with acute lymphoblastic leukemia. Eur J Haematol 1988; 41: 237–242
  • Prigogina E L, Puchkova G P, Mayakova S A. Nonrandom chromosomal abnormalities in acute lymphoblastic leukemia of childhood. Cancer Genet Cytogenet 1988; 32: 183–203
  • Third International Workshop on Chromosomes in Leukemia. 1980: Clinical significance of chromosomal abnormalities in acute lymphoblastic leukemia. Cancer Genet Cytogenet 1981; 4: 111–137
  • Group Francais de Cytogenetique Hematologique. Collaborative study of karyotypes in childhood acute lymphoblastic leukemias. Leukemia 1993; 7: 10–19
  • Bennett J M, Catovsky D, Daniel M T, et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 626–629
  • Heim S. Numerical chromosome aberrations in human neoplasia. Cancer Genet Cytogenet 1986; 22: 99–108
  • Hagemeijer A, Hahlen K, Abels J. Cytogenetic follow-up of patients with nonlymphocytic leukemia. II. Acute nonlymphocytic leukemia. Cancer Genet Cytogenet 1981; 3: 109–124
  • Fenaux P, Preudhomme C, Lai J L, et al. Cytogenetics and their prognostic value in de novo acute myeloid leukaemia: a report on 283 cases. Br J Haematol 1989; 73: 61–67
  • Berger R, Flandrin G, Bernheim A, et al. Cytogenetic studies on 519 consecutive de novo acute nonlymphocytic leukemias. Cancer Genet Cytogenet 1987; 29: 9–21
  • Mitelman F, Heim S. Quantitative acute leukemia cytogenetics. Genes Chromos Cancer 1992; 5: 57–66
  • Heim S, Mitelman F. Cancer Cytogenetics, 2nd ed. Wiley-Liss, New York 1995
  • Schiffer C A, Lee E J, Tomiyasu T, et al. Prognostic impact of cytogenetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood 1989; 73: 263–270
  • Dewald G W, Schad C R, Lilla V C, et al. Frequency and photographs of HGM11 chromosome anomalies in bone marrow samples from 3,996 patients with malignant hematologic neoplasms. Cancer Genet Cytogenet 1993; 68: 60–69
  • Swansbury G J, Lawler S D, Alimena G, et al. Long-term survival in acute myelogenous leukemia: A second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet 1994; 73: 1–7
  • Cortes J E, Kantarjian H, O'Brien S, et al. Clinical and prognostic significance of trisomy 21 in adult patients with acute myelogenous leukemia and myelodysplastic syndromes. Leukemia 1995; 9: 115–117
  • Mitelman F, Kaneko Y, Trent J. Report of the committee on chromosome changes in neoplasia. Cytogenet Cell Genet 1991; 58: 1053–1079
  • Sreekantaiah C, Baer M R, Morgan S, et al. Trisomy/tetrasomy 13 in seven cases of acute leukemia. Leukemia 1990; 4: 781–785
  • Cuneo A, Ferrant A, Michaux J L, et al. Cytogenetic profile of minimally differentiated (FAB MO) acute myeloid leukemia: correlation with clinicobiologic findings. Blood 1995; 85: 3688–3694
  • Le Beau M M, Albain K S, Larson R A, et al. Clinical and cytogenetic correlations in 63 patients with therapy-related myelodys-plastic syndromes and acute nonlymphocytic leukemia: further evidence for characteristic abnormalities of chromosomes no. 5 and 7. J Clin Oncol 1986; 4: 325–345
  • Pedersen-Bjergaard J, Philip P, Larsen S O, et al. Therapy-related myelodysplasia and acute myeloid leukemia. Cytogenetic characteristics of 115 consecutive cases and risk in seven cohorts of patients treated intensively for malignant diseases in the Copenhagen series. Leukemia 1993; 12: 1975–1986
  • Samuels B L, Larson R A, Le Beau M M, et al. Specific chromosomal abnormalities in acute nonlymphocytic leukemia correlate with drug susceptibility in vivo. Leukemia 1988; 2: 79–83
  • Nimer S D, Golde D W. The 5q- abnormality. Blood 1987; 70: 1705–1712
  • Boultwood J, Lewis S, Wainscoat J S. The 5q- syndrome. Blood 1994; 84: 3253–3260
  • Grignani F, Fagioli M, Alcalay M, et al. Acute promyelocytic leukemia: from genetics to treatment. Blood 1994; 83: 10–25
  • Licht J D, Chomienne C, Goy A, et al. Clinical and molecular characterization of a rare syndrome of acute promyelocytic leukemia associated with translocation (11; 17). Blood 1995; 85: 1083–1094
  • Petkovic I, Konja J, Nakic M. Cytogenetic analysis in children with acute nonlymphocytic leukemia. Cancer Genet Cytogenet 1992; 58: 155–159
  • Alcalay M, Zangrilli D, Pandolfi P P, et al. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor a locus. Proc Natl Acad Sci USA 1991; 88: 1977–1981
  • Borrow J, Goddard A D, Sheer D, et al. Molecular analysis of acute promyelocytic leukemia breakpoint. Science 1990; 249: 1577–1580
  • De The H, Chomienne C, Lanotte M, et al. The t(15;17) translocation of acute promyelocytic leukaemia. Nature 1990; 347: 558–561
  • Kamada N, Okada K, Oguma N, et al. C-G translocation in acute myelocytic leukemia with low neutrophil alkaline phosphatase activity. Cancer 1976; 37: 2380–2387
  • Sandberg A A. The Chromosomes in Human Cancer and Leukemia. Elsevier Science Publishers, New York 1980
  • Hurwitz C A, Raimondi S C, Head D, et al. Distinctive immunophenotypic features of t(8;21)(q22;q22) acute myeloblasts leukemia in children. Blood 1992; 80: 3182–3188
  • Tallman M S, Hakimian D, Shaw J M, et al. Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol 1993; 11: 690–697
  • Raimondi S C, Kalwinsky D K, Hayashi Y, et al. Cytogenetics of childhood acute nonlymphocytic leukemia. Cancer Genet Cytogenet 1989; 40: 13–27
  • Berger R, Bernheim A, Daniel M-T, et al. Cytologic characterization and significance of normal karyotypes in t(8;21) acute myeloblasts leukemia. Blood 1982; 59: 171–178
  • Groupe Francais de Cytogenetique Hematologique. Acute myelogenous leukemia with an 8;21 translocation. A report on 148 cases from the Groupe Francais de Cytogenetique Hematologique. Cancer Genet Cytogenet 1990; 44: 169–179
  • Martinez-Climent J A, Lane N J, Rubin C M, et al. Clinical and prognostic significance of chromosomal abnormalities in childhood acute myeloid leukemia de novo. Leukemia 1995; 9: 95–101
  • Erickson P, Gao J, Chang K-S, et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80: 1825–1831
  • Roulston D, Nucifora G, Dietz-Band J, et al. Detection of rare 21q22 translocation breakpoints within the AML1 gene in myeloid neoplasms by fluorescence in situ hybridization. Blood 1993; 82: 532a, (abstract)
  • Romana S P, Mauchauffe M, Le Coniat M, et al. The t(12;21) of acute lymphoblastic leukemia results in a tel-AML1 gene fusion. Blood 1995; 85: 3662–3670
  • Larson R A, Williams S F, Le Beau M M, et al. Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood 1986; 68: 1242–1249
  • Bernard P, Dachary D, Reiffers J, et al. Acute nonlymphocytic leukemia with marrow eosinophilia and chromosome 16 abnormality: A report of 18 cases. Leukemia 1989; 3: 740–745
  • Campbell L J, Challis J, Fok T, et al. Chromosome 16 abnormalities associated with myeloid malignancies. Genes Chromos Cancer 1991; 3: 55–61
  • Le Beau M M, Larson R A, Bitter M A, et al. Association of an inversion of chromosome 16 with abnormal marrow eosinophils in acute myelomonocytic leukemia. A unique cytogenetic-clinicopathological association. N Engl J Med 1983; 309: 630–636
  • Liu P, Tarle S A, Hajra A, et al. Fusion between transcription factor CBF-beta/PEBP2-beta and a myosin heavy chain in acute myeloid leukemia. Science 1993; 261: 1041–1044
  • Redondo J M, Pfohl J L, Hernandez-Munain C, et al. Indistinguishable nuclear factor binding to functional core sites of the T cell receptor 8 and murine leukemia virus enhancers. Mol Cell Biol 1992; 12: 4817–4823
  • Nuchprayoon I, Meyers S, Scott L M, et al. PEBP2/CBF, the murine homolog of the human myeloid AML1 and PEBP2β7 CBFβ proto-oncoproteins, regulates the murine myeloperoxidase and neutrophil elastase genes in immature myeloid cells. Mol Cell Biol 1994; 14: 5558–5568
  • Felix C A, Hosier M R, Winick N J, et al. ALL-1 gene rearrangements in DNA topoisomerase II inhibitor-related leukemia in children. Blood 1995; 85: 3250–3256
  • Corral J, Forster A, Thompson S, et al. Acute leukemias of different lineages have similar MLL gene fusions encoding related chimeric proteins resulting from chromosomal translocation. Proc Natl Acad Sci USA 1993; 90: 8538–8542
  • Hunger S P, Tkachuk D C, Amylon M D, et al. HRX involvement in de novo and secondary leukemias with diverse chromosome 11q23 abnormalities. Blood 1993; 81: 3197–3203
  • Sait S NJ, Raimondi S C, Look A T, et al. A t(11;12) 11q23 leukemic breakpoint that disrupts the MLL gene. Genes Chromos Cancer 1993; 7: 28–31
  • Thirman M J, Gill H J, Burnett R C, et al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations. N Engl J Med 1993; 329: 909–914
  • Raimondi S C, Peiper S C, Kitchingman G R, et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood 1989; 73: 1627–1634
  • Cimino G, Nakamura T, Gu Y, et al. An altered 11-kilobase transcript in leukemic cell lines with the t(4;11)(q21;q23) chromosome translocation. Cancer Res 1992; 52: 33811–33813
  • Mitelman F. Catalog of Chromosome Aberrations in Cancer, 5th ed. Wiley-Liss, New York 1994
  • Ludwig W-D, Bartram C R, Ritter J, et al. Ambiguous phenotypes and genotypes in 16 children with acute leukemia as characterized by multiparameter analysis. Blood 1988; 71: 1518–1528
  • Cuneo A, Ferrant Z, Michaux J-L, et al. Clinical review on features and cytogenetic patterns in adult acute myeloid leukemia with lymphoid markers. Leuk Lymphoma 1993; 9: 285–291
  • Raimondi S C, Peiper S C, Kitchingman G R, et al. Childhood acute lymphoblastic leukemia with chromosomal breakpoints at 11q23. Blood 1989; 73: 1627–1634
  • Kaneko Y, Maseki N, Takasaki N B, et al. Clinical and hematologic characteristics in acute leukemia with 11q23 translocations. Blood 1986; 67: 484–491
  • Kaneko Y, Shikano T, Maseki N, et al. Clinical characteristics of infant acute leukemia with or without 11q23 translocations. Leukemia 1988; 2: 672–676
  • Tkachuk D C, Kohler S, Cleary M L. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992; 71: 691–700
  • Tse W, Zhu W, Chen H S, et al. A novel gene AF1q, fused to MLL in t(1;11)(q21;q23), is specifically expressed in leukemic and immature hematopoietic cells. Blood 1995; 85: 650–656
  • Iida S, Seto M, Yamamoto K, et al. MLLT3 gene on 9p22 involved in t(9;11) leukemia encodes a serine/proline rich protein homologous to MLLT1 on 19p13. Oncogene 1993; 8: 3085–3092
  • Pui C-H, Behm F G, Raimondi S C, et al. Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med 1989; 321: 136–142
  • Smith M A, Rubinstein L, Ungerleider R S. Therapy-related acute myeloid leukemia following treatment with epipodophyllotoxins: Estimating the risks. Med Piediatr Oncol 1994; 23: 86–98
  • Sandoval C, Pui C-H, Bowman L C, et al. Secondary acute myeloid leukemia in children previously treated with alkylating agents, intercalating topoisomerase II inhibitors, and irradiation. J Clin Oncol 1993; 11: 1039–1045
  • Bloomfield C D, Goldman A I, Alimena G, et al. Chromosomal abnormalities identify high-risk and low-risk patients with acute lymphoblastic leukemia. Blood 1986; 67: 415–420
  • Bloomfield C D, Seeker-Walker L M, Goldman A I, et al. Six-year follow-up of the clinical significance of karyotype in acute lymphoblastic leukemia. Cancer Genet Cytogenet 1989; 40: 171–185
  • Third International Workshop on Chromosomes in Leukemia. (1980): Chromosomal abnormalities in acute lymphoblastic leukemia. Cancer Genet Cytogenet 1981; 4: 101–111
  • Seeker-Walker L M, Lawler S D, Hardisty R M. Prognostic implications of chromosomal findings in acute lymphoblastic leukaemia at diagnosis. Br Med J 1978; 2: 1529–1530
  • Heerema N A, Palmer C G, Baehner R L. Karyotypic and clinical findings in a consecutive series of children with acute lymphocytic leukemia. Cancer Genet Cytogenet 1985; 17: 165–179
  • Seeker-Walker L M, Chessells J M, Stewart E L, et al. Chromosomes and other prognostic factors in acute lymphoblastic leukaemia: A long-term follow-up. Br J Haematol 1989; 72: 336–342
  • Williams D L, Tsiatis A, Brodeur G M, et al. Prognostic importance of chromosome number in 136 untreated children with acute lymphoblastic leukemia. Blood 1982; 60: 864–871
  • Seeker-Walker L M. Prognostic and biological importance of chromosome findings in acute lymphoblastic leukemia. Cancer Genet Cytogenet 1990; 49: 1–13
  • Groupe Francais de Cytogenetique Hematologique. Collaborative study of karyotypes in childhood acute lymphobblastic leukemias. Leukemia 1993; 7: 10–19
  • Raimondi S C. Current status of cytogenetic research in childhood acute lymphoblastic leukemia. Blood 1993; 81: 2237–2251
  • Pui C-H, Raimondi S C, Dodge R K, et al. Prognostic importance of structural chromosomal abnormalities in children with hyper-diploid (50 chromosomes) acute lymphoblastic leukemia. Blood 1989; 73: 1963–1967
  • Crist W, Carroll A, Shuster J, et al. Philadelphia chromosome positive childhood acute lymphoblastic leukemia: Clinical and cytogenetic characteristics and treatment outcome. A Pediatric Oncology Group study. Blood 1990; 76: 489–494
  • Ribeiro R C, Pui C-H. Prognostic factors in childhood acute lymphoblastic leukemia. Heme Pathol 1993; 7: 121–142
  • Pui C-H, Carroll A J, Raimondi S C, et al. Clinical presentation, karyotypic characterization, and treatment outcome of childhood acute lymphoblastic leukemia with near-haploid or hypodiploid > 45 line. Blood 1990; 75: 1170–1177
  • Brodeur G M, Williams D L, Look A T, et al. Near-haploid acute lymphoblastic leukemia: A unique subgroup with a poor prognosis?. Blood 1981; 58: 14–19
  • Leder P, Battey J, Lenoir G, et al. Translocations among antibody genes in human cancer. Science 1983; 222: 765–770
  • Croce C M, Erikson J, Haluska F G, et al. Molecular genetics of human B- and T-cell neoplasia. Cold Spring Harb Symp 1986; 51: 891–898
  • Korsmeyer S J. Chromosomal translocations in lymphoid malignancies reveal novel proto-oncogenes. Ann Rev Immunol 1992; 10: 785–807
  • Cairo M S, Krailo M, Hutchinson R, et al. Results of a phase II trial of “French” (F) (LMB-86) or “Orange” (O) (CCG-Hybrid) in children with advanced non-lymphoblastic non-Hodgkin's lymphoma: an improvement in survival. Proc ASCO 1994; 13: 392, (abstract)
  • Rabbitts T H. Chromosomal translocations in human cancer. Nature 1994; 372: 143–149
  • Pui C-H, Williams D L, Roberson P K, et al. Correlation of karyotype and immunophenotype in childhood acute lymphoblastic leukemia. J Clin Oncol 1988; 6: 56–61
  • Uckun F M, Gajl-Peczalska K J, Provisor A L, et al. Immunophenotype-karyotype associations in human acute lymphoblastic leukemia. Blood 1989; 73: 271–280
  • Pui C-H, Behm F G, Singh B, et al. Heterogeneity of presenting features and their relation to treatment outcome in 120 children with T-cell acute lymphoblastic leukemia. Blood 1990; 75: 174–179
  • Carroll A J, Crist W M, Link M P, et al. The t(1;14)(p34;q11) is nonrandom and restricted to T-cell acute lymphoblastic leukemia: A Pediatric Oncology Group study. Blood 1990; 76: 1220–1224
  • Finger L R, Kagan J, Christopher G, et al. Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. Proc Natl Acad Sci USA 1989; 86: 5039–5043
  • Begley C G, Apian P D, Davey M P, et al. Chromosomal translocation in a human leukemic stem-cell line disrupts the T-cell antigen receptor 5-chain diversity region and results in a previously unreported fusion transcript. Proc Natl Acad Sci USA 1989; 86: 2031–2035
  • Bash R O, Hall S, Timmons C F, et al. Does activation of the TALI gene occur in a majority of patients with T-cell acute lymphoblastic leukemia? A Pediatric Oncology Group study. Blood 1995; 86: 666–676
  • Apian P D, Lombardi D P, Ginsberg A M, et al. Disruption of the human SCL locus by “illegitimate” V-(D)-J recombinase activity. Science 1990; 250: 1426–1429
  • Pui C-H, Raimondi S C, Hancock M L, et al. Immunologic, cytogenetic, and clinical characterization of childhood acute lymphoblastic leukemia with the t(1;19)(q23;p13) or its derivative. J Clin Oncol 1994; 12: 2601–2606
  • Fletcher J A, Lynch E A, Kimball V M, et al. Translocation (9;22) is associated with extremely poor prognosis in intensively treated children with acute lymphoblastic leukemia. Blood 1991; 77: 435–439
  • Kurzrock R, Gutterman J U, Talpaz M. The molecular genetics of Philadelphia chromosome-positive leukemias. N Engl J Med 1988; 319: 990–998
  • Clark S S, McLaughlin J, Timmons M, et al. Expression of a distinctive BCR-ABL oncogene in Phi-positive acute lymphocytic leukemia (ALL). Science 1988; 239: 775–777
  • Suryanarayan K, Hunger S P, Kohler S, et al. Consistent involvement of the BCR gene by 9;22 breakpoints in pediatric acute leukemias. Blood 1991; 77: 324–330
  • Pui C-H, Frankel L S, Carroll A J, et al. Clinical characteristics and treatment outcome of childhood acute lymphoblastic leukemia with the t(4;11)(q21;q23): A collaborative study of 40 cases. Blood 1991; 77: 440–447
  • Schardt C, Ottmann O G, Hoelzer D, et al. Acute lymphoblastic leukemia with the (4;11) translocation: combined cytogenetic, immunlogical and molecular genetic analyses. Leukemia 1992; 6: 370–374
  • Heerema N A, Arthur D C, Sather H, et al. Cytogenetic features of infants less than 12 months of age at diagnosis of acute lymphoblastic leukemia: impact of the 11q23 breakoint on outcome: A report of the Childrens Cancer Group. Blood 1994; 83: 2274–2284
  • Lampert F, Harbott J, Ludwig W-D, et al. Acute leukemia with chromosome translocation (4;11): 7 new patients and analysis of 71 cases. Blut 1987; 54: 325–335
  • Gu Y, Nakamura T, Alder H, et al. The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992; 71: 701–708
  • Domer P H, Fakharzadeh S S, Chen C-S, et al. Acute mixed-lineage leukemia t(4;11)(q21;q23) generates an MLL-AF4 fusion product. Proc Natl Acad Sci USA 1993; 90: 7884–7888
  • Morrissey J, Tkachuk D C, Milatovich A, et al. A serine/prolinerich protein is fused to HRX in t(4;11) acute leukemias. Blood 1993; 81: 1124–1131
  • Bigner S H, Mark J, Ballard D E, et al. Chromosomal evolution in malignant gliomas starts with specific and usually numerical deviations. Cancer Genet Cytogenet 1986; 22: 121–135
  • Cowan J M, Halaban R, Francke U. Cytogenetic analysis of melanocytes from premalignant nevi and melanomas. J Natl Cancer Inst 1988; 80: 1159–1164
  • Lukeis R, Irving L, Garson M. Cytogenetics of non-small cell lung cancer. Analysis of consistent non-random abnormalities. Genes Chromos Cancer 1990; 2: 116–124
  • Chilcote R R, Brown E, Rowley J D. Lymphoblastic leukemia with lymphomatous features associated with abnormalities of the short arm of chromosome 9. N Engl J Med 1985; 313: 286–292
  • Laï J L, Fenaux P, Pollet J P, et al. Acute lymphocytic leukemia with 9p anomalies. A report of four additional cases and review of the literature. Cancer Genet Cytogenet 1988; 33: 99–109
  • Carroll A J, Castleberry R P, Crist W M. Lack of association between abnormalities of the chromosome 9 short arm and either “lymphomatous” features or T cell phenotype in childhood acute lymphocytic leukemia. Blood 1987; 69: 735–738
  • Murphy S B, Raimondi S C, Rivera G K, et al. Nonrandom abnormalities of chromosome 9p in childhood acute lymphoblastic leukemia: association with high-risk clinical features. Blood 1989; 74: 409–415
  • Kamb A, Shattuck-Eidens D, Eeles R, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Science 1994; 264: 436–440
  • Serrano M, Harmon G J, Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 1993; 366: 704–707
  • Nobori T, Miura K, Wu D J, et al. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994; 368: 753–756
  • Takeuchi S, Bartram C R, Seriu T, et al. Analysis of a family of cyclin-dependent kinase inhibitors: p15/MTS2/INK4B, p16/ MTS1/TNK4A, and p18 genes in acute lymphoblastic leukemia of childhood. Blood 1995; 86: 755–760
  • Rasool O, Heyman M, Brandter L B, et al. p15ink4B and p16ink4 gene inactivation in acute lymphocytic leukemia. Blood 1995; 85: 3431–3436
  • Hebert J, Cayuela J M, Berkeley J, et al. Candidate tumor-suppressor genes MTS1 (p16INK4A) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 1995; 84: 4038–4044
  • Szczylik C, Sikorski T, Nicolaides N C, et al. Selective inhibition of leukemia cell proliferatin by bcr-abl antisense oligodeoxynucleotides. Science 1991; 253: 562–565

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.