741
Views
61
CrossRef citations to date
0
Altmetric
Review Article

Peptidoglycan biosynthesis machinery: A rich source of drug targets

, &
Pages 295-336 | Received 30 Apr 2010, Accepted 16 Sep 2010, Published online: 22 Nov 2010

References

  • Abo-Ghalia M, Michaud C, Blanot D, van Heijenoort J. (1985). Specificity of the uridine-diphosphate-N-acetylmuramyl-l-alanyl-d-glutamate: meso-2, 6-diaminopimelate synth- etase from Escherichia coli. Eur J Biochem, 153, 81–87.
  • Alekshun MN, Levy SB. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128, 1037–1050.
  • Allen NE, Nicas TI. (2003). Mechanism of action of oritavancin and related glycopeptide antibiotics. FEMS Microbiol Rev, 26, 511–32.
  • Anderson MS, Eveland SS, Onishi HR, Pompliano DL. (1996). Kinetic mechanism of the Escherichia coli UDP-MurNAc-tripeptide-d-alanyl-d-alanine-adding enzyme: use of a glutathione S-transferase fusion. Biochemistry, 35, 16264–16269.
  • Andres CJ, Bronson JJ, D’Andrea SV, Deshpande MS, Falk PJ, Grant-Young KA, Harte WE, Ho HT, Misco PF, Robertson JG, Stock D, Sun Y, Walsh AW. (2000). 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg Med Chem Lett, 10, 715–717.
  • Andricopulo AD, Salum LB, Abraham DJ. (2009). Structure-based drug design strategies in medicinal chemistry. Curr Top Med Chem, 9, 771–90.
  • Andruszkiewic R, Chmara H, Milewski S, Zewiawa T, Borowski E. (1990). Antimicrobial properties of N3-(iodoacetyl)-l-2,3-diaminopropanoic acid-peptide conjugates. J Med Chem, 33, 2755–2759.
  • Ansai T, Yamashita Y, Awano S, Shibata Y, Wachi M, Nagai K, Takehara T. (1995). A murC gene in Porphyromonas gingivalis 381. Microbiology, 141, 2047–2052.
  • Anwar RA, Vlaovic M. (1986). UDP-N-acetylmuramoyl-l-alanyl-d-glutamyl-l-lysine synthetase from Bacillus sphaericus: activation by potassium phosphate. Biochem Cell Biol, 64, 297–303.
  • Auger G, van Heijenoort J, Mengin-Lecreulx D, Blanot D. (2003). A MurG assay which utilises a synthetic analogue of lipid I. FEMS Microbiol Lett, 219, 115–119.
  • Auger G, van Heijenoort J, Vederas JC, Blanot D. (1996). Effect of analogues of diaminopimelic acid on the meso-diaminopimelate-adding enzyme from Escherichia coli. FEBS Lett, 391, 171–174.
  • Auvin S, Cochet O, Kucharczyk N, Le Goffic F, Badet B. (1991). Synthesis and evaluation of inhibitors for Escherichia coli glucosamine-6-phosphate synthase. Bioorg Chem, 19, 143–151
  • Azzolina BA, Yuan X, Anderson MS, El-Sherbeini M. (2001). The cell wall and cell division gene cluster in the mra operon of Pseudomonas aeruginosa: cloning, production, and purification of active enzymes. Protein Expr Purif, 21, 393–400.
  • Bachelier A, Mayer R, Kleina CD. (2006). Sesquiterpene lactones are potent and irreversible inhibitors of the antibacterial target enzyme MurA. Bioorg Med Chem Lett, 16, 5605–5609
  • Badet B, Vermoote P, Haumont PY, Lederer F, Le Goffic F. (1987). Glucosamine synthetase from Escherichia coli: purification, properties, and glutamine-utilizing site location. Biochemistry, 26, 1940–1948.
  • Badet B, Vermoote P, Le Goffic F. (1988). Glucosamine synthetase from Escherichia coli: kinetic mechanism and inhibition by N3-fumaroyl-l-2,3-diaminopropionic derivatives. Biochemistry, 27, 2282–2287.
  • Badet-Denisot MA, Fernandez-Herrero LA, Berenguer J, Ooi T, Badet B. (1997). Characterization of L-glutamine: D-fructose-6-phosphate amidotransferase from an extreme thermophile Thermus thermophilus HB8. Arch Biochem Biophys, 337, 129–136.
  • Badet-Denisot MA, Leriche C, Massiere F, Badet B. (1995). Nitrogen transfer in E coli glucosamine-6-phosphate synthase investigations using substrate and bisubstrate analogs. Bioorg Med Chem Lett, 5, 815–820.
  • Badet-Denisot MA, Rene L, Badet B. (1993). Mechanistic investigations on glucosamine-6-phosphate synthase. Bull Soc Chim Fr, 130, 249–255.
  • Baizman ER, Branstrom AA, Longley CB, Allanson N, Sofia MJ, Gange D, Goldman RC. (2000). Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology, 146, 3129–40.
  • Barbosa MDFS, Yang G, Fang J, Kurilla MG, Pompliano DL. (2002). Development of a whole-cell assay for peptidoglycan biosynthesis inhibitors. Antimicrob Agents Chemother, 46, 943–6.
  • Barreteau H, Blanot D, Boniface A, Gobec S, Kovac A, Sova M. (2008). Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev, 32, 168–207.
  • Barrett D, Leimkuhler C, Chen L, Walker D, Kahne D, Walker S. (2005). Kinetic characterization of the glycosyltransferase module of Staphylococcus aureus PBP2. J Bacteriol, 187, 2215–2217.
  • Barrett DS, Chen L, Litterman NK, Walker S. (2004). Expression and characterization of the isolated glycosyltransferase module of Escherichia coli PBP1b. Biochemistry, 43, 12375–12381.
  • Barrett JF. (2005). Recent developments in glycopeptides antibacterials. Curr Opin Investig Drugs, 6,781–90.
  • Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S. (2009). ATP-dependent MurE ligase in Mycobacterium tuberculosis: Biochemical and structural characterization. Tuberculosis, 90, 16–24.
  • Baum EZ, Crespo-Carbon SM, Foleno BD, Simon LD,Guillemont J, Macielag M, Bush K. (2009). MurF inhibitors with antibacterial activity: effect on muropeptide levels. Antimicrob Agents Chemother, 53, 3240–3247
  • Baum EZ, Crespo-Carbone SM, Abbanat D, Foleno B, Maden A, Goldschmidt R, Bush K. (2006). Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF. Antimicrob Agents Chemother, 50, 230–236.
  • Baum EZ, Crespo-Carbone SM, Klinger A, Foleno BD, Turchi I, Macielag M, Bush K. (2007). A MurF inhibitor that disrupts cell wall biosynthesis in Escherichia coli. Antimicrob Agents Chemother, 51, 4420–4426.
  • Baum EZ, Montenegro DA, Licata L, Turchi I, Webb GC, Foleno BD, Bush K. (2001). Identification and characterization of new inhibitors of the Escherichia coli MurA enzyme. Antimicrob Agents Chemother, 45, 3182–3188.
  • Bearne SL, Blouin C. (2000). Inhibition of Escherichia coli glucosamine-6-phosphate synthase by reactive intermediate analogues. The role of the 2-amino function in catalysis. J Biol Chem, 275, 135–140.
  • Bearne SL. (1996). Active site-directed inactivation of Escherichia coli glucosamine-6-phosphate synthase. Determination of the fructose-6-phosphate binding constant using a carbohydrate based inactivator. J Biol Chem, 271, 3052–3057.
  • Bellamacina CR. (1996). The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins. FASEB J, 10, 1257–1269.
  • Benson TE, Filman DJ, Walsh CT, Hogle JM. (1995). An enzyme substrate complex involved in bacterial cell wall biosynthesis. Nat Struct Biol, 2, 644–653.
  • Benson TE, Harris MS, Choi GH, Cialdella JI, Herberg JT, Martin JP Jr, Baldwin ET. (2001). A structural variation for MurB: X-ray crystal structure of Staphylococcus aureus UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry, 40, 2340–2350.
  • Benson TE, Marquardt JL, Marquardt AC, Etzkorn FA, Walsh CT. (1993). Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry, 32, 2024–2030.
  • Benson TE, Walsh CT, Hogle JM. (1996). The structure of the substrate-free form of MurB, an essential enzyme for the synthesis of bacterial cell walls. Structure, 4, 47–54.
  • Benson TE, Walsh CT, Hogle JM. (1997a). X-ray crystal structures of the S229A mutant and wild-type MurB in the presence of the substrate enolpyruvyl-UDP-N-acetylglucosamine at 1.8 Å resolution. Biochemistry, 36, 806–811.
  • Benson TE, Walsh CT, Massey V. (1997b), Kinetic characterization of wild-type and S229A mutant of MurB: evidence for the role of Ser229 as a general catalyst. Biochemistry, 36, 796–805.
  • Berlyn MKB. (1998). Linkage map of Escherichia coli K-12, Edition 10. The traditional map. Microbiol Mol Biol Rev, 62, 814–984
  • Bertrand JA, Auger G, Fanchon E, Martin L, Blanot D, van Heijenoort J, Dideberg O. (1997). Crystal structure of UDP-N-acetylmuramoyl-l-alanine:D-glutamate ligase from Escherichia coli. EMBO J, 16, 3416–3425.
  • Bertrand JA, Auger G, Martin L, Fanchon E, Blanot D, Le Beller D, van Heijenoort J, Dideberg O. (1999). Determination of the MurD mechanism through crystallographic analysis of enzymes complexes. J Mol Biol, 289, 579–590.
  • Bertrand JA, Fanchon E, Martin L, Chantalat L, Auger G, Blanot D, van Heijenoort J, Dideberg O. (2000). “Open” structures of MurD: domain movements and structural similarities with folylpolyglutamate synthetase. J Mol Biol, 301, 1257–66.
  • Bertsche U, Breukink E, Kast T, Vollmer W. (2005). In vitro murein peptidoglycan synthesis by dimers of the bifunctional transglycosylase-transpeptidase PBP1B from Escherichia coli. J Biol Chem, 280, 38096–38101.
  • Billot-Klein D, Shlaes D, Bryant D, Bell D, Legrand R, Gutmann L, van Heijenoort J. (1997). Presence of UDP-N-acetylmuramyl-hexapeptides and -heptapeptides in enterococci and staphylococci after treatment with ramoplanin, tunicamycin, or vancomycin. J Bacteriol, 179, 4684–4688.
  • Boniface A, Bouhss A, Mengin-Lecreulx D, Blanot D. (2006). The MurE synthetase from Thermotoga maritima is endowed with an unusual D-lysine adding activity. J Biol Chem, 281, 15680–15686.
  • Born P, Breukink E, Vollmer W. (2006). In vitro synthesis of cross-linked murein and its attachment to sacculi by PBP1A from Escherichia coli. J Biol Chem, 281, 26985–26993.
  • Bouhss A, Crouvoisier M, Blanot D, Mengin-Lecreulx D. (2004). Purification and characterization of the bacterial MraY translocase catalyzing the first membrane step of peptidoglycan biosynthesis. J Biol Chem, 279, 29974–29980.
  • Bouhss A, Dementin S, Parquet C, Mengin-Lecreulx D, Bertrand JA, Le Beller D, Dideberg O, van Heijenoort J, Blanot D. (1999a). Role of the ortholog and paralog amino acid invariants in the active site of the UDP-MurNAc-l-alanine: D-glutamate ligase (MurD). Biochemistry, 38, 12240–12247.
  • Bouhss A, Dementin S, van Heijenoort J, Parquet C, Blanot D. (1999b). Formation of adenosine 5′-tetraphosphate from the acyl phosphate intermediate: a difference between the MurC and MurD synthetases of Escherichia coli. FEBS Lett, 453, 15–19.
  • Bouhss A, Dementin S, van Heijenoort J, Parquet C, Blanot D. (2002). MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acyl-phosphate intermediates. Methods Enzymol, 354, 189–196.
  • Bouhss A, Mengin-Lecreulx D, Blanot D, van Heijenoort J, Parquet C. (1997). Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDPMurNAc: L-alanine ligase from Escherichia coli. Biochemistry, 36, 11556–11563.
  • Bouhss A, Mengin-Lecreulx D, Le Beller D, van Heijenoort J. (1999c). Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol Microbiol, 34, 576–585.
  • Bouhss A, Trunkfield AE, Bugg TDH, Mengin-Lecreulx D. (2008). The biosynthesis of peptidoglycan lipid linked intermediates. FEMS Microbiol Rev, 32, 208–233.
  • Boyle DS, Donachie WD. (1998). mraY is an essential gene for cell growth in Escherichia coli. J Bacteriol, 180, 6429–6432.
  • Brandish PE, Burnham MK, Lonsdale JT, Southgate R, Inukai M, Bugg TD. (1996). Slow binding inhibition of phospho-N-acetylmuramyl-pentapeptide-translocase (Escherichia coli) by mureidomycin A. J Biol Chem, 271, 7609–7614.
  • Breukink E, van Heusden HE, Vollmerhaus PJ, Swiezewska E, Brunner L, Walker S, Heck AJ, de Kruijff B. (2003). Lipid II is an intrinsic component of the pore induced by nisin in bacterial membranes. J Biol Chem, 278, 19898–19903.
  • Bronson JJ, DenBleyker KL, Falk PJ, Mate RA, Ho HT, Pucci MJ, Snyder LB. (2003). Discovery of the first antibacterial small molecule inhibitors of MurB. Bioorg Med Chem Lett, 13, 873–875.
  • Brotz H, Bierbaum G, Leopold K, Reynolds PE, Sahl HG. (1998). The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob Agents Chemother, 42, 154–160.
  • Brotz H, Bierbaum G, Reynolds PE, Sahl HG. (1997). The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur J Biochem, 246, 193–199.
  • Brown ED, Vivas EI, Walsh CT, Kolter R. (1995). MurA (MurZ), the enzyme that catalyzes the first committed step in peptidoglycan biosynthesis, is essential in Escherichia coli. J Bacteriol, 177, 4194–4197
  • Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C, Bourne Y, (1999). Crystal structure of the bifunctional N-acetylglucosamine-1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J, 18, 4096–4107.
  • Bugg TDH, Walsh CT. (1992). Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep, 9, 199–215.
  • Bugg TDH, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT. (1991). Molecular basis of vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry, 30, 10408–10415.
  • Bupp K, van Heijenoort J. (1993). The final step of peptidoglycan subunit assembly in Escherichia coli occurs in the cytoplasm. J Bacteriol, 175, 1841–1843.
  • Burton E, Gawande PV, Yakandawala N, LoVetri K, Zhanel GG, Romeo T, Friesen AD, Madhyastha S. (2006). Antibiofilm activity of GlmU enzyme inhibitors against catheter-associated uropathogens. Antimicrob Agents Chemother, 50, 1835–1840.
  • Charpentier X, Chalut C, Remy MH, Masson JM. (2002). Penicillin-binding proteins 1a and 1b form independent dimers in Escherichia coli. J Bacteriol, 184, 3749–3752.
  • Chen L, Men H, Ha S, Ye XY, Brunner L, Hu Y, Walker S. (2002). Intrinsic lipid preferences and kinetic mechanism of Escherichia coli MurG. Biochemistry, 41, 6824–6833.
  • Chen L, Walker D, Sun B, Hu Y, Walker S, Kahne D. (2003). Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Proc Natl Acad Sci USA, 100, 5658–5663.
  • Chmara H, Andruszkiewicz R, Borowski E. (1985). Inactivation of glucosamine-6-phosphate sythetase from Salmonella typhimurium LT2 by fumaroyl diaminopropanoic acid derivatives, a novel group of glutamine analogs. Biochim Biophys Acta, 870, 357–366.
  • Contreras-Martel C, Job V, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. (2006). Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J Mol Biol, 355, 684–696.
  • Coutinho PM, Deleury E, Davies GJ, Henrissat B. (2003). An evolving hierarchical family classification for glycosyltransferases. J Mol Biol, 328, 307–317.
  • Crouvoisier M, Mengin-Lecreulx D, van Heijenoort J. (1999). UDP-N-acetylglucosamine: N-acetylmuramoyl-(pentapeptide) pyrophosphoryl undecaprenol-N-acetylglucosamine transferase from Escherichia coli: overproduction, solubilization, and purification. FEBS Lett, 449, 289–292.
  • Daniel RA, Errington J. (1993). DNA sequence of the murE-murD region of Bacillus subtilis 168. J Gen Microbiol, 139, 361–370.
  • Das B, Sarkar C, Biswas R, Pandey S. (2008). Review: dalbavancin–a novel lipoglycopeptide antimicrobial for Gram-positive pathogens. Pak J Pharm Sci, 21,78–87.
  • De Reuse H, Labigne A, Mengin-Lecreulx D. (1997). The Helicobacter pylori ureC gene codes for a phosphoglucosamine mutase. J Bacteriol, 179, 3488–3493.
  • De Smet KA, Kempsell KE, Gallagher A, Duncan K, Young DB. (1999). Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology, 145, 3177–3184.
  • Dementin S, Bouhss A, Auger G, Parquet C, Mengin-Lecreulx D, Dideberg O, van Heijenoort J, Blanot D. (2001). Evidence of a functional requirement for a carbamoylated lysine residue in MurD, MurE and MurF synthetases as established by chemical rescue experiments. Eur J Biochem, 268, 5800–5807.
  • Denisot MA, Le Goffic F, Badet B. (1991). Glucosamine-6-phosphate synthase from Escherichia coli yields two proteins upon limited proteolysis: identification of the glutamine amidohydrolase and 2R ketose/aldose isomerase-bearing domains based on their biochemical properties. Arch Biochem Biophys, 288, 225–230.
  • Denome SA, Elf PK, Henderson TA, Nelson DE, Young KD. (1999). Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol, 181, 3981–3993.
  • Derouaux A, Wolf B, Fraipont C, Breukink E, Nguyen-Distèche M, Terrak M. (2008).The monofunctional glycosyltransferase of Escherichia coli localizes to the cell division site and interacts with penicillin-binding protein 3, FtsW, and FtsN. J Bacteriol, 190, 1831–1834
  • Deva T, Baker EN, Squire CJ, Smith CA. (2006). Structure of Escherichia coli UDP-N-acetylmuramoyl: L-alanine ligase (MurC). Acta Cryst D, 62, 1466–1474.
  • Dhalla AM, Yanchunas J Jr, Ho HT, Falk PJ, Villafranca JJ, Robertson JG. (1995). Steady-state kinetic mechanism of Escherichia coli UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry, 34, 5390–5402.
  • Di Berardino M, Dijkstra A, Stuber D, Keck W, Gubler M. (1996). The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan-synthesising enzymes. FEBS Lett, 392, 184–188.
  • Di Guilmi AM, Dessen A, Dideberg O, Vernet T. (2003a). Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. J Bacteriol, 185, 1650–1658.
  • Di Guilmi AM, Dessen A, Dideberg O, Vernet T. (2003b). The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. J Bacteriol, 185, 4418–4423.
  • Di Guilmi AM, Mouz N, Andrieu JP, Hoskins J, Jaskunas SR, Gagnon J, Dideberg O, Vernet T. (1998). Identification, purification, and characterization of transpeptidase and glycosyltransferase domains of Streptococcus pneumoniae penicillin-binding protein 1a. J Bacteriol, 180, 5652–5659.
  • Di Guilmi AM, Mouz N, Martin L, Hoskins J, Jaskunas SR, Dideberg O, Vernet T. (1999). Glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae is membrane associated. J Bacteriol, 181, 2773–2781.
  • Dini C. (2005). MraY inhibitors as novel antibacterial agents. Curr Top Med Chem, 5, 1221–1236.
  • Du W, Brown JR, Sylvester DR, Huang J, Chalker AF, So SY, Holmes DJ, Payne DJ, Wallis NG. (2000). Two active forms of UDP-N-acetylglucosamine enolpyruvyl transferase in Gram-positive bacteria. J Bacteriol, 182, 4146–4152.
  • Duncan K, van Heijenoort J, Walsh CT. (1990). Purification and characterization of the D-alanyl-d-alanine-adding enzyme from Escherichia coli. Biochemistry, 29, 2379–2386.
  • Dunsmore CJ, Miller K, Blake KL, Patching SG, Henderson PJF, Garnett JA, Stubbings WJ, Phillips SEV, Palestrant DJ, Los Angeles JD, Leeds JA, Chopra I, Fishwick CWG. (2008). 2-Aminotetralones: Novel inhibitors of MurA and MurZ. Bioorg Med Chem Lett, 18, 1730–1734
  • Ehmann DE, Demeritt JE, Hull KG, Fisher SL. (2004). Biochemical characterization of an inhibitor of Escherichia coli UDP-N-acetylmuramyl-l-alanine ligase. Biochim Biophys Acta, 1698, 167- 174.
  • El Zoeiby A, Sanschagrin F, Darveau A, Brisson JR, Levesque RC. (2003b). Identification of novel inhibitors of Pseudomonas aeruginosa MurC enzyme derived from phage-displayed peptide libraries. J Antimicrob Chemother, 51, 531–543.
  • El Zoeiby A, Sanschagrin F, Lamoureux J, Darveau A, Levesque RC. (2000). Cloning, over-expression and purification of Pseudomonas aeruginosa murC encoding uridine diphosphate-N-acetylmuramate: L-alanine ligase. FEMS Microbiol Lett, 183, 281–288.
  • El Zoeiby A, Sanschagrin F, Levesque RC. (2003a). Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol, 47, 1–12.
  • Emanuele JJ Jr, Jin H, Jacobson BL, Chang CY, Einspahr HM, Villafranca JJ. (1996). Kinetic and crystallographic studies of Escherichia coli UDP-N-acetylmuramate: L-alanine ligase. Prot Sci, 5, 2566–2574.
  • Emanuele JJ Jr, Jin H, Yanchunas J, Villafranca JJ. (1997). Evaluation of the kinetic mechanism of Escherichia coli uridine diphosphate-N-acetylmuramate: L-alanine ligase. Biochemistry, 36, 7264–7271.
  • Eschenburg S, Kabsch W, Healy ML, Schoenbrunn E. (2003). A new view of the mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) and 5-enolpyruvylshikimate-3-phosphate synthase (AroA) derived from X-ray structures of their tetrahedral reaction intermediate states. J Biol Chem, 278, 49215–49222.
  • Eschenburg S, Priestman M, Schoenbrunn E. (2005a). Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem, 280, 3757–3763.
  • Eschenburg S, Priestman MA, Abdul-Latif FA, Delachaume C, Fassy F, Schoenbrunn E. (2005b). A novel inhibitor that suspends the induced fit mechanism of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA). J Biol Chem, 280, 14070–14075.
  • Eschenburg S, Schonbrunn E. (2000). Comparative X-ray analysis of the un-liganded fosfomycin-target MurA. Proteins, 40, 290–298.
  • Eveland SS, Pompliano DL, Anderson MS. (1997). Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-γ-glutamate ligase: identification of a ligase superfamily. Biochemistry, 36, 6223–6229
  • Falk PJ, Ervin KM, Volk KS, Ho HT. (1996). Biochemical evidence for the formation of a covalent acyl-phosphate linkage between UDP-N-acetylmuramate and ATP in the Escherichia coli UDP-N-acetylmuramate:L-alanine ligase catalyzed reaction. Biochemistry, 35, 1417–1422.
  • Fang X, Tiyanont K, Zhang Y, Wanner J, Boger D, Walker S. (2006). The mechanism of action of ramoplanin and enduracidin. Mol BioSyst, 2, 69–76.
  • Floquet N, Richez C, Durand P, Maigret B, Badet B, Badet-Denisot MA. (2007). Discovering new inhibitors of bacterial glucosamine-6P synthase (GlmS) by docking simulations. Bioorg Med Chem Lett, 17, 1966–1970.
  • Francisco GD, Li Z, Albright JD, Eudy NH, Katz AH, Petersen PJ, Labthavikul P, Singh G, Yang Y, Rasmussen BA, Lin YI, Mansour TS. (2004). Phenyl thiazolyl urea and carbamate derivatives as new inhibitors of bacterial cell-wall biosynthesis. Bioorg Med Chem Lett, 14, 235–238.
  • Frlan R, Kovač A, Blanot D, Gobec S, Pečar S, Obreza A. (2008). Design and synthesis of novel N-benzylidenesulfonohydrazide inhibitors of MurC and MurD as potential antibacterial agents. Molecules, 13, 11–30
  • Gales AC, Sader HS, Jones RN. (2005). Antimicrobial activity of dalbavancin tested against Gram-positive clinical isolated from Latin American medical centres. Clin Microbiol Infect, 11, 95–100.
  • Gegnas LD, Waddell ST, Chabin RM, Reddy S, Wong KK. (1998). Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg Med Chem Lett, 8, 1643–1648.
  • Gehring AM, Lees WJ, Mindiola DJ, Walsh CT, Brown ED. (1996). Acetyltransfer precedes uridylyltransfer in the formation of UDP-N-acetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry, 35, 579–585.
  • Geis A, Plapp R. (1978). Phospho-N-acetylmuramoylpentapeptide-transferase of Escherichia coli K12. Properties of the membrane-bound and the extracted and partially purified enzyme. Biochim Biophys Acta, 527, 414–424.
  • Ghosh S, Blumenthal HJ, Davidson E, Roseman S. (1960). Glucosamine metabolism. V. Enzymatic synthesis of glucosamine 6-phosphate. J Biol Chem, 235, 1265–1273
  • Ghuysen JM. (1991). Serine beta-lactamases and penicillin-binding proteins. Annu Rev Microbiol, 45, 37–67.
  • Gilbert AM, Failli A, Shumsky J, Yang Y, Severin A, Singh G, Hu W, Keeney D, Petersen PJ, Katz AH. (2006). Pyrazolidine-3,5-diones and 5-hydroxy-1H-pyrazol-3(2H)-ones, inhibitors of UDP-N-acetylenolpyruvyl glucosamine reductase. J Med Chem, 49, 6027–6036.
  • Gittins JR, Phoenix DA, Pratt JM. (1994). Multiple mechanisms of membrane anchoring of Escherichia coli penicillin-binding proteins. FEMS Microbiol Rev, 13, 1–12.
  • Glauner B, Höltje JV, Schwarz U. (1988). The composition of the murein of Escherichia coli. J Biol Chem, 263, 10088–10095.
  • Gobec S, Urleb U, Auger G, Blanot D. (2001). Synthesis and biochemical evaluation of some novel N-acyl phosphono- and phosphinoalanine derivatives as potential inhibitors of the D-glutamic acid-adding enzyme. Pharmazie, 56, 295–297.
  • Goffin C, Ghuysen JM. (1998). Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev, 62, 1079–1093.
  • Goldman RC, Baizman ER, Branstrom AA, Longley CB. (2000). Differential antibacterial activity of moenomycin analogues on Gram-positive bacteria. Bioorg Med Chem Lett, 10, 2251–4.
  • Golinelli-Pimpaneau B, Badet B. (1991). Possible involvement of Lys603 from Escherichia coli glucosamine-6-phosphate synthase in the binding of its substrate fructose 6-phosphate. Eur J Biochem, 201, 175–182
  • Golinelli-Pimpaneau B, Le Goffic F, Badet B. (1989). Glucosamine-6-phosphate synthase from Escherichia coli: mechanism of the reaction at the fructose 6-phosphate binding site. J Am Chem Soc, 111, 3029–3034.
  • Gordon E, Flouret B, Chantalat L, van Heijenoort J, Mengin- Lecreulx D, Dideberg O. (2001). Crystal structure of the UDP-N-acetylmuramoyl-l-alanyl-d-glutamate: meso-diamino- pimelate ligase from Escherichia coli. J Biol Chem, 276, 10999–11006.
  • Gu YG, Florjancic AS, Clark RF, Zhang T, Cooper CS, Anderson DD, Lerner CG, McCall JO, Cai Y, Black-Schaefer CL, Stamper GF, Hajduk PJ, Beutel BA. (2004). Structure-activity relationships of novel potent MurF inhibitors. Bioorg Med Chem Lett, 14, 267–270.
  • Guay DR. (2004). Oritavancin and tigecycline: investigational antimicrobials for multidrug-resistant bacteria. Pharmacotherapy, 24, 58–68.
  • Gubler M, Appoldt Y, Keck W. (1996). Overexpression, purification, and characterization of UDP-N-acetylmuramyl: L-alanine ligase from Escherichia coli. J Bacteriol, 178, 906–910.
  • Ha S, Chang E, Lo MC, Men H, Park P, Ge M, Walker S. (1999). The kinetic characterization of Escherichia coli MurG using synthetic substrate analogues. J Am Chem Soc, 121, 8415–8426.
  • Ha S, Walker D, Shi Y, Walker S. (2000). The 1.9 Å crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Pro Sci, 9, 1045–1052.
  • Hammes WP, Neuhaus FC. (1974). On the specificity of phospho-N-acetylmuramyl-pentapeptide translocase. The peptide subunit of uridine diphosphate-N-acetylmuramylpentapeptide. J Biol Chem, 249, 3140–3150.
  • Hammes WP, Neukam R, Kandler O. (1977). On the specificity of the uridine diphospho-N-acetylmuramyl-l-alanyl-d-glutamic acid: diamino acid ligase of Bifidobacterium globosum. Arch Microbiol, 115, 95–102.
  • Hara H, Suzuki H. (1984). A novel glycan polymerase that synthesizes uncross-linked peptidoglycan in Escherichia coli. FEBS Lett, 168, 155–160.
  • Hara H, Yasuda S, Horiuchi K, Park JT. (1997). A promoter for the first nine genes of the Escherichia coli mra cluster of cell division and cell envelope biosynthesis genes, including ftsI and ftsW. J Bacteriol, 179, 5802–5811.
  • Hart GW, Haltiwanger RS, Holt GD, Kelly WG. (1989). Nucleoplasmic and cytoplasmic glycoproteins. Ciba Found Symp, 145, 102–112.
  • Hasper HE, De Kruijff B, Breukink E. (2004). Assembly and stability of nisin-lipid II pores. Biochemistry, 43, 11567–75.
  • He H, Williamson RT, Shen B, Graziani EI, Yang HY, Sakya SM, Petersen PJ, Carter GT. (2002). Mannopeptimycins, novel antibacterial glycopeptides from Streptomyces hygroscopicus LL-AC98. J Am Chem Soc, 124, 9729–36.
  • Heaslet H, Shaw B, Mistry A, Miller AA. (2009). Characterization of the active site of S. aureus monofunctional glycosyltransferase (Mtg) by site-directed mutation and structural analysis of the protein complexed with moenomycin. J Struct Biol, 167, 129–135.
  • Helm JS, Hu Y, Chen L, Gross B, Walker S. (2003). Identification of active-site inhibitors of MurG using a generalizable, high throughput glycosyltransferase screen. J Am Chem Soc, 125, 11168–11169.
  • Herscovics A, Orlean P. (1993). Glycoprotein biosynthesis in yeast. FASEB J, 7, 540–550.
  • Hesse L, Bostock J, Dementin S, Blanot D, Mengin-Lecreulx D, Chopra I. (2003). Functional and biochemical analysis of Chlamydia trachomatis MurC, an enzyme displaying UDP-N-acetylmuramate: amino acid ligase activity. J Bacteriol, 185, 6507–6512.
  • Heydanek MG Jr, Linzer R, Pless DD, Neuhaus FC. (1970). Initial stage in peptidoglycan synthesis. Mechanism of activation of phospho-N-acetylmuramyl-pentapeptide translocase by potassium ions. Biochemistry, 9, 3618–3623.
  • Heydanek MG Jr, Neuhaus FC. (1969). The initial stage in peptidoglycan synthesis. IV. Solubilization of phospho-N-acetylmuramyl-pentapeptide translocase. Biochemistry, 8, 1474–1481.
  • Hove-Jensen B. (1992). Identification of tms-26 as an allele of the gcaD gene, which encodes N-acetylglucosamine-1-phosphate uridyltransferase in Bacillus subtilis. J Bacteriol, 174, 6852–6856
  • Hsu ST, Breukink E, Bierbaum G, Sahl H-G, De Kruijff B, Kaptein R, van Nuland NA, Bonvin AM. (2003). NMR study of Mersacidin and lipid II interaction in dodecylphosphocholine micelles. Conformational changes are a key to antimicrobial activity. J Biol Chem, 278, 13110–7.
  • Hu Y, Chen L, Ha S, Gross B, Falcone B, Walker D, Mokhtarzadeh M, Walker S. (2003a). Crystal structure of the MurG:UDPGlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc Natl Acad Sci USA, 100, 845–849.
  • Hu Y, Helm JS, Chen L, Ginsberg C, Gross B, Kraybill B, Tiyanont K, Fang X, Wu T, Walker S. (2004). Identification of selective inhibitors for the glycosyltransferase MurG via high throughput screening. Chem Biol, 11, 703–711.
  • Hu Y, Helm JS, Chen L, Ye XY, Walker S. (2003b). Ramoplanin inhibits bacterial transglycosylases by binding as a dimer to Lipid II. J Am Chem Soc, 125, 8736–8737.
  • Huber G. (1979). Moenomycin and related phosphorus-containing antibiotics. In: Hahn, F.E (Ed) Antibiotics Springer Verlag, Berlin, vol. IV, 135
  • Huber R, Langworthy TA, Konig H, Thomm M, Woese CR, Sleytr UB, Stetter KO. (1986). Thermotoga maritima sp. nov. represents a new genus of unique extremely thermophilic eubacteria growing up to 90°C. Arch Microbiol, 144, 324–333.
  • Humljan J, Kotnik M, Contreras-Martel C, Blanot D, Urleb U, Dessen A, Solmajer T, Gobec S. (2008). Novel naphthalene-N-sulfonyl-d-glutamic acid derivatives as inhibitors of MurD, a key peptidoglycan biosynthesis enzyme. J Med Chem, 51, 7486–7494.
  • Ikeda M, Wachi M, Jung HK, Ishino F, Matsuhashi M. (1990a). Homology among MurC, MurD, MurE and MurF proteins in Escherichia coli and that between E. coli MurG and a possible MurG protein in Bacillus subtilis. J Gen Appl Microbiol, 36, 179–187.
  • Ikeda M, Wachi M, Jung HK, Ishino F, Matsuhashi M. (1990b). Nucleotide sequence involving murG and murC in the mra gene cluster region of Escherichia coli. Nucleic Acids Res, 18, 4014.
  • Ikeda M, Wachi M, Jung HK, Ishino F, Matsuhashi M. (1991). The Escherichia coli mraY gene encoding UDP-N-acetylmuramoyl-pentapeptide: undecaprenyl-phosphate phospho-N-acetylmuramoyl-pentapeptide transferase. J Bacteriol, 173, 1021–1026.
  • Isupov MN, Obmolova G, Butterworth S, Badet-Denisot MA, Badet B, Polikarpov I, Littlechild JA, Teplyakov A. (1996). Substrate binding is required for assembly of the active conformation of the catalytic site in Ntn amidotransferases: evidence from the 1.8 Å crystal structure of the glutaminase domain of glucosamine 6-phosphate synthase. Structure, 4, 801–810.
  • Ito E, Strominger JL. (1964). Enzymatic synthesis of the peptide in bacterial uridine nucleotides. III. Purification and properties of L-lysine-adding enzyme. J Biol Chem, 239, 210–214
  • Ito E, Strominger JL. (1973). Enzymatic synthesis of the peptide in bacterial uridine nucleotides. VII. Comparative biochemistry. J Biol Chem, 248, 3131.
  • Jackson SG, Zhang F, Chindemi P, Junop MS, Berti PJ. (2009). Evidence of kinetic control of ligand binding and staged product release in MurA (enolpyruvyl UDP-GlcNAc synthase)-catalyzed reactions. Biochemistry, 48, 11715–11723.
  • Jin BS, Han SG, Lee WK, Ryoo SW, Lee SJ, Suh SW, Yu YG. (2009). Inhibitory mechanism of novel inhibitors of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae. J Microbiol Biotechnol, 19, 1582–1589
  • Jin H, Emanuele JJ Jr, Fairman R, Robertson JG, Hail ME, Ho HT, Falk PJ, Villafranca JJ. (1996). Structural studies of Escherichia coli UDP-N-acetylmuramate: L-alanine ligase. Biochemistry, 35, 1423–1431.
  • Job V, Carapito R, Vernet T, Dessen A, Zapun A. (2008). Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward beta-lactams: structural insights. J Biol Chem, 283, 4886
  • Jolly L, Ferrari P, Blanot D, van Heijenoort J, Fassy F, Mengin- Lecreulx D. (1999). Reaction mechanism of phosphoglucosamine mutase from Escherichia coli. Eur J Biochem, 262, 202–210.
  • Jolly L, Pompeo F, van Heijenoort J, Fassy F, Mengin-Lecreulx D. (2000). Autophosphorylation of phosphoglucosamine mutase from Escherichia coli. J Bacteriol, 182, 1280–1285.
  • Jolly L, Wu S, van Heijenoort J, de Lencastre H, Mengin-Lecreulx D, Tomasz A. (1997). The femR315 gene from Staphylococcus aureus, the interruption of which results in reduced methicillin resistance, encodes a phosphoglucosamine mutase. J Bacteriol, 179, 5321–5325.
  • Kenig M, Vandamme E, Abraham EP. (1976). The mode of action of bacilysin and anticapsin and biochemical properties of bacilysin-resistant mutants. J Gen Microbiol, 94, 46–54.
  • Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT. (1996). Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry, 35, 4923–4928.
  • Kim MK, Cho MK, Song HE, Kim D, Park BH, Lee JH, Kang GB, Kim SH, Im YJ, Lee DS, Eom SH. (2007). Crystal structure of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from Thermus caldophilus. Proteins, 66, 751–754.
  • Klebe G. (2000). Recent developments in structure-based drug design. J Mol Med, 78, 269–281.
  • Kock H, Gerth U, Hecker M. (2004). MurA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis. Mol Microbiol, 51, 1087–102.
  • Kong KF, Schneper L, Mathee K. (2010). Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. APMIS, 118, 1–36.
  • Kostrewa D, D’Arcy A, Takacs B, Kamber M. (2001). Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 Å resolution and in complex with UDP-N-acetylglucosamine and Mg2+ at 1.96 Å resolution. J Mol Biol, 305, 279–289.
  • Kotnik M, Humljan J, Contreras-Martel C, Oblak M, Kristan K, Herve M, Blanot D, Urleb U, Gobec S, Dessen A, Solmajer T. (2007a). Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J Mol Biol, 370, 107–115.
  • Kotnik M, Anderluh PS, Prezelj A (2007b). Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis. Curr Pharm Des, 13, 2283–2309.
  • Kucharczyk N, Denisot MA, Le Goffic F, Badet B. (1990). Glucosamine-6-phosphate synthase from Escherichia coli: determination of the mechanism of inactivation by N3-fumaroyl-l-2,3-diaminopropionic derivatives. Biochemistry, 29, 3668–3676.
  • Kurokawa K, Nishida S, Ishibashi M, Mizumura H, Ueno K, Yutsudo T, Maki H, Murakami K, Sekimizu K. (2008). Staphylococcus aureus MurC participates in L-alanine recognition via histidine 343, a conserved motif in the shallow hydrophobic pocket. J Biochem, 143, 417–424.
  • Kurz M, Guba W, Vertesy L. (1998). Three-dimensional structure of moenomycin A-a potent inhibitor of penicillin-binding protein1b. Eur J Biochem, 252, 500–507.
  • Kutterer KMK, Davis JM, Singh G, Yang Y, Hu W, Severin A, Rasmussen BA, Krishnamurthy G, Failli A, Katz AH. (2005). 4-Alkyl and 4,4′-dialkyl 1,2-bis(4-chlorophenyl) pyrazolidine-3,5-dione derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg Med Chem Lett, 15, 2527–2531.
  • Laohavaleeson S, Kuti JL, Nicolau DP. (2007). Telavancin: a novel lipoglycopeptide for serious Gram-positive infections. Expert Opin Investig Drugs, 16, 347–357.
  • Lees WJ, Benson TE, Hogle JM, Walsh CT. (1996). (E)-enolbutyryl-UDP-N-acetylglucosamine as a mechanistic probe of UDP-N-acetylenolpyruvylglucosamine reductase (MurB). Biochemistry, 35, 1342–1351.
  • Leriche C, Badet-Denisot MA, Badet B. (1997). Affinity labeling of Escherichia coli glucosamine-6-phosphate synthase with a fructose-6-phosphate analog. Evidence for proximity between the N-terminal cysteine and the fructose-6-phosphate-binding site. Eur J Biochem, 245, 418–422.
  • Leriche C, Badet-Denisot MA, Badet B. (1996). Characterization of a phosphoglucose isomerase-like activity associated with the carboxy-terminal domain of Escherichia coli glucosamine-6-phosphate synthase. J Am Chem Soc, 118, 1797–1798.
  • Levy SB, Marshall B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nat Med, 10, S122–129.
  • Levy SB. (2005). Antibiotic resistance-the problem intensifies. Adv Drug Deliv Rev, 57, 1446–1450
  • Li Z, Francisco GD, Hu W, Labthavikul P, Petersen PJ, Severin A, Singh G, Yang Y, Rasmussen BA, Lin YI, Skotnicki JS, Mansour TS. (2003). 2-Phenyl-5,6-dihydro-2H-thieno[3,2-c]pyrazol-3-ol derivatives as new inhibitors of bacterial cell wall biosynthesis. Bioorg Med Chem Lett, 13, 2591–2594.
  • Liger D, Masson A, Blanot D, Van Heijenoortn J, Parquet C. (1995). Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramate: L-alanine ligase from Escherichia coli. Eur J Biochem, 230, 80–87.
  • Liger D, Blanot D, van Heijenoort J. (1991). Effect of various alanine analogues on the L-alanine-adding enzyme from Escherichia coli. FEMS Microbiol Lett, 80, 111–116.
  • Liger D, Masson A, Blanot D, van Heijenoort J, Parquet C. (1996). Study of the overproduced uridinediphosphate-N-acetylmuramate: L-alanine ligase from Escherichia coli. Microb Drug Resist, 2, 25–27.
  • Lim D, Strynadka NC. (2002). Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat Struct Biol, 9, 870–876.
  • Liu H, Wong CH. (2006). Characterization of a transglycosylase domain of Streptococcus pneumoniae PBP1b. Bioorg Med Chem, 14, 7187–7195.
  • Lloyd AJ, Brandish PE, Gilbey AM, Bugg TDH. (2004). Phospho-N-acetyl-muramyl-pentapeptide translocase from Escherichia coli: catalytic role of conserved aspartic acid residues. J Bacteriol, 186, 1747–1757.
  • Longenecker KL, Stamper GF, Hajduk PJ, Fry EH, Jakob CG, Harlan JE, Edalji R, Bartley DM, Walter KA, Solomon LR, Holzman TF, Gu YG, Lerner CG, Beutel BA, Stoll VS. (2005). Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci, 14, 3039–3047.
  • Lovering AL, De Castro L, Lim D, Strynadka NC, (2006). Structural analysis of an ‘‘open’’ form of PBP1B from Streptococcus pneumoniae. Protein Sci, 15, 1701–1709.
  • Lovering AL, Gretes M, Strynadka NC. (2008a). Structural details of the glycosyltransferase step of peptidoglycan assembly. Curr Opin Struct Biol. 18, 534–43.
  • Lovering AL, De Castro L, Strynadka NC. (2008b). Identification of dynamic structural motifs involved in peptidoglycan glycosyltransfer. J Mol Biol, 383, 167–177
  • Lovering AL, De Castro LH, Lim D, Strynadka NC. (2007). Structural insight into the transglycosylation step of bacterial cell-wall biosynthesis. Science, 315, 1402–1405.
  • Lowe AM, Deresiewicz RL. (1999). Cloning and sequencing of Staphylococcus aureus murC, a gene essential for cell wall biosynthesis. DNA Seq, 10, 19–23.
  • Macheboeuf P, Di Guilmi AM, Job V, Vernet T, Dideberg O, Dessen A. (2005). Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. Proc Natl Acad Sci USA, 102, 577–582.
  • Macheboeuf P, Fisher DS, Brown TJ, Zervosen A, Luxen A, Joris B, Dessen A, Schofield CJ. (2007). Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. Nat Chem Biol, 3, 565.
  • Macheboeuf P, Contreras-Martel C, Job V, Dideberg O, Dessen A. (2006). Penicillin-binding proteins: key players in bacterial cell cycle and drug resistance processes. FEMS Microbiol Rev, 30, 673–691.
  • Macheboeuf P, Lemaire D, Teller N, Martins ADS, Luxen A, Dideberg O, Jamin M, Dessen A. (2008). Trapping of an acyl-enzyme intermediate in a penicillin-binding protein (PBP)-catalyzed reaction. J Mol Biol, 376, 405.
  • Mahapatra S, Crick DC, Brennan PJ. (2000). Comparison of the UDP-N-acetylmuramate: L-alanine ligase enzymes from Mycobacterium tuberculosis and Mycobacterium leprae. J Bacteriol, 182, 6827–6830.
  • Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ, Crick DC. (2005). Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol, 187, 2747–2757.
  • Malabarba A, Nicas TI, Thompson RC. (1997). Structural modifications of glycopeptide antibiotics. Med Res Rev, 17, 69–137.
  • Marquardt JL, Brown ED, Lane WS, Haley TM, Ichikawa Y, Wong CH, Walsh CT. (1994). Kinetics, stoichiometry, and identification of the reactive thiolate in the inactivation of UDP-GlcNAc enolpyruvoyl transferase by the antibiotic fosfomycin. Biochemistry, 33, 10646–10651
  • Marquardt JL, Brown ED, Walsh CT, Anderson KS. (1993). Isolation and structural elucidation of a tetrahedral intermediate in the UDP-N-acetylglucosamine enolpyruvoyl transferase enzymatic pathway. J AmChem Soc, 115, 10398–10399.
  • Marquardt JL, Siegele DA, Kolter R, Walsh CT. (1992). Cloning and sequencing of Escherichia coli murZ and purification of its product, a UDP-N-acetylglucosamine enolpyruvyl transferase. J Bacteriol, 174, 5748–5752.
  • Marquardt JL. (1993). Molecular studies of the enzymes involved in UDP-N-acetylmuramic acid biosynthesis. PhD Thesis, Department of Biological Chemistry and Molecular Pharmacology, Harvard University.
  • Marques S, Florencio FJ, Candau P. (1992). Purification and characterization of the ferredoxin-glutamate synthase from the unicellular cyanobacterium Synechococcus sp. PCC 6301. Eur J Biochem, 206, 69–77
  • Marrec-Fairley M, Piette A, Gallet X, Brasseur R, Hara H, Fraipont C, Ghuysen JM, Nguyen-Disteche M. (2000). Differential functionalities of amphiphilic peptide segments of the cell-septation penicillin-binding protein 3 of Escherichia coli. Mol Microbiol, 37, 1019–1103
  • Massiere F, Badet-Denisot MA. (1998). The mechanism of glutamine-dependent amidotransferases. Cell Mol Life Sci, 54, 205–222.
  • McCoy AJ, Sandlin RC, Maurelli AT. (2003). In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance. J Bacteriol, 185, 1218–1228.
  • McKnight GL, Mudri SL, Mathewes SL, Traxinger RR, Marshall S, Sheppard PO, O’Hara PJ. (1992). Molecular cloning, cDNA sequence, and bacterial expression of human glutamine:fructose-6-phosphate amidotransferase. J Biol Chem, 267, 25208–25212.
  • McPherson DC, Popham DL. (2003). Peptidoglycan synthesis in the absence of class A penicillin-binding proteins in Bacillus subtilis. J Bacteriol, 185, 1423–1431.
  • Mehra-Chaudhary R, Neace CE, Beamer LJ. (2009). Crystallization and initial crystallographic analysis of phosphoglucosamine mutase from Bacillus anthracis. Acta Cryst, F65, 733–735.
  • Mengin-Lecreulx D, Ayala J, Bouhss A, van Heijenoort J, Parquet C, Hara H. (1998). Contribution of the Pmra promoter to expression of genes in the Escherichia coli mra cluster of cell envelope biosynthesis and cell division genes. J Bacteriol, 180, 4406–4412.
  • Mengin-Lecreulx D, Blanot D, van Heijenoort J. (1994). Replacement of diaminopimelic acid by cystathionine or lanthionine in the peptidoglycan of Escherichia coli. J Bacteriol, 176, 4321–4327.
  • Mengin-Lecreulx D, Michaud C, Richaud C, Blanot D, van Heijenoort J. (1988). Incorporation of LL-diaminopimelic acid into peptidoglycan of Escherichia coli mutants lacking diaminopimelate epimerase encoded by dapF. J Bacteriol, 170, 2031–2039.
  • Mengin-Lecreulx D, Texier L, Rousseau M, van Heijenoort J. (1991). The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine:N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol-N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J Bacteriol, 173, 4625–4636.
  • Mengin-Lecreulx D, Texier L, van Heijenoort J. (1990). Nucleotide sequence of the cell-envelope murG gene of Escherichia coli. Nucleic Acids Res, 18, 2810.
  • Mengin-Lecreulx D, van Heijenoort J. (1993). Identification of the glmU gene encoding N-acetylglucosamine-1-phosphate uridyltransferase in Escherichia coli. J Bacteriol, 175, 6150–6157.
  • Mengin-Lecreulx D, van Heijenoort J. (1994). Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the pathway for UDP-N-acetylglucosamine synthesis. J Bacteriol, 176, 5788–5795.
  • Mengin-Lecreulx D, van Heijenoort J. (1996). Characterization of the essential gene glmM encoding phosphoglucosamine mutase in Escherichia coli. J Biol Chem, 271, 32–39.
  • Michaud C, Blanot D, Flouret B, van Heijenoort J. (1987). Partial purification and specificity studies of the D-glutamate-adding and D-alanyl-d-alanine-adding enzymes from Escherichia coli K12. Eur J Biochem, 166, 631–637.
  • Michaud C, Mengin-Lecreulx D, van Heijenoort J, Blanot D. (1990). Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramoyl-l-alanine- D-glutamate: meso-2,6-diaminopimelate ligase from Escherichia coli. Eur J Biochem, 194, 853–861.
  • Milewski S, Chmara H, Andruszkiewicz R, Borowski E. (1992). N3-haloacetyl derivatives of-2,3-diaminopropanoic acid: Novel inactivators of glucosamine-6-phosphate synthase. Biochim Biophys Acta, 1115, 225–229
  • Miller DJ, Hammond SM, Anderluzzi D, Bugg TDH. (1998). Amino alkyl phosphinate inhibitors of D-Ala-d-Ala adding enzyme. J Chem Soc, Perkins Trans, 1, 131–142.
  • Mio T, Yabe T, Arisawa M, Yamada-Okabe H. (1998). The eukaryotic UDP-N-acetylglucosamine pyrophosphorylases: gene cloning, protein expression, and catalytic mechanism. J Biol Chem, 273, 14392–14397.
  • Mizuno Y, Ito E. (1968). Purification and properties of uridine diphosphate-N-acetylmuramyl-l-alanyl-d-glutamate: meso-2,6-diaminopimelate ligase. J Biol Chem, 243, 2665–2672
  • Mochalkin I, Lightle S, Narasimhan L, Bornemeier D, Melnick M, Vanderroest S, Mcdowell L. (2008). Structure of a small-molecule inhibitor complexed with GlmU from Haemophilus influenzae reveals an allosteric binding site. Protein Sci, 17, 577
  • Mochalkin I, Lightle S, Zhu Y, Ohren JF, Spessard C, Chirgadze NY, Banotai C, Melnick M, Mcdowell L. (2007). Characterization of substrate binding and catalysis in the potential antibacterial target N-acetylglucosamine-1-phosphate uridyltransferase (GlmU). Protein Sci, 16, 2657–2666.
  • Mol CD, Brooun A, Dougan DR, Hilgers MT, Tari LW, Wijnands RA, Knuth MW, McRee DE, Swanson RV. (2003). Crystal structures of active fully assembled substrate and product-bound complexes of UDP-N-acetylmuramic acid: L-alanine ligase (MurC) from Haemophilus influenzae. J Bacteriol, 185, 4152–4162.
  • Molina-Lopez J, Sanschagrin F, Levesque RC. (2006). A peptide inhibitor of MurA UDP-N-acetylglucosamine enolpyruvyl transferase: the first committed step in peptidoglycan biosynthesis. Peptides, 27, 3115–3121.
  • Mouilleron S, Badet-Denisot M-A, Golinelli-Pimpaneau B. (2006). Glutamine binding opens the ammonia channel and activates glucosamine-6-P synthase. J Biol Chem, 281, 4404–4412.
  • Mouilleron S, Badet-Denisot M-A, Golinelli-Pimpaneau B. (2008). Ordering of C-terminal loop and glutaminase domains of glucosamine-6-phosphate synthase promotes sugar ring opening and formation of the ammonia channel. J Mol Biol, 377, 1174–1185
  • Nanninga N. (1998). Morphogenesis of Escherichia coli. Microbiol Mol Biol Rev, 62,110–125.
  • Neuhaus FC. (1971). Initial translocation reaction in the biosynthesis of peptidoglycan by bacterial membranes. Acc Chem Res, 4, 297–303.
  • Nishida S, Kurokawa K, Matsuo M, Sakamoto K, Ueno K, Kita K, Sekimizu K. (2006). Identification and characterization of amino acid residues essential for the active site of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from Staphylococcus aureus. J Biol Chem, 281, 1714–1724.
  • Nosal F, Masson A, Legrand R, Blanot D, Schoot B, van Heijenoort J, Parquet C. (1998). Site-directed mutagenesis and chemical modification of the two cysteine residues of the UDP-N-acetylmuramoyl: L-alanine ligase of Escherichia coli. FEBS Lett, 426, 309–313.
  • Obmolova G, Badet-Denisot MA, Badet B, Teplyakov A. (1994). Crystallization and preliminary X-ray analysis of the two domains of glucosamine-6-phosphate synthase from Escherichia coli. J Mol Biol, 242, 703–705.
  • Offant J, Michoux F, Dermiaux A, Biton J, Bourne Y. (2006). Functional characterization of the glycosyltransferase domain of penicillin-binding protein 1a from Thermotoga maritima. Biochim Biophys Acta, 1764, 1036–1042.
  • Olsen LR, Roderick SL. (2001). Structure of the Escherichia coli GlmU pyrophosphorylase and acetyltransferase active sites. Biochemistry, 40, 1913–1921.
  • Olsen LR, Vetting MW, Roderick SL. (2007). Structure of the E. coli bifunctional GlmU acetyltransferase active site with substrates and products. Protein Sci, 16, 1230–1235.
  • Ornelas-Soares A, de Lencastre H, de Jonge BL, Tomasz A. (1994). Reduced methicillin resistance in a new Staphylococcus aureus transposon mutant that incorporates muramyl dipeptides into the cell wall peptidoglycan. J Biol Chem, 269, 27246–27250.
  • Paik J, Jendrossek D, Hakenbeck R. (1997). A putative monofunctional glycosyltransferase is expressed in Ralstonia eutropha. J Bacteriol, 179, 4061–5.
  • Paik J, Kern I, Lurz R, Hakenbeck R. (1999). Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin binding proteins. J Bacteriol, 181, 3852–6.
  • Paradis-Bleau C, Beaumont M, Boudreault L, Lloyd A, Sanschagrin F, Bugg TD, Levesque RC. (2006). Selection of peptide inhibitors against the Pseudomonas aeruginosa MurD cell wall enzyme. Peptides, 27, 1693–1700.
  • Parikh A, Verma SK, Khan S, Prakash B, Nandicoori VK. (2009). PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol, 386, 451–464
  • Peneff C, Ferrari P, Charrier V, Taburet Y,Monnier C, Zamboni V, Winter J, Harnois M, Fassy F, Bourne Y. (2001). Crystal structures of two human pyrophosphorylase isoforms in complexes with UDPGlc(Gal)NAc: role of the alternatively spliced insert in the enzyme oligomeric assembly and active site architecture. EMBO J, 20, 6191–6202.
  • Perdih A, Kovac A, Wolber G, Blanot D, Gobec S, Solmajer T. (2009). Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett, 19,2668–2673Pisabarro AG, Prats R, Vazquez D, Rodriguez-Tebar A. (1986). Activity of penicillin-binding protein 3 from Escherichia coli. J Bacteriol, 168, 199–206.
  • Pless DD, Neuhaus FC. (1973). Initial membrane reaction in peptidoglycan synthesis. Lipid dependence of phospho-N-acetylmuramyl-pentapeptide translocase (exchange reaction). J Biol Chem, 248, 1568–1576.
  • Pompeo F, Bourne Y, van Heijenoort J, Fassy F, Mengin- Lecreulx D. (2001). Dissection of the bifunctional Escherichia coli N-acetylglucosamine-1-phosphate uridyltransferase enzyme into autonomously functional domains and evidence that trimerization is absolutely required for glucosamine-1-phosphate acetyltransferase activity and cell growth. J Biol Chem, 276, 3833–3839.
  • Pompeo F, van Heijenoort J, Mengin-Lecreulx D. (1998). Probing the role of cysteine residues in glucosamine-1-phosphate acetyltransferase activity of the bifunctional GlmU protein from Escherichia coli: site-directed mutagenesis and characterization of the mutant enzymes. J Bacteriol, 180, 4799–4803.
  • Pratviel-Sosa F, Acher F, Trigalo F, Blanot D, Azerad R, van Heijenoort J. (1994). Effect of various analogues of D-glutamic acid on the D-glutamate-adding enzyme from Escherichia coli. FEMS Microbiol Lett, 115, 223–228.
  • Pratviel-Sosa F, Mengin-Lecreulx D, van Heijenoort J. (1991). Over-production, purification and properties of the uridine diphosphate N-acetylmuramoyl-l-alanine: D-glutamate ligase from Escherichia coli. Eur J Biochem, 202, 1169–1176.
  • Pucci MJ, Discotto LF, Dougherty TJ. (1992). Cloning and identification of the Escherichia coli murB DNA sequence, which encodes UDP-N-acetylenolpyruvoylglucosamine reductase. J Bacteriol, 174, 1690–1693.
  • Pucci MJ, Thanassi JA, Discotto LF, Kessler RE, Dougherty TJ. (1997). Identification and characterization of cell wall-cell division gene clusters in pathogenic Gram-positive cocci. J Bacteriol, 179, 5632–5635.
  • Raetz CR, Roderick SL. (1995). A left-handed parallel beta helix in the structure of UDP-N-acetylglucosamine acyltransferase. Science, 270, 997–1000.
  • Reck F, Marmor S, Fisher S, Wuonola MA. (2001). Inhibitors of the bacterial cell wall biosynthesis enzyme MurC. Bioorg Med Chem Lett, 11, 1451–1454.
  • Reynolds PE. (1989). Structure, biochemistry and mechanism of action of glycopeptides inhibitors. Eur j Clin Microbiol infect Dis, 8, 943–950
  • Richaud C, Mengin-Lecreulx D, Pochet S, Johnson EJ, Cohen GN, Marliere P. (1993). Directed evolution of biosynthetic pathways: recruitment of cysteine thioethers for constructing the cell wall of Escherichia coli. J Biol Chem, 268, 26827–26835.
  • Rogers HJ, Perkins HR, Ward JB. (1980). Microbial Cell Walls and Membranes. London: Chapman and Hall,
  • Ropp PA, Hu M, Olesky M, Nicholas RA. (2002). Mutations in ponA, the gene encoding penicillin-binding protein 1, and a novel locus, penC, are required for high-level chromosomally mediated penicillin resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother, 46, 769–777.
  • Ruzin A, Singh G, Severin A, Yang Y, Dushin RG, Sutherland AG, Minnick A, Greenstein M, May MK, Shlaes DM, Bradford PA. (2004). Mechanism of action of the mannopeptimycins, a novel class of glycopeptide antibiotics active against vancomycin-resistant Gram-positive bacteria. Antimicrob Agents Chemother, 48,728–738.
  • Salmond GP, Lutkenhaus JF, Donachie WD. (1980). Identification of new genes in a cell envelope-cell division gene cluster of Escherichia coli: cell envelope gene murG. J Bacteriol, 144, 438–440.
  • Samland AK, Amrhein N, Macheroux P. (1999). Lysine 22 in UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae is crucial for enzymatic activity and the formation of covalent adducts with the substrate phosphoenolpyruvate and the antibiotic fosfomycin. Biochemistry, 38, 13162–13169.
  • Samland AK, Etezady-Esfarjani T, Amrhein N, Macheroux P. (2001). Asparagine 23 and aspartate 305 are essential residues in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae. Biochemistry, 40, 1550–1559.
  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P. (2008). The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev, 32, 234–258
  • Schleifer KH, Kandler O. (1972). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev, 36, 407–477.
  • Schonbrunn E, Eschenburg S, Krekel F, Luger K, Amrhein N. (2000a). Role of the loop containing residue 115 in the induced-fit mechanism of the bacterial cell wall biosynthetic enzyme MurA. Biochemistry, 39, 2164–2173.
  • Schonbrunn E, Eschenburg S, Luger K, Kabsch W, Amrhein N. (2000b). Structural basis for the interaction of the fluorescence probe 8-anilino-1-naphthalene sulfonate (ANS) with the antibiotic target MurA. Proc Natl Acad Sci USA, 97, 6345–6349.
  • Schonbrunn E, Sack S, Eschenburg S, Perrakis A, Krekel F, Amrhein N, Mandelkow E. (1996). Crystal structure of UDP-N-acetylglucosamine enolpyruvyltransferase, the target of the antibiotic fosfomycin. Structure, 4, 1065–1075.
  • Schonbrunn E, Svergun DI, Amrhein N, Koch MH. (1998). Studies on the conformational changes in the bacterial cell wall biosynthetic enzyme UDP-N-acetylglucosamine enolpyruvyltransferase (MurA). Eur J Biochem, 253, 406–412.
  • Schouten JA, Bagga S, Lloyd AJ, de Pascale G, Dowson CG, Roper DI, Bugg TD. (2006). Fluorescent reagents for in vitro studies of lipid-linked steps of bacterial peptidoglycan biosynthesis: derivatives of UDPMurNAc-pentapeptide containing D-cysteine at position 4 or 5. Mol Biosyst, 2, 484–491.
  • Schulz GE, Elzinga M, Marx F, Schrimer RH. (1974). Three dimensional structure of adenyl kinase. Nature, 250, 120–123.
  • Schulz GE. (1992). Binding of nucleotides by proteins. Curr Opin Struct Biol, 2, 61–67.
  • Schwartz B, Markwalder JA, Seitz SP,Wang Y, Stein RL. (2002). A kinetic characterization of the glycosyltransferase activity of Eschericia coli PBP1b and development of a continuous fluorescence assay. Biochemistry, 41, 12552–12561.
  • Silver LL. 2003. Novel inhibitors of bacterial cell wall synthesis. Curr Opin Microbiol, 6, 431–438.
  • Silver LL. 2006. Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol, 71, 996–1005.
  • Sim MM, Ng SB, Buss AD, Crasta SC, Goh KL, Lee SK. (2002). Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase. Bioorg Med Chem Lett, 12, 697–699.
  • Singh MP, Petersen PJ, Weiss WJ, Janso JE, LucKman SW, Lenoy EB, Bradford PA, Testa RT, Greenstein M. (2003). Mannopeptimycins, new cyclic glycopeptide antibiotics produced by Streptomyces hygroscopicus LL-AC98: antibacterial and mechanistic activities. Antimicrob Agents Chemother, 47, 62–69.
  • Sink R, Kovac A, Tomasic T, Rupnik V, Boniface A, Bostock J, Chopra I, Blanot D, Masic LP, Gobec S, Zega A. (2008). Synthesis and biological evaluation of N-acylhydrazones as inhibitors of MurC and MurD ligases. Chem Med Chem, 3, 1362–1370
  • Skarzynski T, Kim DH, Lees WJ, Walsh CT, Duncan K. (1998). Stereochemical course of enzymatic enolpyruvyl transfer and catalytic conformation of the active site revealed by the crystal structure of the fluorinated analogue of the reaction tetrahedral intermediate bound to the active site of the C115A mutant of MurA. Biochemistry, 37, 2572–2577.
  • Skarzynski T, Mistry A, Wonacott A, Hutchinson SE, Kelly VA, Duncan K. (1996). Structure of UDP-N-acetylglucosamine enolpyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure, 4, 1465–1474.
  • Smith CA, Rayment I. (1996). Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J, 70, 1590–1602.
  • Smith CA. (2006). Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol, 362, 640–655.
  • Sova M, Kovac A, Turk S, Hrast M, Blanot D, Gobec S. (2009). Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem, 37, 217–222
  • Spraggon G, Schwarzenbacher R, Kreusch A, Lee CC, Abdubek P, Ambing E, Biorac T, Brinen LS, Canaves JM, Cambell J, Chiu HJ, Dai X, Deacon AM, DiDonato M, Elsliger MA, Eshagi S, Floyd R, Godzik A, Grittini C, Grzechnik SK, Hampton E, Jaroszewski L, Karlak C, Klock HE, Koesema E, Kovarik JS, Kuhn P, Levin I, McMullan D, McPhillips TM, Miller MD, Morse A, Moy K, Ouyang J, Page R, Quijano K, Robb A, Stevens RC, van den Bedem H, Velasquez J, Vincent J, von Delft F, Wang X, West B, Wolf G, Xu Q, Hodgson KO, Wooley J, Lesley SA, Wilson IA. (2004). Crystal structure of an UDP-N-acetylmuramate:L-alanine ligase MurC (TM0231) from Thermotoga maritima at 2.3 resolution. Proteins, 55, 1078–1081.
  • Spratt BG, Zhou J, Taylor M, Merrick MJ. (1996). Monofunctional biosynthetic peptidoglycan transglycosylases. Mol Microbiol, 19, 639–640.
  • Stachyra T, Dini C, Ferrari P, Bouhss A, van Heijenoort J, Mengin-Lecreulx D, Blanot D, Biton J, Le Beller D. (2004). Fluorescence detection-based functional assay for high throughput screening for MraY. Antimicrob Agents Chemother, 48, 897–902.
  • Stamper GF, Longenecker K, Fry EH, Jakob CG, Florjancic AS, Gu YG, Anderson DD, Cooper CS, Zhang T, Clark RF, Cia Y, Black-Schaefer CL, Owen McCall J, Lerner CG, Hajduk PJ, Beutel BA, Stoll VS. (2006). Structure-based optimization of MurF inhibitors. Chem Biol Drug Res, 67, 58–65.
  • Stickgold RA, Neuhaus FC. (1967). On the initial stage in peptidoglycan synthesis. Effect of 5-fluorouracil substitution on phospho-N-acetylmuramyl-pentapeptide translocase (uridine 5′-phosphate). J Biol Chem, 242, 1331–1337.
  • Strancar K, Blanot D, Gobec S. (2006). Design, synthesis and structure activity relationships of new phosphinate inhibitors of MurD. Bioorg Med Chem Lett, 16, 343–348.
  • Struve WG, Sinha RK, Neuhaus FC. (1966). On the initial stage in peptidoglycan synthesis. Phospho-N-acetylmuramylpentapeptide translocase (uridine monophosphate). Biochemistry, 5, 82–93.
  • Sulzenbacher G, Gal L, Peneff C, Fassy F, Bourne Y. (2001). Crystal structure of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase bound to acetyl-coenzyme A reveals a novel active site architecture. J Biol Chem, 276, 11844–11851.
  • Sung MT, Lai YT, Huang CY, Chou LY, Shih HW, Cheng WC, Wong CH, Ma C. (2009). Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli. Proc Natl Acad Sci USA, 106, 8824–8829
  • Sylvester DR, Alvarez E, Patel A, Ratnam K, Kallender H and Wallis NG. (2001). Identification and characterization of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) from the Gram-positive pathogen Streptococcus pneumoniae. Biochem J, 355, 431–435
  • Szumilo T, Zeng Y, Pastuszak I, Drake R, Szumilo H, Elbein AD. (1996). Purification to homogeneity and properties of UDPGlcNAc (GalNAc) pyrophosphorylase. J Biol Chem, 271, 13147–13154.
  • Taku A, Fan DP. (1976). Purification and properties of a protein factor stimulating peptidoglycan synthesis in toluene- and LiCl-treated Bacillus megaterium cells. J Biol Chem, 251, 1889.
  • Tanner ME, Vaganay S, van Heijenoort J, Blanot D. (1996). Phosphinate inhibitors of the D-glutamic acid adding enzyme of peptidoglycan biosynthesis. J Org Chem, 61, 1756–1760.
  • Tavares IM, Jolly L, Pompeo F, Leitao JL, Fialho AM, Sa-Correia I, Mengin-Lecreulx D. (2000). Identification of the Pseudomonas aeruginosa glmM gene encoding phosphoglucosamine mutase. J Bacteriol, 182, 4453–4457.
  • Tayeh MA, Dotson GD, Clemens JC, Woodard RW. (1995). Overproduction and one-step purification of Escherichia coli UDP-N-acetylglucosamine enolpyruvyl reductase. Protein Expr Purif, 6, 757–762.
  • Teplyakov A, Obmolova G, Badet B, Badet-Denisot MA. (2001). Channeling of ammonia in glucosamine-6-phosphate synthase. J Mol Biol, 313, 1093–1102.
  • Teplyakov A, Obmolova G, Badet-Denison MA, Badet B. (1999). The mechanism of sugar phosphate isomerization by glucosamine 6- phosphate synthase. Protein Sci, 8, 596–602.
  • Teplyakov A, Obmolova G, Badet-Denisot MA, Badet B, Polikarpov I. (1998). Involvement of the C-terminus in intramolecular nitrogen channeling in glucosamine-6-phosphate synthase: evidence from a 1.6 Å crystal structure of the isomerase domain. Structure, 6, 1047–1055.
  • Terrak M, Ghosh TK, van Heijenoort J, Van Beeumen J, Lampilas M, Aszodi J, Ayala JA, Ghuysen JM, Nguyen-Distèche M. (1999). The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein1b of Escherichia coli. Mol Microbiol, 34, 350–364.
  • Terrak M, Nguyen-Disteche M. (2006). Kinetic characterization of the monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol, 188, 2528–2532.
  • Thanassi JA, Hartman-Neumann SL, Dougherty TJ, Dougherty BA, Pucci MJ. (2002). Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res, 30, 3152–3162.
  • Tipper DJ, Pratt I. (1970). Cell wall polymers of Bacillus sphaericus 9602. II. Synthesis of the first enzyme unique to cortex synthesis during sporulation. J Bacteriol, 103, 305–317
  • Tipper DJ, Strominger JL. (1965). Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-d-alanyl-d-alanine. Proc Natl Acad Sci USA, 54, 1133–1141.
  • Tomasic T, Zidar N, Kovac A, Turk S, Simcic M, Blanot D, Muller-Premru M, Filipic M, Grdadolnik SG, Zega A, Anderluh M, Gobec S, Kikelj D, Masic LP. (2010). 5-benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. Chem Med Chem, 5, 286–295
  • Traxinger RR, Marshall S. (1991). Coordinated regulation of glutamine: fructose-6-phosphate amidotransferase activity by insulin, glucose, and glutamine: Role of hexosamine biosynthesis in enzyme regulation. J Biol Chem, 266, 10148–10154
  • Turk S, Kovac A, Boniface A, Bostock JM, Chopra I, Blanot D, Gobec S. (2009). Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorg Med Chem, 17, 1884–1889
  • Ullrich J, Van Putten JPM. (1995). Identification of the Gonococcal glmU gene encoding the enzyme N-acetylglucosamine-1-phosphate uridyltransferase involved in the synthesis of UDP-GlcNAc. J Bacteriol, 177, 6902–6909
  • Umbreit JN, Strominger JL. (1972). Complex lipid requirements for detergent-solubilized phosphoacetylmuramyl-pentapeptide translocase from Micrococcus luteus. Proc Natl Acad Sci USA, 69, 1972–1974
  • Vaganay S, Tanner ME, van Heijenoort J, Blanot D. (1996). Study of the reaction mechanism of the D-glutamic acid-adding enzyme from Escherichia coli. Microb Drug Resist, 2, 51–54.
  • van Assche I, Soroka M, Haemers A, Hooper M, Blanot D, van Heijenoort J. (1991). Synthesis and antiobacterial evaluation of phosphonic acid analogues of diaminopimelic acid. Eur J Med Chem, 26, 505–515.
  • Van Bambeke F, Van Laethem Y, Courvalin P, Tulkens PM. (2004). Glycopeptide antibiotics: from conventional molecules to new derivatives. Drugs, 64, 913–36.
  • Van Bambeke F. (2004). Glycopeptides in clinical development: pharmacological profile and clinical perspectives. Curr Opin Pharmacol, 4, 471–8.
  • van Heijenoort J. (1998). Assembly of the monomer unit of bacterial peptidoglycan. CMLS, 54, 300–304.
  • van Heijenoort J. (2001a), Recent advances in the formation of the bacterial peptidoglycan monomer subunit. Nat Prod Rep, 18, 503–519.
  • van Heijenoort J. (2001b). Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology, 11, 25R–36R.
  • van Heijenoort J. (2007). Lipid Intermediates in the Biosynthesis of Bacterial Peptidoglycan. Microbiol Mol Biol Rev, 71, 620–635.
  • van Heijenoort Y, Gomez M, Derrien M, Ayala J, van Heijenoort J. (1992). Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3. J Bacteriol, 174, 3549–3557.
  • van Heijenoort Y, Leduc M, Singer H, van Heijenoort J. (1987). Effects of moenomycin on Escherichia coli. J Gen Microbiol, 133, 667–674.
  • Van Nieuwenhze MS, Mauldin SC, Zia-Ebrahimi M, Winger BE, Hornback WJ, Saha SL, Aikins JA, Blaszczak LC. (2002). The first total synthesis of lipid II: the final monomeric intermediate in bacterial cell wall biosynthesis. J Am Chem Soc, 124, 3656–3660.
  • Verma SK, Jaiswal M, Kumar N, Parikh A, Nandicoori VK, Prakash B. (2009). Structure of N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) from Mycobacterium tuberculosis in a cubic space group. Acta Crystallogr, Sect F, 65, 435–439.
  • Vollmer W, Blanot D, de Pedro M. (2008). Peptidoglycan structure and architecture. FEMS Microbiol Rev, 32, 149–167.
  • Walker B, Brown MF, Lynas JF, Martin SL, McDowell A, Badet B, Hill AJ. (2000). Inhibition of Escherichia coli glucosamine synthetase by novel electrophilic analogues of glutamine comparison with 6-diazo-5-oxo-l-norleucine. Bioorg Med Chem Lett, 10, 2795–2798.
  • Walsh AW, Falk PJ, Thanassi J, Discotto L, Pucci MJ, Ho HT. (1999). Comparison of the D-glutamate-adding enzymes from selected Gram-positive and Gram-negative bacteria. J Bacteriol, 181, 5395–5401.
  • Wang QM, Peery RB, Johnson RB, Alborn WE, Yeh WK, Skatrud PL. (2001). Identification and characterization of a monofunctional glycosyltransferase from Staphylococcus aureus. J Bacteriol, 183, 4779–4785.
  • Wanke C, Amrhein N. (1993). Evidence that the reaction of the UDP-N-acetylglucosamine1-carboxyvinyl transferase proceeds through the O-phosphothioketal of pyruvic acid bound to Cys115 of the enzyme. Eur J Biochem, 218, 861–870.
  • Wanke C, Falchetto R, Amrhein N. (1992). The UDP-N-acetylglucosamine-1-carboxyvinyl-transferase of Enterobacter cloacae. Molecular cloning, sequencing of the gene and overexpression of the enzyme. FEBS Lett, 301, 271–276.
  • Ward JB, Perkins HR. (1974). Peptidoglycan biosynthesis by preparations from Bacillus licheniformis: cross-linking of newly synthesized chains to preformed cell wall. Biochem J, 139, 781–784.
  • Welzel P, Kunischa F, Kruggela F, Steina H, Scherkenbecka J, Hiltmanna A, Duddecka H, Müllera D, Maggiob JE, Fehlhaberc HW, Seibertc G, van Heijenoortd Y, van Heijenoort J. (1987). Moenomycin A: minimum structural requirements for biological activity. Tetrahedron, 43, 585–598
  • Welzel P. (2005). Syntheses around the transglycosylation step in peptidoglycan biosynthesis. Chem Rev, 105, 4610–4660.
  • Weppner WA, Neuhaus FC. (1977). Fluorescent substrate for nascent peptidoglycan synthesis. Uridine-diphosphate-N-acetylmuramyl-(Nepsilon-5-dimethylaminonaphthalene-1-sulfo- nyl) pentapeptide. J Biol Chem, 252, 2296–2303.
  • Weppner WA, Neuhaus FC. (1979). Initial membrane reaction in peptidoglycan synthesis. Interaction of lipid with phospho-N-acetylmuramyl-pentapeptide translocase. Biochim Biophys Acta, 552, 418–427.
  • Wietzerbin J, Das BC, Petit JF, Lederer E, Leyh-Bouille M, Ghuysen JM. (1974). Occurrence of D-alanyl-(D)-meso-diaminopimelic acid and meso-diaminopimelyl-meso-diaminopimelic acid interpeptide linkages in the peptidoglycan of Mycobacteria. Biochemistry, 13, 3471–3476.
  • Winterburn PJ, Phelps CF. (1971). The binding of substrates and modifiers to glucosamine synthetase. Biochem J, 121, 721–730.
  • Wu HC, Wu TC. (1971). Isolation and characterization of a glucosamine-requiring mutant of Escherichia coli K-12 defective in glucosamine-6-phosphate synthetase. J Bacteriol, 105, 455–466.
  • Wyke AW, Perkins HR. (1975). The Specificity of enzymes adding amino acids in the synthesis of the peptidoglycan precursors of Corynebacterium poinsettiae and Corynebacterium insidiosum. J Gen Microbiol, 88, 159.
  • Yamada M, Watanabe T, Baba N, Takeuchi Y, Ohsawa F, Gomi S. (2008). Crystal structures of biapenem and tebipenem complexed with penicillin-binding proteins 2X and 1A from Streptococcus pneumoniae. Antimicrob Agents Chemother, 52, 2053–2060
  • Yan Y, Munshi S, Leiting B, Anderson MS, Chrzas J, Chen Z. (2000). Crystal structure of Escherichia coli UDP-MurNAc-tripeptide D-alanyl-d-alanine-adding enzyme (MurF) at 2.3 Å resolution. J Mol Biol, 304, 435–445.
  • Yang Y, Severin A, Chopra R, Krishnamurthy G, Singh G, Hu W, Keeney D, Svenson K, Petersen PJ, Labthavikul P, Shlaes DM, Rasmussen BA, Failli AA, Shumsky JS, Kutterer KMK, Gilbert A, Mansour TS. (2006). 3,5-Dioxopyrazolidines, novel inhibitors of UDP-N-acetylenolpyruvylglucosamine reductase (MurB) with activity against Gram-positive bacteria. Antimicrob Agents Chemother, 50, 556–564.
  • Ye XY, Lo MC, Brunner L, Walker D, Kahne D, Walker S. (2001). Better substrates for bacterial transglycosylases. J Am Chem Soc, 123, 3155–3156.
  • Yoon HJ, Lee SJ, Mikami B, Park HJ, Yoo J, Suh SW. (2008). Crystal structure of UDP-N-acetylglucosamine enolpyruvyl transferase from Haemophilus influenzae in complex with UDP-N-acetylglucosamine and fosfomycin. Proteins, 71, 1032–1037
  • Yuan Y, Barrett D, Zhang Y, Kahne D, Sliz P, Walker S. (2007). Crystal structure of a peptidoglycan glycosyltransferase suggests a model for processive glycan chain synthesis. Proc Natl Acad Sci USA, 104, 5348–5353.
  • Yuan Y, Fuse S, Ostash B, Piotr Sliz P, Kahne D, Walker S. (2008). Structural analysis of the contacts anchoring moenomycin to peptidoglycan glycosyltransferases and implications for antibiotic design. ACS Chem Biol, 3, 429–436.
  • Zalkin H, Smith JL. (1998). Enzymes utilizing glutamine as an amide donor. Advan Enzymol Relat Areas Mol Biol, 72, 87–144.
  • Zawadzka-Skomial J, Markiewicz Z, Nguyen-Disteche M, Devreese B, Frere JM, Terrak M. (2006). Characterization of the bifunctional glycosyltransferase/acyltransferase penicillin binding protein 4 of Listeria monocytogenes. J Bacteriol, 188, 1875–1881.
  • Zawadzke LE, Wu P, Cook L, Fan L, Casperson M, Kishnani M, Calambur D, Hofstead SJ, Padmanabha R. (2003). Targeting the MraY and MurG bacterial enzymes for antimicrobial therapeutic intervention. Anal Biochem, 314, 243–252.
  • Zeng B, Wong KK, Pompliano DL, Reddy S, Tanner ME. (1998). A phosphinate inhibitor of the meso-diaminopimelic acid-adding enzyme (MurE) of peptidoglycan biosynthesis. J Org Chem, 63, 10081–10086.
  • Zhang Z, Bulloch EMM, Bunker RD, Baker EN, Squire CJ. (2009). Structure and function of GlmU from Mycobacterium tuberculosis. Acta Cryst, 65, 275–283.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.