1,354
Views
70
CrossRef citations to date
0
Altmetric
Review Article

Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae

, , &
Pages 22-48 | Received 18 Jun 2009, Accepted 04 Nov 2010, Published online: 04 Jan 2011

References

  • Agbogbo FK, Coward-Kelly G, Torry-Smith M, Wenger KS. (2006). Fermentation of glucose/xylose mixtures using Pichia stipitis. Process Biochem, 41, 2333–2336.
  • Alfenore S, Cameleyre X, Benbadis L, Bideaux, C, Uribelarrea JL, Goma G, Molina-Jouve C, Guillouet SE. (2004). Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol, 63, 537–542.
  • Amore R, Wilhelm M, Hollenberg CP. (1989). The fermentation of xylose – an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol, 30, 351–357.
  • Aristidou A, Penttilä M. (2000). Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol, 11, 187–198.
  • Attfield PV, Bell PJ. (2006). Use of population genetics to derive nonrecombinant Saccharomyces cerevisiae strains that grow using xylose as a sole carbon source. FEMS Yeast Res, 6, 862–868.
  • Azzam AM. (1989). Pretreatment of cane bagasse with alkaline hydrogen peroxide for enzymatic hydrolysis of cellulose and ethanol fermentation. J Environ Sci Health B, 24, 421–433.
  • Bajpai P, Sharma A, Raghuram N, Bajpai PK. (1988). Rapid production of ethanol in high concentration by immobilized cells of Saccharomyces cerevisiae through soya flour supplementation. Biotechnol Lett, 10, 217–220.
  • Becker J, Boles E. (2003). A modified Saccharomyces cerevisiae strain that consumes L-arabinose and produces ethanol. Appl Environ Microbiol, 6, 4144–4150.
  • Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. (2009). Xylose reductase from Pichia stipitis with altered coenzyme preference improves ethanolic xylose fermentation by recombinant Saccharomyces cerevisiae. Biotechnol Biofuels, 2, 9.
  • Bera AK, Sedlak M, Khan A, Ho NWY. (2010). Establishment of L-arabinose fermentation in glucose/xylose co-fermenting recombinant Saccharomyces cerevisiae 424A(LNH-ST) by genetic engineering. Appl Microbiol Biotechnol, 87, 1803–1811.
  • Bettiga M, Bengtsson O, Hahn-Hägerdal B, Gorwa-Grauslund MF. (2009). Arabinose and xylose fermentation by recombinant Saccharomyces cerevisiae expressing a fungal pentose utilization pathway. Microb Cell Fact, 8, 40.
  • Bhat PJ, Hopper JE. (1992). Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol Cell Biol, 12, 2702–2707.
  • Bisaria VS, Mishra S. (1989). Regulatory aspects of cellulase biosynthesis and secretion. Crit Rev Biotechnol, 9, 61–103.
  • Bisaria VS. (1998). Bioprocessing of agro-residues to value added products. In: Martin AM, ed., Bioconversion of Waste Materials to Industrial Products. UK: Chapman & Hall, 197–246.
  • Boles E, Hollenberg CP. (1997). The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev, 21, 85–111.
  • Boles E, Keller M. (2008). Novel specific arabinose transporter from the yeast Pichia stipitis, and uses thereof. Patent WO/2008/080505.
  • Brandberg T, Franzén CJ, Gustafsson L. (2004). The fermentation performance of nine strains of Saccharomyces cerevisiae in batch and fed-batch cultures in dilute-acid wood hydrolysate. J Biosci Bioeng, 98, 122–125.
  • Brat D, Boles E, Wiedemann B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Appl Environ Microbiol, 75, 2304–2311.
  • Bro C, Knudsen S, Regenberg B, Olsson L, Nielsen J. (2005). Improvement of galactose uptake in Saccharomyces cerevisiae through overexpression of phosphoglucomutase: example of transcript analysis as a tool in inverse metabolic engineering. Appl Environ Microbiol, 71, 6465–6472.
  • Cadoche L, López GD. (1989). Assessment of size reduction as a preliminary step in the production of ethanol from lignocellulosic wastes. Biol Waste, 30, 153–157.
  • Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. (2003). Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem, 39, 1533–1542.
  • Cantarella M, Cantarella L, Gallifuoco A, Spera A, Alfani F. (2004). Comparison of different detoxification methods for steam-exploded poplar wood as a substrate for the bioproduction of ethanol in SHF and SSF. Process Biochem 39, 1533–1542.
  • Cardini CE, Leloir LF. (1953). Enzymatic phosphorylation of galactosamine and galactose. Arch Biochem Biophys, 45, 55–64.
  • Carvalho GBM, Mussatto SI, Cândido EJ, Silva JBA. (2006). Comparison of different procedures for the detoxification of eucalyptus hemicellulosic hydrolysate for use in fermentative processes. J Chem Technol Biotechnol, 81, 152–157.
  • Cara C, Ruiz E, Ballesteros I, Negro MJ, Castro E. (2006). Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Process Biochem, 41, 423–429.
  • Chakravorty M, Veiga LA, Bacila M, Horecker BL. (1962). Pentose metabolism in Candida. The diphosphopyridine nucleotide-specific polyol dehydrogenase of Candida utilis. J Biol Chem, 237, 1014–1020.
  • Chandel AK, Kapoor RK, Singh A, Kuhad RC. (2007). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol, 98, 1947–1950.
  • Chandrakant P, Bisaria VS. (1998). Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol, 18, 295–331.
  • Chandrakant P, Bisaria VS. (2000). Simultaneous bioconversion of glucose and xylose to ethanol by Saccharomyces cerevisiae in the presence of xylose isomerase. Appl Microbiol Biotechnol, 53, 301–309.
  • Chiang C, Knight SG. (1960). Metabolism of D-xylose by moulds. Nature, 188, 79–81.
  • Chiang L, Gong C, Chen L, Tsao GT. (1981). D-Xylulose fermentation to ethanol by Saccharomyces cerevisiae. Appl Environ Microbiol, 42, 284–289.
  • Chum HL, Johnson DK, Black S, Baker J, Grohmann K, Sarkanen KV, Wallace K, Schroeder HA. (1988). Organosolv pretreatment for enzymatic hydrolysis of poplars. I. Enzyme hydrolysis of cellulosic residues. Biotechnol Bioeng, 31,643–649.
  • DeJuan C, Lagunas R. (1986). Inactivation of the galactose transport system in Saccharomyces cerevisiae. FEBS Lett, 207l, 258–261.
  • Delgenes JP, Laplace JM, Moletta R, Navarro JM. (1996). Comparative study of separated fermentations and cofermentation processes to produce ethanol from hardwood derived hydrolysates. Biomass Bioenergy, 11, 353–360.
  • Demirbas A. (2009). Emission characteristics of gasohol and diesohol. Energy Sources Part A, 31, 1099–1104.
  • Díaz MJ, Ruiz E, Romero I, Cara C, Moya M, Castro E. 2009. Inhibition of Pichia stipitis fermentation of hydrolysates from olive tree cuttings. World J Microbiol, Biotechnol, 25: 891–899.
  • Dien BS, Kurtzman CP, Saha BC, Bothast RJ. (1996). Screening for L-arabinose fermenting yeasts. Appl Biochem Biotechnol, 57/58, 233–242.
  • Dombek KM, Ingram LO. (1987). Ethanol production during batch fermentation with Saccharomyces cerevisiae: changes in glycolytic enzymes and internal pH. Appl Environ Microbiol, 53, 1286–1291.
  • Douglas HC, Condie F. (1954). The genetic control of galactose utilization in Saccharomyces cerevisiae. J Bacteriol, 66, 662–670.
  • Duff SJB, Murray WD. (1996). Bioconversion of forest products and industry waste cellulosics to fuel ethanol: a review. Bioresour Technol, 55, 1–33.
  • du Preez JC, Bosch M, Prior BA. (1986). The fermentation of hexose and pentose sugars by Candida shehatae and Pichia stipitis. Appl Microbiol Biotechnol, 23, 228–233.
  • du Preez JC, Vandriessel B, Prior BA. (1989). Effect of aerobiosis on fermentation and key enzyme levels during growth of Pichia stipitis, Candida shehatae and Candida tenuis on D-xylose. Arch Microbiol, 152, 143–147.
  • Eliasson A, Christensson C, Wahlbom CF, Hahn-Hägerdal B. (2000). Anaerobic xylose fermentation by recombinant Saccharomyces cerevisiae carrying XYL1, XYL2, and XKS1 in mineral medium chemostat cultures. Appl Environ Microbiol, 66, 3381–3386.
  • Eliasson A, Hofmeyr JS, Pedler S, Hahn-Hägerdal B. (2001). The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol, 29, 288–297.
  • Finn RK, Bringer, S, Sahm H. (1984). Fermentation of arabinose to ethanol by Sarcina ventriculi. Appl Microbiol Biotechnol, 19, 161–166.
  • Fonseca C, Romão R, de Sousa HR, Hahn-Hägerdal B, Spencer-Martins I. (2007). L-Arabinose transport and catabolism in yeast. FEBS J, 274, 3589–3600.
  • Fonseca C, Neves AR, Antunes AMM, Noronha JP, Hahn-Hägerdal B, Santos H, Spencer-Martins I. (2008). In vivo 13C-NMR to unravel L-arabinose metabolism in yeast. Appl Environ Microbiol, 74, 1845–1855.
  • Fonseca C, Hahn-Hägerdal B, Spencer Martins I. (2009). DNA sequence encoding a specific L-arabinose transporter, a cDNA molecule, a plasmid comprising the said DNA sequence, host cell transformed with such plasmid and application thereof. Patent WO/2009/008756.
  • Foyle T, Jennings L, Mulcahy P. (2007). Compositional analysis of lignocellulosic materials: evaluation of methods used for sugar analysis of waste paper and straw. Bioresour Technol, 98, 3026–3036.
  • Fujita Y, Takahashi S, Ueda M, Tanaka A, Okada H, Morikawa Y, Kawaguchi T, Arai M, Fukuda H, Kondo A. (2002a). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl Environ Microbiol, 68, 5136–5141.
  • Fujita Y, Katahira S, Ueda M, Tanaka A, Okada H, Morikawa Y, Fukuda H, Kondo A. (2002b). Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae. J Mol Catal B-Enzym, 17, 189–195.
  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A. (2004). Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol, 70, 1207–1212.
  • García-Cubero MT, González-Benito G, Indacoechea I, Coca M, Bolado S. (2009). Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rice straw. Bioresour Technol, 100, 1608–1613.
  • Garcia Sanchez R, Karhumaa K, Fonseca C, Nogué VS, Almeida ?Larsson CU, Bengtsson O, Bettiga M, Hahn-Hägerdal B, Gorwa-Grauslund MF. (2010). Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering. Biotechnol Biofuels, 3, 13.
  • Gárdonyi M, Hahn-Hägerdal B. (2003). The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol, 32, 252–259.
  • Gárdonyi M, Österberg M, Rodrigues C, Spencer-Martins I, Hahn-Hägerdal B. (2003a). High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res, 3, 45–52.
  • Gárdonyi M, Jeppsson M, Liden G., Gorwa-Grauslund MF, Hahn-Hägerdal B. (2003b). Control of xylose consumption by xylose transporter in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng, 82, 818–824.
  • Glazer AN, Nikaido H. (2007). Microbial Biotechnology: Fundamentals of Applied Microbiology. 2nd ed. New York, USA: Cambridge University Press.
  • Gong C, Chen L, Flickinger MC, Chiang L, Tsao GT. (1981). Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl Environ Microbiol, 41, 430–436.
  • Grabber JH. (2005). How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci, 45, 820–831.
  • Grier TJ, Rasmussen JR. (1983). Metabolism of 3-deoxy-3-fluoro-D-mannose and 4-deoxy-4-fluoro-D-mannose by Saccharomyces cerevisiae S288C. Biochem J, 209, 677–685.
  • Gruno M, Väljamäe P, Pettersson G, Johansson G. (2004). Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnol Bioeng, 86, 503–511.
  • Gururajan VT, Pretorius IS, Cordero Otero RR. (2007a). Molecular cloning and functional expression of a novel Neurospora crassa xylose reductase in Saccharomyces cerevisiae in the development of a xylose fermenting strain. Ann Microbiol, 57, 223–231.
  • Gururajan VT, van Rensburg P, Hahn-Hägerdal B, Pretorius IS, Cordero Otero RR. (2007b). Development and characterisation of a recombinant Saccharomyces cerevisiae mutant strain with enhanced xylose fermentation properties. Ann Microbiol, 57, 599–607.
  • Hahn-Hägerdal B, Jeppsson H, Skoog K, Prior BA. (1994). Biochemistry and physiology of xylose fermentation by yeasts. Enzyme Microb Technol, 16, 933–943.
  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF. (2007). Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol, 74, 937–953.
  • Hamacher T, Becker J, Gárdonyi M, Hahn-Hägerdal B, Boles E. (2002). Characterization of the xylose-transporting properties of yeast hexose transporters and their influence on xylose utilization. Microbiology, 148, 2783–2788.
  • Hamelinck CN, van Hooijdonk G, Faaij APC. (2005). Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy, 28, 384–410.
  • Harhangi HR, Akhmanova AS, Emmens R, van der Drift C, de Laat WTAM, van Dijken JP, Jetten MSM, Pronk JT, Op den Camp HJM. (2003). Xylose metabolism in the anaerobic fungus Piromyces sp. strain E2 follows the bacterial pathway. Arch Microbiol, 180, 134–141.
  • Hattaka AI. (1983). Pretreatment of wheat straw by white-rot fungi for enzymatic saccharification of cellulose. Appl Microbiol Biotechnol, 18, 350–357.
  • Hector RE, Qureshi N, Hughes SR, Cotta MA. (2008). Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Appl Microbiol Biotechnol, 80, 675–684.
  • Hideno A, Inoue H, Tsukahara K, Fujimoto S, Minowa T, Inoue S, Endo T, Sawayama S. (2009). Wet disk milling pretreatment without sulfuric acid for enzymatic hydrolysis of rice straw. Bioresour Technol, 100, 2706–2711.
  • Hinman ND, Schell DJ, Riley CJ, Bergeron PW, Walter PJ. (1992). Preliminary estimate of the cost of ethanol production for SSF technology. Appl Biochem Biotechnol, 34/35, 639–649.
  • Ho NWY, Chen Z, Brainard AP. (1998). Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol, 64, 1852–1859.
  • Holden HM, Rayment I, Thoden JB. (2003). Structure and function of enzymes of the Leloir pathway for galactose metabolism. J Biol Chem, 278, 43885–43888.
  • Hopper JE, Broach JR, Rowe LB. (1978). Regulation of the galactose pathway in Saccharomyces cerevisiae: induction of uridyl transferase mRNA and dependency on GAL4 gene function. Proc Natl Acad Sci USA, 75, 2878–2882.
  • Horak J, Wolf DH. (1997). Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol, 179, 1541–1549.
  • Horak J, Regelmann J, Wolf DH. (2002). Two distinct proteolytic systems responsible for glucose-induced degradation of fructose-1, 6-bisphosphatase and the Gal2p transporter in the yeast Saccharomyces cerevisiae share the same protein components of the glucose signaling pathway. J Biol Chem, 277, 8248–8254.
  • Hsiao H, Chiang L, Chen L, Tsao GT. (1982). Effects of borate on isomerization and yeast fermentation of high xylulose solution and acid hydrolysate of hemicellulose. Enzyme Microb Technol, 4, 25–31.
  • Ito T, Hotta A, Uchida A, Tanino T, Ogino C, Kondo A, Ohmura N. (2010). Intensification of bio-ethanol fermentation by recombinant yeast with xylose isomerase pathway. Chem Eng Trans, 20, 103–108.
  • Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T. (2003). Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol, 103, 273–280.
  • Jeffries TW, Kurtzman CP. (1994). Strain selection, taxonomy, and genetics of xylose-fermenting yeasts. Enzyme Microb Technol, 16, 922–932.
  • Jeffries TW, Jin YS. (2004). Metabolic engineering for improved fermentation of pentoses by yeasts. Appl Microbiol Biotechnol, 63, 495–509.
  • Jeoh T, Agblevor FA. (2001). Characterization and fermentation of steam exploded cotton gin waste. Biomass Bioenergy 21, 109–120.
  • Jeon E, Hyeon J, Suh DJ, Suh Y, Kim SW, Song KH, Han SO. (2009). Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera β-glucosidase genes. Mol Cells, 28, 369–373.
  • Jeppsson H, Yu S, Hahn-Hägerdal B. (1996). Xylulose and glucose fermentation by Saccharomyces cerevisiae in chemostat culture. Appl Environ Microbiol, 62, 1705–1709.
  • Jeppsson M, Träff K, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund M. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res, 3, 167–175.
  • Jeppsson M, Bengtsson O, Franke K, Lee H, Hahn-Hägerdal B, Gorwa-Grauslund M. (2006). The expression of a Pichia stipitis xylose reductase mutant with higher KM for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng, 93, 665–673.
  • Jin Y, Jeffries TW. (2003). Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol, 105–108, 277–285.
  • Jin Y, Ni H, Laplaza JM, Jeffries TW. (2003). Optimal growth and ethanol production from xylose by recombinant Saccharomyces cerevisiae require moderate D-xylulokinase activity. Appl Environ Microbiol, 69, 495–503.
  • Jin Y, Jeffries TW. (2004). Stoichiometric network constraints on xylose metabolism by recombinant Saccharomyces cerevisiae. Metab Eng, 6, 229–238.
  • Jin Y, Laplaza JM, Jeffries TW. (2004). Saccharomyces cerevisiae engineered for xylose metabolism exhibits a respiratory response. Appl Environ Microbiol, 70, 6816–6825.
  • Jin Y, Alper H, Yang Y, Stephanopoulos G. (2005). Improvement of xylose uptake and ethanol production in recombinant Saccharomyces cerevisiae through an inverse metabolic engineering approach. Appl Environ Microbiol, 71, 8249–8256.
  • Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B. (2001). Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol, 67, 4249–4255.
  • Johansson B, Hahn-Hägerdal B. (2002). The non-oxidative Pentose Phosphate pathway controls the fermentation rate of xylulose but not of xylose in Saccharomyces cerevisiae TMB3001. FEMS Yeast Res, 2, 277–282.
  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B. (1998). Detoxification of wood hydrolysates with laccase and peroxidase from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol, 49, 691–697.
  • Kaar WE, Gutierrez CV, Kinoshita CM. (1998). Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy, 14, 277–287.
  • Kang MH, Ni H, Jeffries TW. (2003). Molecular characterization of a gene for aldose reductase (CbXYL1) from Candida boidinii and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol, 105–108, 265–276.
  • Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF. (2005). Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering. Yeast, 22, 359–368.
  • Karhumaa K, Wiedemann B, Hahn-Hägerdal B, Boles E, Gorwa-Grauslund MF. (2006). Co-utilization of L-arabinose and D-xylose by laboratory and industrial Saccharomyces cerevisiae strains. Microb Cell Fact, 5, 18.
  • Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund MF. (2007a). Comparison of xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact, 6, 5.
  • Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF. (2007b). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 73, 1039–1046.
  • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A. (2004). Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol, 70, 5407–5414.
  • Katahira S, Mizuike A, Fukuda H, Kondo A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl Microbiol Biotechnol, 72, 1136–1143.
  • Katahira S, Ito M, Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, Kondo A. (2008). Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose-assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol, 43, 115–119.
  • Keating JD, Robinson J, Cotta MA, Saddler JN, Mansfield SD. (2004a). An ethanologenic yeast exhibiting unusual metabolism in the fermentation of lignocellulosic hexose sugars. J Ind Microbiol Biotechnol, 31, 235–244.
  • Keating JD, Robinson J, Bothast RJ, Saddler JN, Mansfield SD. (2004b). Characterization of a unique ethanologenic yeast capable of fermenting galactose. Enzyme Microb Technol, 35, 242–253.
  • Kilian SG, van Uden N. (1988). Transport of xylose and glucose in the xylose-fermenting yeast Pichia stipitis. Appl Microbiol Biotechnol, 27, 545–548.
  • Kilzer FJ, Broido A. (1965). Speculations on the nature of cellulose pyrolysis. Pyrodynamics, 2, 151–163.
  • Knoshaug EP, Franden MA, Stambuk BU, Zhang M, Singh A. (2009). Utilization and transport of L-arabinose by non-Saccharomyces yeasts. Cellulose, 16, 729–741.
  • Ko CH, Liang H, Gaber RF. (1993). Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol Cell Biol, 13, 638–648.
  • Kondo A, Shigechi H, Abe M, Uyama K, Matsumoto T, Takahashi S, Ueda M, Tanaka A, Kishimoto M, Fukuda H. (2002). High-level ethanol production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell-surface glucoamylase. Appl Microbiol Biotechnol, 58, 291–296.
  • Kordowska-Wiater M, Targonski Z. (2001). Application of Saccharomyces cerevisiae and Pichia stipitis karyoductants to the production of ethanol from xylose. Acta Microbiol Pol, 50, 291–299.
  • Kostrzynska M, Sopher CR, Lee H. (1998). Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol Lett, 159, 107–112.
  • Kotaka A, Bando H, Kaya M, Kato-Murai M, Kuroda K, Sahara H, Hata Y, Kondo A, Ueda M. (2008). Direct ethanol production from barley β-glucan by sake yeast displaying Aspergillus oryzae β-glucosidase and endoglucanase. J Biosci Bioeng, 105, 622–627.
  • Kötter P, Ciriacy M. (1993). Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 38, 776–783.
  • Kuo S, Cirillo VP. (1970). Galactose transport in Saccharomyces cerevisiae III. Characteristics of galactose uptake in transferaseless cells: evidence against transport-associated phosphorylation. J Bacteriol, 103, 679–685.
  • Kuo S, Christensen MS, Cirillo VP. (1970). Galactose transport in Saccharomyces cerevisiae II. Characteristics of galactose uptake and exchange in galactokinaseless cells. J Bacteriol, 103, 671–678.
  • Krahulec S, Petschacher B, Wallner M, Longus K, Klimacek M, Nidetzky B. (2010). Fermentation of mixed glucose-xylose substrates by engineered strains of Saccharomyces cerevisiae: role of the coenzyme specificity of xylose reductase, and effect of glucose on xylose utilization. Microb Cell Fact, 9, 16.
  • Kristo P, Saarelainen R, Fagerström R, Aho S, Korhola M. (1996). Protein purification, and cloning and characterization of the cDNA and gene for xylose isomerase of barley. Eur J Biochem, 237, 240–246.
  • Krouwel PG, Braber L. (1979). Ethanol production by yeast at supraoptimal temperatures. Biotechnol Lett, 1, 403–408.
  • Kuroda, K., and Ueda, M. (2010). Cell surface engineering of yeast for applications in white biotechnology. Biotechnol Lett, (In Press).
  • Kurtzman CP, Dien BS. (1998). Candida arabinofermentans, a new L-arabinose fermenting yeast. Antonie van Leeuwenhoek, 74, 237–243.
  • Kuyper M, Harhangi HR, Stave AK, Winkler AA, Jetten MSM, de Laat WTAM, den Ridder JJJ, Op den Camp HJM, van Dijken JP, Pronk JT. (2003). High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res, 4, 69–78.
  • Kuyper M, Winkler AA, van Dijken JP, Pronk JT. (2004). Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res, 4, 655–664.
  • Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT. (2005a). Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res, 5, 399–409.
  • Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. (2005b). Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res, 5, 925–934.
  • La Grange DC, Pretorius IS, Claeyssens M, van Zyl WH. (2001). Degradation of xylan to D-xylose by recombinant Saccharomyces cerevisiae coexpressing the Aspergillus niger β-xylosidase (xlnD) and the Trichoderma reesei xylanase II (xyn2) genes. Appl Environ Microbiol, 67, 5512–5519.
  • Lai K, Klapa MI. (2004). Alternative pathways of galactose assimilation: could inverse metabolic engineering provide an alternative to galactosemic patients? Metab Eng, 6, 239–244.
  • Laplace JM, Delgenes JP, Moletta R, Navarro JM. (1991). Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis- oxygen requirement as a key factor. Appl Microbiol Biotechnol, 36, 158–162.
  • Larsson S, Reimann A, Jönsson L. (1999). Comparison of different methods for the detoxification of lignocellulosic hydrolysates of spruce. Appl Microbiol Biotechnol, 77–79, 91–103.
  • Larsson S, Cassland P, Jönsson LJ. (2001). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol, 67, 1163–1170.
  • Lau M, Gunawan C, Dale BE. (2009). The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: a comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol Biofuels, 2, 30.
  • Leandro MJ, Gonçalves P, Spencer-Martins I. (2006). Two glucose/xylose transporter genes from the yeast Candida intermedia: first molecular characterization of a yeast xylose-H+ symporter. Biochem J, 395, 543–549.
  • Lee JH, Williamson D, Rogers PL. 1980. The effect of temperature on the kinetics of ethanol production by Saccharomyces uvarum. Biotechnol Lett, 2, 83–88.
  • Lee WJ, Kim MD, Ryu YW, Bisson LF, Seo JH. (2002). Kinetic studies on glucose and xylose transport in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 60, 186–191.
  • Lee TH, Kim MD, Park YC, Bae SM, Ryu YW, Seo JH. (2003). Effects of xylulokinase activity on ethanol production from D-xylulose by recombinant Saccharomyces cerevisiae. J Appl Microbiol, 95, 847–852.
  • Leloir LF. (1951). Enzymatic transformation of uridine diphosphate glucose into galactose derivative. Arch Biochem Biophys, 33, 186–194.
  • Leong ST, Muttamara S, Laortanakul P. (2002). Applicability of gasoline containing ethanol as Thailand’s alternative fuel to curb toxic VOC pollutants from automobile emission. Atmos Environ, 36, 3495–3503.
  • Lindén T, Hahn-Hägerdal B. (1989). Fermentation of lignocellulose hydrolysates with yeasts and xylose isomerase. Enzyme Microb Technol, 11, 583–589.
  • Lindén T, Peetre J, Hahn-Hägerdal B. (1992). Isolation and characterization of acetic acid-tolerant galactose-fermenting strains of Saccharomyces cerevisiae from a spent sulfite liquor fermentation plant. Appl Environ Microbiol, 58, 1661–1669.
  • Liu E, Hu Y. (2010). Construction of a xylose-fermenting Saccharomyces cerevisiae strain by combined approaches of genetic engineering, chemical mutagenesis and evolutionary adaptation. Biochem Eng J, 48, 204–210.
  • Lönn A, Gárdonyi M, van Zyl WH, Hahn-Hägerdal B, Cordero Otero RR. (2002). Cold adaptation of xylose isomerase from Thermus thermophilus through random PCR mutagenesis. Gene cloning and protein characterization. Eur J Biochem, 269, 157–163.
  • Lönn A, Träff-Bjerre KL, Cordero Otero RR, van Zyl WH, Hahn-Hägerdal B. (2003). Xylose isomerase activity influences xylose fermentation with recombinant Saccharomyces cerevisiae strains expressing mutated xylA from Thermus thermophilus. Enzyme Microb Technol, 32, 567–573.
  • Lu C, Jeffries T. (2007). Shuffling of promoters for multiple genes to optimize xylose fermentation in an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol, 73, 6072–6077.
  • Lu Y, Warner R, Sedlak M, Ho N, Mosier NS. (2009). Comparison of glucose/xylose cofermentation of poplar hydrolysates processed by different pretreatment technologies. Biotechnol Prog, 25, 349–356.
  • Lucas C, van Uden N. 1986. Transport of hemicellulose monomers in the xylose-fermenting yeast Candida shehatae. Appl Microbiol Biotechnol, 23, 491–495.
  • Lynd LR, van Zyl WH, McBride JE, Laser M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol, 16, 577–583.
  • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. (2009a). Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol, 82, 1067–1078.
  • Madhavan A, Tamalampudi S, Srivastava A, Fukuda H, Bisaria VS, Kondo A. (2009b). Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization. Appl Microbiol Biotechnol, 82, 1037–1047.
  • Maleszka R, Veliky IA, Schneider H. (1981). Enhanced rate of ethanol production from D-xylose using recycled or immobilized cells of Pachysolen tannophilus. Biotechnol Lett, 3, 415–420.
  • Maleszka R, James AP, Schneider H. (1983). Ethanol production from various sugars by strains of Pachysolen tannophilus bearing different numbers of chromosomes. J Gen Microbiol, 129, 2495–2500.
  • Martín C, Galbe M, Wahlbom CF, Hahn-Hägerdal B, Jönsson LJ. (2002a). Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol, 31, 274–282.
  • Martín C, Fernández T, García R, Carrillo E, Marcet M, Galbe M, Jönsson LJ. (2002b). Preparation of hydrolysates from tobacco stalks and ethanolic fermentation by Saccharomyces cerevisiae. World J Microbiol Biotechnol, 18, 857–862.
  • Martín C, Marcet M, Almazán O, Jönsson LJ. (2007). Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol, 98, 1767–1773.
  • Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO. (2001). Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog, 17, 287–293.
  • Matsushika A, Sawayama S. (2008). Efficient bioethanol production from xylose by recombinant Saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng, 106, 306–309.
  • Matsushika A, Watanabe S, Kodaki T, Makino K, Sawayama S. (2008). Bioethanol production from xylose by recombinant Saccharomyces cerevisiae expressing xylose reductase, NADP+-dependent xylitol dehydrogenase, and xylulokinase. J Biosci Bioeng, 105, 296–299.
  • Matsushika A, Inoue H, Kodaki T, Sawayama S. (2009a). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol, 84, 37–53.
  • Matsushika A, Inoue H, Watanabe S, Kodaki T, Makino K, Sawayama S. (2009b). Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol, 75, 3818–3822.
  • Meinander NQ, Hahn-Hägerdal B. 1997. Influence of cosubstrate concentration on xylose conversion by recombinant, XYL1-expressing Saccharomyces cerevisiae: a comparison of different sugars and ethanol as cosubstrates. Appl Environ Microbiol, 63, 1959–1964.
  • Meinander NQ, Boels I, Hahn-Hägerdal B. 1999. Fermentation of xylose/glucose mixtures by metabolically engineered Saccharomyces cerevisiae strains expressing XYL1 and XYL2 from Pichia stipitis with and without overexpression of TAL1. Bioresour Technol, 68, 79–87.
  • Metzger MH, Hollenberg CP. (1995). Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Eur J Biochem, 228, 50–54.
  • Mittal A, Scott GM, Amidon TE, Kiemle DJ, Stipanovic AJ. (2009). Quantitative analysis of sugars in wood hydrolyzates with 1H NMR during the autohydrolysis of hardwoods. Bioresour Technol, 100, 6398–6406.
  • Miyafuji H, Danner H, Neureiter M, Thomasser C, Bvochora J, Szolar O, Braun R. (2003). Detoxification of wood hydrolysates with wood charcoal for increasing the fermentability of hydrolysates. Enzyme Microb Technol, 32, 396–400.
  • Moes CJ, Pretorius IS, van Zyl WH. (1996). Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol Lett, 18, 269–274.
  • Mohagheghi A, Ruth M, Schell DJ. (2006). Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem, 41, 1806–1811.
  • Moniruzzaman M, Dien BS, Skory CD, Chen ZD, Hespell RB, Ho NWY, Dale BE, Bothast RJ. (1997). Fermentation of corn fiber sugars by an engineered xylose utilizing Saccharomyces yeast strain. World J Microbiol Biotechnol, 13, 341–346.
  • Mtui GYS. (2010). Recent advances in pretreatment of lignocellulosic wastes and production of value added products. Afr J Biotechnol, 8, 1398–1415.
  • Nagodawithana TW, Steinkraus KH. (1976). Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in “rapid fermentation”. Appl Environ Microbiol, 31, 158–162.
  • Nehlin JO, Carlberg M, Ronne H. (1991). Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J, 10, 3373–3377.
  • Nevado J, Navarro MA, Heredia CF. (1993). Galactose inhibition of the constitutive transport of hexoses in Saccharomyces cerevisiae. Yeast, 9, 111–119.
  • Nevado J, Navarro MAA, Heredia CF. (1994). Transport of hexoses in yeast. Re-examination of the sugar phosphorylation hypothesis with a new experimental approach. Yeast, 10, 59–65.
  • Nevoigt E. (2008). Progress in metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 72, 379–412.
  • Nichols NN, Dien BS, Guisado GM, López MJ. (2005). Bioabatement to remove inhibitors from biomass-derived sugar hydrolysates. Appl Biochem Biotechnol, 121, 379–390.
  • Nishizawa K, Shimoda E, Kasahara M. (1995). Substrate recognition domain of the Gal2 galactose transporter in yeast Saccharomyces cerevisiae as revealed by chimeric galactose-glucose transporters. J Biol Chem, 270, 2423–2426.
  • Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G. (2006). Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol, 126, 488–498.
  • Okuda N, Ninomiya K, Katakura Y, Shioya S. (2008). Strategies for reducing supplemental medium cost in bioethanol production from waste house wood hydrolysate by ethanologenic Escherichia coli: inoculum size increase and coculture with Saccharomyces cerevisiae. J Biosci Bioeng, 105, 90–96.
  • Olofsson K, Bertilsson M, Lidén G. (2008). A short review on SSF- an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol Biofuels, 1, 7.
  • Olsson L, Neilsen J. (2000). The role of metabolic engineering in the improvement of Saccharomyces cerevisiae: utilization of industrial media. Enzyme Microb Technol, 26, 785–792.
  • Ostergaard S, Olsson L, Nielsen J. (2000a). Metabolic engineering of Saccharomyces cerevisiae. Microbiol Mol Biol Rev, 64, 34–50.
  • Ostergaard S, Olsson L, Johnston M, Nielsen J. (2000b). Increasing galactose consumption by Saccharomyces cerevisiae through metabolic engineering of the GAL gene regulatory network. Nat Biotechnol, 18, 1283–1286.
  • Ostergaard S, Walløe KO, Gomes CSG., Olsson L, Nielsen J. (2001). The impact of GAL6, GAL80, and MIG1 on glucose control of the GAL system in Saccharomyces cerevisiae. FEMS Yeast Res, 1, 47–55.
  • Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Rèczey K. (1997). Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol, 20, 286–293.
  • Palmqvist E, Almeida J, Hahn-Hägerdal B. (1999). Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng, 62, 447–454.
  • Palmqvist E, Hahn-Hägerdal B. (2000a). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol, 74, 17–24.
  • Palmqvist E, Hahn-Hägerdal B. (2000b). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol, 74, 25–33.
  • Payton MA, Rheinnecker M, Klig LS, DeTiani M, Bowden E. (1991). A novel Saccharomyces cerevisiae secretory mutant possesses a thermolabile phosphomannose isomerase. J Bacteriol, 173, 2006–2010.
  • Persson P, Larsson S, Jönsson LJ, Nilvebrant N, Sivik B, Munteanu F, Thörneby L, Gorton L. (2002). Supercritical fluid extraction of a lignocellulosic hydrolysate of spruce for detoxification and to facilitate analysis of inhibitors. Biotechnol Bioeng, 79, 694–700.
  • Petschacher B, Nidetzky B. (2008). Altering the coenzyme preference of xylose reductase to favor utilization of NADH enhances ethanol yield from xylose in a metabolically engineered strain of Saccharomyces cerevisiae. Microb Cell Fact, 7, 9.
  • Pitkänen J, Aristidou A, Salusjärvi L, Ruohonen L, Penttilä M. (2003). Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab Eng, 5, 16–31.
  • Pitkänen J, Törmä A, Alff S, Huopaniemi L, Mattila P, Renkonen R. 2004. Excess mannose limits the growth of phosphomannose isomerase PMI40 deletion strain of Saccharomyces cerevisiae. J Biol Chem, 279, 55737–55743.
  • Pitkänen J, Rintala E, Aristidou A, Ruohonen L, Penttilä M. (2005). Xylose chemostat isolates of Saccharomyces cerevisiae show altered metabolite and enzyme levels compared with xylose, glucose, and ethanol metabolism of the original strain. Appl Microbiol Biotechnol, 67, 827–837.
  • Pronk JT, Steensma HY, van Dijken JP. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 12, 1607–1633.
  • Ramakrishnan S, Hartley BS. (1993). Fermentation of lactose by yeast cells secreting recombinant fungal lactase. Appl Environ Microbiol, 59, 4230–4235.
  • Ramos J, Szkutnicka K, Cirillo VP. (1989). Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J Bacteriol, 171, 3539–3544.
  • Rao SR, Jyothi CP, Prakasham RS, Sarma PN, Rao LV. (2006). Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol, 97, 1974–1978.
  • Reddy NR, Palmer JK, Pierson MD, Bothast RJ. (1983). Wheat straw hemicelluloses: composition and fermentation by human colon Bacteroides. J Agric Food Chem, 31, 1308–1313.
  • Reifenberger E, Boles E, Ciriacy M. (1997). Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem, 245, 324–333.
  • Reijenga KA, Snoep JL, Diderich JA, van Verseveld HW, Westerhoff HV, Teusink B. (2001). Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae. Biophys J, 80, 626–634.
  • Richard P, Toivari MH, Penttilä M. (2000). The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett, 190, 39–43.
  • Richard P, Verho R, Putkonen M, Londesborough J, Penttilä M. (2003). Production of ethanol from L-arabinose by Saccharomyces cerevisiae containing a fungal L-arabinose pathway. FEMS Yeast Res, 3, 185–189.
  • Ross KL, Davis CN, Fridovich-Keil JL. (2004). Differential roles of the Leloir pathway enzymes and metabolites in defining galactose sensitivity in yeast. Mol Genet Metab, 83, 103–116.
  • Rovio S, Simolin H, Koljonen K, Sirén H. (2008). Determination of monosaccharide composition in plant fiber materials by capillary zone electrophoresis. J Chromatogr A, 1185, 139–144.
  • Runquist D, Hahn-Hägerdal B, Rådström P. (2010). Comparison of heterologous xylose transporters in recombinant Saccharomyces cerevisiae. Biotechnol Biofuels, 3, 5.
  • Saha BC, Iten LB, Cotta MA, Wu YV. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem, 40, 3693–3700.
  • Saloheimo A, Rauta J, Stasyk OV, Sibirny AA, Penttilä M, Ruohonen L. (2007). Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl Microbiol Biotechnol, 74, 1041–1052.
  • Sarthy AV, McConaughy BL, Lobo Z, Sundstrom JA, Furlong CE, Hall BD. (1987). Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol, 53, 1996–2000.
  • Schultz TP, Templeton MC, Biermann CJ, McGinnis GD. (1984). Steam explosion of mixed hardwood chips, rice hulls, corn stalks, and sugar cane bagasse. J Agric Food Chem, 32, 1166–1172.
  • Sedlak M, Ho NWY. (2001). Expression of E. coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microb Technol, 28, 16–24.
  • Sedlak M, Ho NWY. (2004). Characterization of the effectiveness of hexose transporters for transporting xylose during glucose and xylose co-fermentation by a recombinant Saccharomyces yeast. Yeast, 21, 671–684.
  • Senac T, Hahn-Hägerdal B. (1990). Intermediary metabolite concentrations in xylulose- and glucose-fermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 56, 120–126.
  • Singhania RR, Sukumaran RK, Pandey A. (2007). Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl Biochem Biotechnol, 142, 60–70.
  • Slininger PJ, Bothast RJ, Okos MR, Ladisch MR. (1985). Comparative evaluation of ethanol production by xylose-fermenting yeasts presented high xylose concentrations. Biotechnol Lett, 7, 431–436.
  • Smith MT, Cameron DR, Duff SJB. (1997). Comparison of industrial yeast strains for fermentation of spent sulphite pulping liquor fortified with wood hydrolysate. J Ind Microbiol Biotechnol, 18, 18–21.
  • Solomon BD, Barnes JR, Halvorsen KE. (2007). Grain and cellulosic ethanol: history, economics, and energy policy. Biomass Bioenergy, 31, 416–425.
  • Sonderegger M, Sauer U. (2003). Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol, 69, 1990–1998.
  • Stambuk BU, Franden MA, Singh A, Zhang M. (2003). D-Xylose transport by Candida succiphila and Kluyveromyces marxianus. Appl Biochem Biotechnol, 105–108, 255–263.
  • Suihko ML, Suomalainen I, Enari TM. (1983). D-Xylose catabolism in Fusarium oxysporum. Biotechnol Lett, 5, 525–530.
  • Sun Y, Cheng J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol, 83, 1–11.
  • Sun Y, Cheng JJ. (2005). Dilute acid pretreatment of rye straw and bermudagrass for ethanol production. Bioresour Technol, 96, 1599–1606.
  • Suzuki-Fujimoto T, Fukuma M, Yano K, Sakurai H, Vonika A, Johnston SA, Fukasawa T. (1996). Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p. Mol Cell Biol, 16, 2504–2508.
  • Szczodrak J, Fiedurek J. (1996). Technology for conversion of lignocellulosic biomass to ethanol. Biomass Bioenergy, 10, 367–375.
  • Tanino T, Hotta A, Ito T, Ishii J, Yamada R, Hasunuma T, Ogino C, Ohmura N, Ohshima T, Kondo A. (2010). Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation. Appl Microbiol Biotechnol, 88, 1215–1221.
  • Terrell SL, Bernard A, Bailey RB. (1984). Ethanol from whey: continuous fermentation with a catabolite repression-resistant Saccharomyces cerevisiae mutant. Appl Environ Microbiol, 48, 577–580.
  • Teymouri F, Laureano-Perez L, Alizadeh H, Dale BE. (2005). Optimization of the ammonia fiber explosion (AFEX) treatment parameters for enzymatic hydrolysis of corn stover. Bioresour Technol, 96, 2014–2018.
  • Toivari MH, Aristidou A, Ruohonen L, Penttilä M. (2001). Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: importance of xylulokinase (XKS1) and oxygen availability. Metab Eng, 3, 236–249.
  • Träff-Bjerre KL, Jeppsson M, Hahn-Hägerdal B, Gorwa-Grauslund M. (2004). Endogenous NADPH-dependent aldose reductase activity influences product formation during xylose consumption in recombinant Saccharomyces cerevisiae. Yeast, 21, 141–150.
  • Träff KL, Cordero RRO, van Zyl WH, Hahn-Hägerdal B. (2001). Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes. Appl Environ Microbiol, 67, 5668–5674.
  • Treitel MA, Carlson M. (1995). Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci USA, 92, 3132–3136.
  • Trinh CT, Unrean P, Srienc F. (2008). Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol, 74, 3634–3643.
  • Vandeska E, Kuzmanov S, Jeffries TW. (1995). Xylitol formation and key enzyme activities in Candida boidinii under different oxygen transfer rates. J Ferment Bioeng, 80, 513–516.
  • van Maris AJA, Abbott DA, Bellissimi E, van den Brink J, Kuyper M, Luttik MAH, Wisselink HW, Scheffers WA, van Dijken JP, Pronk JT. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek, 90, 391–418.
  • van Zyl WH, Eliasson A, Hobley T, Hahn-Hägerdal B. (1999). Xylose utilization by recombinant strains of Saccharomyces cerevisiae on different carbon sources. Appl Microbiol Biotechnol, 52, 829–833.
  • Verho R, Londesborough J, Penttilä M, Richard P. (2003). Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae. Appl Environ Microbiol, 69, 5892–5897.
  • Verho R, Putkonen M, Londesborough J, Penttilä M, Richard P. (2004). A novel NADH-linked L-xylulose reductase in the L-arabinose catabolic pathway of yeast. J Biol Chem, 279, 14746–14751.
  • Vidal PF, Molinier J. (1988). Ozonolysis of lignin- improvement of in vitro digestibility of poplar sawdust. Biomass, 16, 1–17.
  • Wahlbom CF, Hahn-Hägerdal B. (2002). Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng, 78, 172–178.
  • Wahlbom CF, Otero RRC, van Zyl WH, Hahn-Hägerdal B, Jönsson LJ. (2003). Molecular analysis of a Saccharomyces cerevisiae mutant with improved ability to utilize xylose shows enhanced expression of proteins involved in transport, initial xylose metabolism, and the Pentose Phosphate pathway. Appl Environ Microbiol, 69, 740–746.
  • Walfridsson M, Hallborn J, Penttilä M, Keränen S, Hahn-Hägerdal B. (1995). Xylose-metabolizing Saccharomyces cerevisiae strains overexpressing the TKL1 and TAL1 genes encoding the Pentose Phosphate pathway enzymes transketolase and transaldolase. Appl Environ Microbiol, 61, 4184–4190.
  • Walfridsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B. (1996). Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol, 62, 4648–4651.
  • Walfridsson M, Anderlund M, Bao X, Hahn-Hägerdal B. (1997). Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilization. Appl Microbiol Biotechnol, 48, 218–224.
  • Wang PY, Johnson BF, Schneider H. (1980). Fermentation of D-xylose by yeasts using glucose isomerase in the medium to convert D-xylose to D-xylulose. Biotechnol Lett, 2, 273–278.
  • Wang X, Chen H, Luo K, Shao J, Yang H. (2008). The influence of microwave drying on biomass pyrolysis. Energy Fuels, 22, 67–74.
  • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K. (2007a). Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADH-preferring xylose reductase from Pichia stipitis. Microbiology, 153, 3044–3054.
  • Watanabe S, Saleh AA, Pack SP, Annaluru N, Kodaki T, Makino K. (2007b). Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein-engineered NADP+-dependent xylitol dehydrogenase. J Biotechnol, 130, 316–319.
  • Watson NE, Prior BA, du Preez JC, Lategan PM. (1984). Oxygen requirements for D-xylose fermentation to ethanol and polyols by Pachysolen tannophilus. Enzyme Microb Technol, 6, 447–450.
  • Weierstall T, Hollenberg CP, Boles E. (1999). Cloning and characterization of three genes (SUT1-3) encoding glucose transporters of the yeast Pichia stipitis. Mol Microbiol, 31, 871–883.
  • Wen F, Sun J, Zhao H. (2010). Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol, 76, 1251–1260.
  • Wickramasinghe SR, Grzenia DL. (2008). Adsorptive membranes and resins for acetic acid removal from biomass hydrolysates. Desalination, 234, 44–151.
  • Wightman R, Bell R, Reece RJ. (2008). Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Eukaryot Cell, 7, 2061–2068.
  • Wisselink HW, Toirkens MJ, del Rosario Franco Berriel M, Winkler AA, van Dijken JP, Pronk JT, van Maris AJA. (2007). Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of L-arabinose. Appl Environ Microbiol, 73, 4881–4891.
  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA. (2009). Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol, 75, 907–914.
  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY. (2005). Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresour Technol, 96, 2026–2032.
  • Yamanaka K. (1969). Inhibition of D-xylose isomerase by pentitols and D-lyxose. Arch Biochem Biophys, 131, 502–506.
  • Yoon S, Mukerjea R, Robyt JF. (2003). Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohydr Res, 338, 1127–1132.
  • Yu S, Wayman M, Parekh SK. (1987). Fermentation to ethanol of pentose-containing spent sulphite liquor. Biotechnol Bioeng, 29, 1144–1150.
  • Yu Z, Zhang H. (2003). Pretreatments of cellulose pyrolysate for ethanol production by Saccharomyces cerevisiae, Pichia sp. YZ-1 and Zymomonas mobilis. Biomass Bioenergy 24, 257–262.
  • Zhang X, Yu H, Huang H, Liu Y. (2007). Evaluation of biological pretreatment with white rot fungi for the enzymatic hydrolysis of bamboo culms. Int Biodeterior Biodegrad, 60, 159–164.
  • Zhang J, Tian S, Zhang Y, Yang X. (2008). Construction of a recombinant S. cerevisiae expressing a fusion protein and study on the effect of converting xylose and glucose to ethanol. Appl Biochem Biotechnol, 150, 185–192.
  • Zhao J, Xia L. (2010). Bioconversion of corn stover hydrolysate to ethanol by a recombinant yeast strain. Fuel Process Technol, 91, 1807–1811.
  • Zhou H, Winston F. (2001). NRG1 is required for glucose repression of the SUC2 and GAL genes of Saccharomyces cerevisiae. BMC Genet, 2, 5.
  • Zuo Y, Maness P, Logan BE. (2006). Electricity production from steam-exploded corn stover biomass. Energy Fuels, 20, 1716–1721.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.