888
Views
53
CrossRef citations to date
0
Altmetric
Review Article

Operating bioreactors for microbial exopolysaccharide production

, , &
Pages 170-185 | Received 27 Mar 2010, Accepted 25 May 2010, Published online: 05 Oct 2010

References

  • Adrio JL, Demain AL. (2006). Genetic improvement of processes yielding microbial products. FEMS Microbiol Rev, 30, 187–214.
  • Amanullah A, Satti S, Nienow AW. (1998). Enhancing Xanthan fermentations by different modes of glucose feeding. Biotechnol Prog, 14, 265–269.
  • Becker A, Katzen F, Puhler A, Ielpi L. (1998). Xanthan gum biosynthesis and application: a biochemical/genetic perspective. Appl Microbiol Biotechnol, 50, 145–152.
  • Becker A, Vorholter F-J. (2009). Xanthan Biosynthesis by Xanthomonas Bacteria: An Overview of the Current Biochemical and Genomic Data. In: Rehm BHA, ed. Microbial Production Of Biopolymers And Polymers Precursor: Applications And Perspectives. Norfolk, UK: Caster Academic Press.
  • Born K, Langendorff V, Boulenguer P. (2005). Xanthan. In: Steinbuchel A, Doi Y, ed. Biotechnology of Biopolymers: From Synthesis to Patents. Weinheim: Wiley-VCH.
  • Brown GD, Gordon S (2005). Immune recognition of fungal β-glucans. Cell Microbial, 7, 471–479.
  • Campbell BS, McDougall BM, Seviour RJ. (2003). Why do exopolysaccharide yields from the fungus Aureobasidium pullulans fall during batch culture fermentation? Enzyme Microb Technol, 33, 104–112.
  • Campbell BS, Siddique ABM, McDougall BM, Seviour RJ. (2004). Which morphological forms of the fungus Aureobasidium pullulans are responsible for pullulan production? FEMS Microbiol Lett, 232, 225–228.
  • Casas JA, Santos VE, Garcia-Ochoa F. (2000). Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme Microb Technol, 26, 282–291.
  • Chen JZ, Seviour R. (2007). Medicinal importance of fungal beta-(1 -> 3), (1 -> 6)-glucans. Mycol Res, 111, 635–652.
  • Chen ZP, Lovett D, Morris J. (2008). Computer Aided Chem Eng, 25, 967.
  • Chisti Y, Jauregui-Haza UJ. (2002). Oxygen transfer and mixing in mechanically agitated airlift bioreactors. Biochem Eng J, 10, 143–153.
  • Crognale S, Bruno M, Moresi M, Petruccioli M. (2007). Enhanced production of beta-glucan from Botryosphaeria rhodina using emulsified media or fan impellers. Enzyme Microb Technol, 41, 111–120.
  • Evans CGT, Yeo RG, Elwood DC. (1979). Continuous culture studies on the production of extracellular polysaccharides by Xanthomonas juglandis. In Microbial Polysaccharide and Polysaccharases: Berkely RCW, Gooday GW, Ellwood DC, pp. 51–68. London: Academic Press.
  • Fazenda ML (2008). Submerged culture fermentation of the Basidiomycete fungus Ganoderma lucidum for biomass formation. PhD thesis. University of Strathclyde, Glasgow.
  • Fazenda ML, Seviour R, McNeil B, Harvey LM. (2008). Submerged culture fermentation of “higher fungi”: The macrofungi. Adv Appl Microbiol, 63, 33–103.
  • Fleming GT, Patching JW. (2008). The Fermenter In Research And Development. In: McNeil B, Harvey LA, eds. Practical Fermentation Technology. Chichester: John Wiley and Sons.
  • Flores F, Torres LG, Galindo E. (1994). Effect of the dissolved-oxygen tension during cultivation of Xanthomonas-campestris on the production and quality of xanthan gum. J Biotechnol, 34, 165–173.
  • Gaidhani HK, McNeil B, Ni X. (2005). Fermentation of pullulan using an oscillatory baffled fermenter. Chem Eng Res Des, 83, 640–645.
  • Gaidhani HK, McNeil B, Ni XW. (2003). Production of pullulan using an oscillatory baffled bioreactor. J Chem Technol Biotechnol, 78, 260–264.
  • Garcia-Ochoa F, Gomez E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv, 27, 153–176.
  • Garcia-Ochoa F, Santos VE, Casas JA, Gomez E. (2000). Xanthan gum: production, recovery, and properties. Biotechnol Adv, 18, 549–579.
  • Giavasis I, Harvey LM, McNeil B. (2000). Gellan gum. Crit Rev Biotechnol, 20, 177–211.
  • Giavasis I, Robertson I, McNeil B, Harvey LM. (2003). Simultaneous and rapid monitoring of biomass and biopolymer production by Sphingomonas paucimobilis using Fourier transform-near infrared spectroscopy. Biotechnol Lett, 25, 975–979.
  • Gibbs PA, Seviour RJ. (1992). Influence of bioreactor design on exopolysaccharide production by Aureobasidium pullulans. Biotechnol Lett, 14, 491–494.
  • Gibbs PA, Seviour RJ. (1996a). Does the agitation rate and/or oxygen saturation influence exopolysaccharide production by Aureobasidium pullulans in batch culture? Appl Microbiol Biotechnol, 46, 503–510.
  • Gibbs PA, Seviour RJ. (1996b). Pullulan. In: Dimitriu S, ed. Polysaccharides in Medicinal Applications New York: Marcel Dekker
  • Gibbs PA, Seviour RJ. (1998). The production of exopolysaccharides by Aureobasidium pullulans in fermenters with low-shear configurations. Appl Microbiol Biotechnol, 49, 168–174.
  • Gibbs PA, Seviour RJ, Schmid F. (2000). Growth of filamentous fungi in submerged culture: problems and possible solutions. Crit Rev Biotechnol, 20, 17–48.
  • Gill NK, Appleton M, Baganz F, Lye GJ. (2008). Design and characterisation of a miniature stirred bioreactor system for parallel microbial fermentations. Biochem Eng J, 39, 164–176.
  • Gőksungur Y, Dağbağli S, Uçan A, Güvenç U. (2005). Optimization of pullulan production from synthetic medium by Aureobasidium pullulans in a stirred tank reactor by response surface methodology. J Chem Technol Biotechnol, 80, 819–827.
  • Gong Y, Wang C, Lai R C, Su K, Zhang F, Wang D. (2009). An improved injectable polysaccharide hydrogel; modified gellan gum for long term cartilage regeneration in vitro. J Mat Chem, 19, 1968–1977.
  • Gura E, Rau U. (1993). Comparison of agitators for the production of branched beta-1,3-D-glucans by Schizophyllumcommune. J Biotechnol, 27, 193–201.
  • Haury JF. (2006). Implementation of Quality by Design. Drug Information Association - 42nd Annual Meeting. Philadelphia. Available at: <http://www.fda.gov/ohrms/dockets/ac/06/briefing/2006-4241B1-02-22-FDA-QbD%20OBP2%20304_Haury.pdf>
  • Hewitt C, Nienow A. (2007). The use of emulsification technologies to enhance rapeseed oil consumption during industrial Streptomyces rimosus fedbatch fermentations. J Biotechnol, 131:S133–S134.
  • Hsieh C, Liu CJ, Tseng MH, Lo CT, Yang YC. (2006a). Effect of olive oil on the production of mycelial biomass and polysaccharides of Grifola frondosa under high oxygen concentration aeration. Enzyme Microb Technol, 39, 434–439.
  • Hsieh C, Tseng MH, Liu CJ. (2006b). Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients. Enzyme Microb Technol, 38, 109–117.
  • Hsu CH, Lo YM. (2003). Characterization of xanthan gum biosynthesis in a centrifugal, packed-bed reactor using metabolic flux analysis. Process Biochem, 38, 1617–1625.
  • Hwang HJ, Kim SW, Choi JW, Yun JW. (2003). Production and characterization of exopolysaccharides from submerged culture of Phellinus linteus KCTC 6190. Enzyme Microb Technol, 33, 309–319.
  • Israilides C, Smith A, Scanlon B, Barnett C. (1999). Pullulan from agro-industrial wastes. Biotechnol Genet Eng, 16, 309–324.
  • Kang X, Wang H, Wang Y, Harvey LM, McNeil B. (2001). Hydrodynamic characteristics and mixing behaviour of Sclerotium glucanicum culture fluids in an airlift reactor with an internal loop used for scleroglucan production. J Ind Microbiol Biotechnol, 27, 208–214.
  • Lawford HG, Rousseau JD. (1991). Bioreactor design considerations in the production of high-quality microbial exopolysaccharide. Appl Biochem Biotechnol, 28-9, 667–684.
  • Lawford HG, Rousseau J D (1992). Production of β-1,3-glucan exopolysaccharide in low shear systems. Appl Biochem Biotechnol, 34/35, 597–605.
  • Lazaridou A, Roukas T, Biliaderis CG, Vaikousi H. (2002). Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme Microb Technol, 31, 122–132.
  • Leathers TD. (2003). Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol, 62, 468–473.
  • Lee BC, Bae JT, Pyo HB, Choe TB, Kim SW, Hwang HJ, Yun JW. (2004). Submerged culture conditions for the production of mycelial biomass and exopolysaccharides by the edible basidiomycete Grifola frondosa. Enzyme Microb Technol, 35, 369–376.
  • Lee IY, Kim MK, Lee JH, Seo WT, Jung JK, Lee HW, Park YH. (1999a). Influence of agitation speed on production of curdlan by Agrobacterium species. Bioprocess Eng, 20, 283–287.
  • Lee IY, Seo WT, Kim GJ, Kim MK, Park CS, Park YH. (1997). Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. J Ind Microbiol Biotechnol, 18, 255–259.
  • Lee KM, Lee SY, Lee HY. (1999b). Bistage control of pH for improving exopolysaccharide production from mycelia of Ganoderma lucidum in an air-lift fermentor. J Biosci Bioeng, 88, 646–650.
  • Li Q, Harvey LA, McNeil B. (2008a). Oxygen enrichment effects on protein oxidation, proteolytic activity and the energy status of submerged batch cultures of Aspergillus niger B1-D. Process Biochem, 43, 238–243.
  • Li Q, Harvey LM, McNeil B. (2008b). The effects of elevated process temperature on the protein carbonyls in the filamentous fungus Aspergillus niger B1-D. Process Biochem, 43, 877–881.
  • Li Q, McNeil B, Harvey LM. (2008c). Adaptive response to oxidative stress in the filamentous fungus Aspergillus niger B1-D. Free Radical Biol Med, 44, 394–402.
  • Lo YM, Yang ST, Min DB. (1997). Effects of yeast extract and glucose on xanthan production and cell growth in batch culture of Xanthomonas campestris. Appl Microbiol Biotechnol, 47, 689–694.
  • Lopez MJ, Moreno J, Ramos-Cormenzana A. (2001). Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res, 35, 1828–1830.
  • Lopez MJ, Vargas-Garcia MC, Suarez-Estrella F, Moreno J. (2004). Properties of xanthan obtained from agricultural wastes acid hydrolysates. J Food Eng, 63, 111–115.
  • Macauley-Patrick S, Fazenda ML, McNeil B, Harvey LM. (2005). Heterologous protein production using the Pichia pastoris expression system Yeast, 22, 249–270.
  • Martin K, McDougall BM, McIlroy S, Jayus Chen, JZ, Seviour RJ. (2007). Biochemistry and molecular biology of exocellular fungal beta-(1,3)- and beta-(1,6)-glucanases. FEMS Microbiol Rev, 31, 168–192.
  • Matthews G. (2008). Fermentation equipment selection: lab scale bioreactor design considerations. In: McNeil B, Harvey LM, eds. Practical Fermentation Technology. Chichester: John Wiley and Son.
  • McIntosh M, Stone BA, Stanisich VA. (2005). Curdlan and other bacterial (1 -> 3)-beta-D-glucans. Appl Microbiol Biotechnol, 68, 163–173.
  • McNeil B, Harvey LM. (1993). Viscous fermentation products. Crit Rev Biotechnol, 13, 275–304.
  • McNeil B, Kristiansen B. (1987). Influence of impeller speed upon the pullulan fermentation. Biotechnol Lett, 9, 101–104.
  • Michel M, Seviour RJ, Pethica LM. (1987). Exocellular polysaccharide production by isolates of Epicoccum-purpurascens. Biotechnol Lett, 9, 741–744.
  • Ni X, Jian H, Fitch AW. (2002). Computational fluid dynamic modelling of flow patterns in an oscillatory baffled column. Chem Eng Sci, 57, 2849–2862.
  • Nienow AW. (1990). Agitators for mycelial fermentations. Trends Biotechnol, 8, 224–233.
  • Ono K, Yasuda N, Ueda S. (1977). Studies on pullulan elaboration by Aureobasidium-pullulans s-1.1. effect of pH on pullulan elaboration by Aureobasidium-pullulans s-1. Agric Biol Chem, 41, 2113–2118.
  • Orr D, Zheng W, Campbell BS, McDougall BM, Seviour RJ. (2009). Culture conditions affect the chemical composition of the exopolysaccharide synthesized by the fungus Aureobasidium pullulans. J Appl Microbiol, 107, 691–698.
  • Papagianni M. (2004). Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv, 22, 189–259.
  • Peters HU, Herbst H, Hesselink PGM, Lunsdorf H, Schumpe A, Deckwer WD. (1989). The influence of agitation rate on xanthan production by Xanthomonas-campestris. Biotechnol Bioeng, 34, 1393–1397.
  • Pollock TJ, Mikolajczak M, Yamazaki M, Thorne L, Armentrout RW. (1997). Production of xanthan gum by Sphingomonas bacteria carrying genes from Xanthomonas campestris. J Ind Microbiol Biotechnol, 19, 92–97.
  • Psomas SK, Liakopoulou-Kyriakides M, Kyriakidis DA. (2007). Optimization study of xanthan gum production using response surface methodology. Biochem Eng J, 35, 273–280.
  • Rapp P. (1989). 1,3-Beta-glucanase, 1,6-beta-glucanase and beta-glucosidase activities of Sclerotium-glucanicum - synthesis and properties. J Gen Microbiol, 135, 2847–2858.
  • Rau U. (2004). Glucans secreted by fungi. Turkish Elect J Biotech, 2, 30–36.
  • Rau U, Gura E, Olszewski E, Wagner F. (1992). Enhanced glucan formation of filamentous fungi by effective mixing, oxygen limitation and fed-batch processing. J Ind Microbiol, 9, 19–25.
  • Rau U, Muller RJ, Cordes K, Klein J. (1990). Process and molecular-data of branched 1,3-beta-d-glucans in comparison with xanthan. Bioprocess Eng, 5, 89–93.
  • Rho D, Mulchandani A, Luong JHT, Leduy A. (1988). Oxygen requirement in pullulan fermentation. Appl Microbiol Biotechnol, 28, 361–366.
  • Rosalam S, England R. (2006). Review of xanthan gum production from unmodified starches by Xanthomonas camprestris sp. Enzyme Microb Technol, 39, 197–207.
  • Roukas T, Mantzouridou F. (2001). Effect of the aeration rate on pullulan production and fermentation broth theological properties in an airlift reactor. J Chem Technol Biotechnol, 76, 371–376.
  • Roychoudhury P, O’Kennedy R, McNeil B, Harvey LM. (2007). Multiplexing fibre optic near infrared (NIR) spectroscopy as an emerging technology to monitor industrial bioprocesses. Anal Chim Acta, 590, 110–117.
  • Sanchez S, Demain A L (2008). Metabolic regulation and overproduction of primary metabolites. Microbial Biotechnol, 1, 283–319.
  • Sandford PA. (1979). Exocellular microbial polysaccharides. Adv Carbohyd Chem Biochem, 36, 265–313.
  • Schmid F. (2004). Studies on extracellular ß-glucans from the fungi Epicoccum nigrum and Acremonium spp. PhD Thesis, Bendigo, La Trobe University.
  • Schmid F, Stone BA, McDougall BM, Bacic A, Martin KL, Brownlee RTC, Chai E, Seviour RJ. (2001). Structure of epiglucan, a highly side-chain/branched (1- 3,1-6)-beta-glucan from the micro fungus Epicoccum nigrum Ehrenb. ex Schlecht. Carbohyd Res, 331, 163–171.
  • Schuster R, Wenzig E, Mersmann A. (1993). Production of the fungal exopolysaccharide pullulan by batch-wise and continuous fermentation. Appl Microbiol Biotechnol, 39, 155–158.
  • Selbmann L, Crognale S, Petruccioli M. (2004). Beta-glucan production by Botryosphaeria rhodina in different bench-top bioreactors. J Appl Microbiol, 96, 1074–1081.
  • Seviour RJ, Schmid F, Campbell BC. (2010). Polysaccharides in Medicinal and Pharmaceutical Application. In: Popa V, ed. Shrewsbury: Smithers Rapra (in press), 92.
  • Shingel KI. (2004). Current knowledge on biosynthesis, biological activity, and chemical modification of the exopolysaccharide, pullulan. Carbohyd Res, 339, 447–460.
  • Shu CH, Lin KJ, Wen BJ. (2004). Effects of culture pH on the production of bioactive polysaccharides by Agaricus blazei in batch cultures. J Chem Technol Biotechnol, 79, 998–1002.
  • Simon L, Cayevaugien C, Bouchonneau M. (1993). Relation between pullulan production, morphological state and growth-conditions in Aureobasidium-pullulans - new observations. J Gen Microbiol, 139, 979–985.
  • Singh RS, Saini GK, Kennedy JF. (2008). Pullulan: Microbial sources, production and applications. Carbohydrate Polymers, 73, 515–531.
  • Solomons GL. (1980). Fermenter design and fungal growth. In: Smith JE, Berry D.R., Kristiansen B, ed. Fungal Biotechnology. London: Academic Press 55–80.
  • Stahmann KP, Pielken P, Schimz K-L Sahm, H (1992). Degradation of exocellular β-(1,3)(1,6)-D-glucans by Botrytis cinerea. Appl Environ Microbiol, 58, 3347–3354.
  • Stasinopoulos SJ, Seviour RJ. (1990). Stimulation of exopolysaccharide production in the fungus Acremonium-persicinum with fatty-acids. Biotechnol Bioeng, 36, 778–782.
  • Stasinopoulos SJ, Seviour RJ. (1992). Exopolysaccharide production by Acremonium-persicinum in stirred-tank and airlift fermenters. Appl Microbiol Biotechnol, 36, 465–468.
  • Suh IS, Herbst H, Schumpe A, Deckwer WD. (1990). The molecular-weight of xanthan polysaccharide produced under oxygen limitation. Biotechnol Lett, 12, 201–206.
  • Survase SA, Saudagar PS, Singhal RS. (2007). Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Biores Technol, 98, 1509–1512.
  • Tang YJ, Zhong JJ. (2003). Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enzyme Microb Technol, 32, 478–484.
  • Taurhesia S, McNeil B. (1994). Physicochemical factors affecting the formation of the biological response modifier scleroglucan. J Chem Technol Biotechnol, 59, 157–163.
  • Trinci APJ. (1992). Mycoprotein - a 20-year overnight success story. Mycol Res, 96, 1–13.
  • Űrkűt Z, Dağbağli S, Gőksungar Y. (2007). Optimization of pullulan production using Ca-alginate-immobilized Aureobasidium pullulans by response surface methodology. J Chem Technol Biotechnol, 82, 837–846.
  • Vorhoelter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rueckert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Puehler A. (2008). The genome of Xanthomonas campestris pv. campestris B 100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol, 134, 33–45.
  • Wang YC, McNeil B. (1995b). Production of the fungal exopolysaccharide scleroglucan by cultivation of Sclerotium-glucanicum in an airlift reactor with an external loop. J Chem Technol Biotechnol, 63, 215–222.
  • Wang YC, McNeil B. (1996). Scleroglucan. Crit Rev Biotechnol, 16, 185–215.
  • Wecker A, Onken U. (1991). Influence of dissolved-oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans. Biotechnol Lett, 13, 155–160.
  • Williams JA. (2002). Keys to bioreactor selections. CEP, 98, 34–41.
  • Xia JY, Wang YH, Zhang SL, Chen N, Yin P, Zhuang YP, Chu J. (2009). Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem Eng J, 43, 252–260.
  • Xu CP, Sinha J, Bae JT, Kim SW, Yun JW. (2006). Optimization of physical parameters for exo-biopolymer production in submerged mycelial cultures of two entomopathogenic fungi Paecilomyces japonica and Paecilomyces tenuipes. Lett Appl Microbiol, 42, 501–506.
  • Yang FC, Ke YF, Kuo SS. (2000). Effect of fatty acids on the mycelial growth and polysaccharide formation by Ganoderma lucidum in shake flask cultures. Enzyme Microb Technol, 27, 295–301.
  • Yang ST, Lo YM, Chattopadhyay D. (1998). Production of cell-free xanthan fermentation broth by cell adsorption on fibers. Biotechnol Prog, 14, 259–264.
  • Zheng W, Campbell BS, McDougall BM, Seviour RJ. (2008). Effects of melanin on the accumulation of exopolysaccharides by Aureobasidium pullulans grown on nitrate. Biores Technol, 88, 7480–7486.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.