831
Views
41
CrossRef citations to date
0
Altmetric
Review Article

Current perspectives on the volatile-producing fungal endophytes

, , &
Pages 363-373 | Received 21 Aug 2011, Accepted 20 Nov 2011, Published online: 30 Mar 2012

References

  • Ahameda A, Ahring BK. (2011). Production of hydrocarbon compounds by endophytic fungi Gliocladium sp., grown on cellulose. Bioresour Technol, DOI: 10.1016/j.biortech.2011.07.073.
  • Atmosukarto I, Castillo U, Hess WM, Sears J, Strobel G. (2005). Isolation and characterization of Muscodor albus I-41.3 s, a volatile antibiotic producing fungus. Plant Sci, 169, 854–861.
  • Bäck J, Aaltonen H, Hell ´, en H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J. (2010). Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ, 44, 3651–3659.
  • Banerjee D, Strobel GA, Booth E, Geary B, Sears J, Spakowicz D, Busse S. (2010). An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere, 1, 229–240. [a]
  • Banerjee D, Strobel GA, Geary B, Searsc J, Ezrad D, Liarzid O, Coombse J. (2010). Muscodor albus strain GBA, an endophytic fungus of Ginkgo biloba from United States of America. Mycology, 1, 179–186. [b]
  • Booth E, Strobel G, Knighton B, Sears J, Geary B, Avci R. (2011). A rapid column technique for trapping and collecting of volatile fungal hydrocarbons and hydrocarbon derivatives. Biotechnol Lett, DOI: 10.1007/s10529-011-0660-2.
  • Camp AR, Dillard HR, Smart CD. (2008). Efficacy of Muscodor albus for the control of Phytophthora blight of sweet pepper and butternut squash. Plant Dis, 92, 1488–1492.
  • Campos VP, Canuto de Pinho RS, Freire ES. (2010). Volatiles produced by interacting microorganisms potentially useful for the control of plant pathogens. Ciênc agrotec, 34, 525–535.
  • Christen P, Meza J, Revah S. (1997). Fruity aroma production in solid state fermentation by Ceratocystis fimbriata: influence of the substrate type and the addition of precursors. Mycol Res, 101, 911–919.
  • Claeson AS, Levin JO, Blomquist G, Sunesson AL. (2002). Volatile metabolites from microorganisms grown on humid building materials and synthetic media. J Environ Monit, 4, 667–672.
  • Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB. (2002). Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology, 148, 3737–3741. [a]
  • Daisy BH, Strobel GA, Ezra D, Castillo U, Bairn G, Hess WM. (2002). Muscodor vitigenus anam. sp. nov., an endophyte from Paullinia paullinioides. Mycotaxon, 81, 463–475. [b]
  • Dennis C, Webster J. (1971). Antagonistic properties of species groups of Trichoderma: II. Production of volatile antibiotics. Trans Br Mycol Soc, 57, 41–48.
  • Dey P, Banerjee J, Maiti MK. (2011). Comparative lipid profiling of two endophytic fungal isolates-Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol, 102, 5815–5823.
  • Ezra D, Hess WM, Strobel GA. (2004). Unique wild type endophytic isolates of Muscodor albus, a volatile antibiotic producing fungus. Microbiology, 150, 4023–4031.
  • Ezra D, Skovorodnikov J, Kroitor-Keren T, Denisov Y, Liarzi O. (2010). Development of methods for detection and Agrobacterium-mediated transformation of the sterile, endophytic fungus Muscodor albus. Biocontrol Sci Technol, 20, 83–97.
  • Ezra D, Strobel GA. (2003). Effect of substrate on the bioactivity of volatile antimicrobials produced by Muscodor albus. Plant Sci 165, 1229–1238.
  • Fialho MB, Duarte de Moraes MH, Tremocoldi AR, Pascholati SF. (2011). Potential of antimicrobial volatile organic compounds to control Sclerotinia sclerotiorum in bean seeds. Pesq Agropec Bras, 46, 137–142
  • Fraatz MA, Zorn H. (2010). Fungal flavors. In: Esser K, Hofrichter M eds The Mycota X: Industrial applications, Springer, Heidelberg, 249–268.
  • Gabler FM, Fassel R, Mercier J, Smilanick JL. (2006). Influence of temperature, inoculation interval, and dosage on biofumigation with Muscodor albus to control postharvest gray mold on grapes. Plant Dis, 90, 1019–1025.
  • Gabler FM, Mercier J, Jimenez JI, Smilanick JL. (2010). Integration of continuous biofumigation with Muscodor albus with pre-cooling fumigation with ozone or sulfur dioxide to control postharvest gray mold of table grapes. Postharvest Biol Technol, 55, 78–84.
  • Goates BJ, Mercier J. (2011). Control of common bunt of wheat under field conditions with the biofumigant fungus Muscodor albus. Eur J Plant Pathol, DOI: 10.1007/s10658-011–9817-z.
  • González MC, Anaya AL, Glenn AE, Macías-Rubalcava ML, Hernández-Bautista BE, Hanlin RT. (2009). Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. Mycotaxon, 110, 363–372.
  • Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA. (2010). Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology, 156, 3814–3829.
  • Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW, Tsang A, Baker SE. (2011). Fueling the future with fungal genomics. Mycology, DOI: 10.1080/21501203.2011.584577.
  • Grimme E, Zidack NK, Sikora RA, Strobel GA, Jacobsen BJ. (2007). Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis, 91, 220–225.
  • Herre EA, Mejía LC, Kyllo DA, Rojas E, Maynard Z, Butler A, Van Bael SA. (2007). Ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology, 88, 550–558.
  • Hua D, Xu P. (2011). Recent advances in biotechnological production of 2-phenylethanol. Biotechnol Adv, 29, 654–660.
  • Huang H, Li Q, Feng X, Chen B, Wang J, Liu L, She Z, Lin Y. (2010). Structural elucidation and NMR assignments of four aromatic lactones from a mangrove endophytic fungus (No. GX4-1B). Magn Reson Chem, 48, 496–499.
  • Huang WY, Cai YZ, Hyde KD, Corke H, Sun M. (2007). Endophytic fungi from Nerium oleander L. (Apocynaceae): main constituents and antioxidant activity. World J Microbiol Biotechnol, 23, 1253–1263.
  • Huang GX, Shi T, Liu XB, Dai YK, Cai JM, Lin CH. (2010). GFP-tagging and antagonistic activity of the engineered strains of Brachiaria brizantha endophytic fungus HND5. Chin J Biol Control, 26, 320–326.
  • Huang R, Li GQ, Zhang J, Yang L, Che HJ, Jiang DH, Huang HC. (2011). Control of postharvest botrytis fruit rot of strawberry by volatile organic compounds of Candida intermedia. Phytopathology, 101, 859–869.
  • Inamdar AA, Moore JC, Cohen RI, Bennett JW. (2011). A model to evaluate the cytotoxicity of the fungal volatile organic compound 1-octen-3-ol in human embryonic stem cells. Mycopathologia, doi: 10.1007/s11046-011–9457-z.
  • Insam H, Seewald MSA. (2010). Volatile organic compounds (VOCs) in soils. Biol Fertil Soils, 46, 199–213.
  • Jamalizadeh M, Etebarian HR, Aminian H, Alizadeh A. (2011). A review of mechanisms of action of biological control organisms against post-harvest fruit spoilage. EPPO Bull, 41, 65–71.
  • Janssens L, De Pooter HL, Schamp NM, Vandamme EJ. (1992). Production of flavours by microorganisms. Process Biochem, 27, 195–215.
  • Kaiser R. (2006). Flowers and fungi use scents to mimic each other. Science, 311: 806–807.
  • Kaul S, Wani M, Dhar KL, Dhar MK. (2008). Production and GC-MS trace analysis of methyl eugenol from endophytic isolate of Alternaria from rose. Ann Microbiol, 58, 443–445.
  • Korpi A, Järnberg J, Pasanen AL. (2009). Microbial volatile organic compounds. Crit Rev Toxicol, 39, 139–193.
  • Krings U, Berger RG. (1998). Biotechnological production of favours and fragrances. Appl Microbiol Biotechnol, 49, 1–8.
  • Ladygina N, Dedyukhina EG, Vainshtein MB. (2006). A review on microbial synthesis of hydrocarbons. Process Biochem, 41, 1001–1014.
  • Larsen TO, Frisvad JC. (1994). A simple method for collection of fungal volatiles based on diffusive sampling from Petri dishes. J Microbiol Methods, 19, 297–305.
  • Larsen TO, Frisvad JC. (1995). Comparison of different methods for collection of volatile chemical markers from fungi. J Microbiol Methods, 20, 135–144.
  • Lee SO, Kim HY, Choi GJ, Lee HB, Jang KS, Choi YH, Kim JC. 2009. Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol, 106, 1213–1219.
  • Lu S, Draeger S, Schulz B, Krohn K, Ahmed I, Hussain H, Yi Y, Li L, Zhang W. (2011). Bioactive aromatic derivatives from endophytic fungus, Cytospora sp. Nat Prod Commun, 6, 661–666.
  • Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F, Duarte G, González MC, Glenn AE, Hanlin RT, Anaya AL. (2010). Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol, 36, 1122–1131.
  • Mann R, Mattner S, Allen D, Porter I, Edwards J. (2008). Bioprospecting for endophytes from Autralisn flora with mycofumigation potential. In: 3rd International Biofumigation Symposium, CSIRO Discovery Centre, Canberra, Australia. pp. 80.
  • Marsili RT, Laskonis LC, Kenaa C. (2007). Evaluation of PDMS-based extraction techniques and GC-TOFMS for the analysis of off-flavor chemicals in beer. J Am Soc Brew Chem, 65, 129–137.
  • McAfee BJ, Taylor A. (1999). A review of the volatile metabolites of fungi found on wood substrates. Nat Toxins, 7, 283–303.
  • Mercier J, Jiménez J, Tamez-Guerra P. (2007). Development of the volatile-producing fungus Muscodor albus Worapong, Strobel, and Hess as a novel antimicrobial biofumigant. Revista Mexicana de Fitopatologia, 25, 173–179.
  • Mercier J, Jiménez JI. (2009). Demonstration of the biofumigation activity of Muscodor albus against Rhizoctonia solani in soil and potting mix. BioControl, 54, 797–805.
  • Mercier J, Manker DC. (2005). Biocontrol of soil-borne diseases and plant growth enhancement in greenhouse soilless mix by the volatile-producing fungus Muscodor albus. Crop Prot, 24, 355–362.
  • Minerdi D, Bossi S, Gullino ML, Garibaldi A. (2009). Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol, 11, 844–854.
  • Minerdi D, Bossi S, Maffei ME, Gullino ML, Garibaldi A. (2011). Fusarium oxysporum and its bacterial consortium promote lettuce growth and expansin A5 gene expression through microbial volatile organic compound (MVOC) emission. FEMS Microbiol Ecol, 76, 342–351.
  • Mitchell AM, Strobel GA, Hess WM, Vargas PN, Ezra D. (2008). Muscodor crispans, a novel endophyte from Ananas ananassoides in the Bolivian Amazon. Fungal Divers, 31, 37–43.
  • Naik BS, Krishnamurthy YL. (2010). Endophytes: the real untapped high energy biofuel resource. Curr Sci, 98, 883.
  • Newcombe G, Shipunov A, Eigenbrode S, Raghavendra AKh, Ding H, Anderson CL, Menjivar R, Crawford M, Schwarzländer M. (2009). Endophytes influence protection and growth of an invasive plant. Commun Integr Biol, 2, 29–31.
  • Ortíz-Castro R, Contreras-Cornejo HA, Macías-Rodríguez L, López-Bucio J. (2009). The role of microbial signals in plant growth and development. Plant Signal Behav, 4, 701–712.
  • Park MS, Ahn J, Choi GJ, Choi YH, Jang KS, Kim JC. (2010). Potential of the volatile-producing fungus Nodulisporium sp. CF016 for the control of postharvest diseases of apple. Plant Pathol J, 26: 253–259.
  • Peng XW, Chen HZ. (2007). Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol, 57, 239–242.
  • Phongpaichit S, Nikom J, Rungjindamai N, Sakayaroj J, Hutadilok-Towatana N, Rukachaisirikul V, Kirtikara K. (2007). Biological activities of extracts from endophytic fungi isolated from Garcinia plants. FEMS Immunol Med Microbiol, 51, 517–525.
  • Raguso RA, Roy BA. (1998). ‘Floral’ scent production by Puccinia rust fungi that mimic flowers. Mol Ecol, 7, 1127–1136.
  • Rodriguez RJ, White JF, Arnold AE, Redman RS. (2009). Fungal endophytes: diversity and functional roles. New Phytol, 182, 314–330.
  • Rodríguez CS. (2008). Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol J, 3, 859–870.
  • Ryu CM, Yi HS, Ahn YR, Kim W, Zhang H, Park SH, Park CS, Farag MA, Paré PW, Kloepper JW. (2008). Dynamic communication between plants and rhizobacteria via volatile signals. In: Biology of Molecular Plant-Microbe Interactions, Vol. 6, Lorito M, Woo S, Scala F eds The International Society for Molecular Plant-Microbe Interactions, St. Paul, MN.
  • Santos-Fo F, Fill TP, Nakamura J, Monteiro MR, Rodrigues-Fo E. (2011). Endophytic fungi as a source of biofuel precursors. J Appl Microbiol Biotechnol, 21, 728–733.
  • Santos Filho FC, da Silva Amaral L, Rodrigues-Filho E. (2011). Composition of essential oils from Cupressus lusitanica and a Xylariaceous fungus found on its leaves. Biochem Syst Ecol, 39, 485–490.
  • Schiestl FP, Steinebrunner F, Schulz C, von Reuss S, Francke W, Weymuth C, Leuchtmann A. (2006). Evolution of ‘pollinator’- attracting signals in fungi. Biol Lett, 2, 401–404.
  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB. (2010). Microbial biosynthesis of alkanes. Science, 329, 559–562.
  • Schrader J. (2007). Microbial Flavour Production. In: Berger RG ed Flavours and Fragrances: Chemistry, Bioprocessing and Sustainability. Springer Berlin Heidelberg. 507–574.
  • Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D. (2011). An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol, 61, 729–739.
  • Splivallo R, Ottonello S, Mello A, Karlovsky P. (2011). Truffle volatiles: from chemical ecology to aroma biosynthesis. New Phytol, 189, 688–699.
  • Sopalun K, Strobel GA, Hess WM, Worapong J. (2003). A record of Muscodor albus, an endophyte from Myristica fragrans in Thailand, Mycotaxon, 88, 239–247.
  • Stadler M, Schulz B. (2009). High energy biofuel from endophytic fungi? Trends Plant Sci, 14, 353–355.
  • Stoppacher N, Kluger B, Zeilinger S, Krska R, Schuhmacher R. (2010). Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J Microbiol Methods, 81: 187–193.
  • Strobel GA. (2011). Muscodor species- endophytes with biological promise. Phytochem Rev, 10, 165–172.
  • Strobel GA, Dirkse E, Sears J, Markworth C. (2001). Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology, 147, 2943–2950.
  • Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J. (2008). The production of mycodiesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology, 154, 3319–3328 [a].
  • Strobel GA, Kluck K, Hess WM, Sears J, Ezra D, Vargas PN. (2007). Muscodor albus E-6, an endophyte of Guazuma ulmifolia, making volatile antibiotics: isolation, characterization and experimental establishment in the host plant. Microbiology, 153, 2613–2620
  • Strobel GA, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J. (2011). An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett, 320, 87–94.
  • Strobel GA, Spang S, Kluck K, Hess WM, Sears J, Livinghouse T. (2008). Synergism among volatile organic compounds resulting in increased antibiosis in Oidium sp. FEMS Microbiol Lett, 283: 140–145[b].
  • Strobel GA, Tomsheck A, Geary B, Spakowicz D, Strobel SA, Mattner S, Mann R. (2010). Endophyte strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology, 1, 187–194
  • Suwannarach N, Bussaban B, Hyde KD, Lumyong S. (2010). Muscodor cinnamomi, a new endophytic species from Cinnamomum bejolghota. Mycotaxon, 114, 15–23.
  • Tao J, Dai CC, Jiang BJ. (2010). The current status and prospects of biodiesel. Energy Env, 21, 1397–1406.
  • Tao MH, Yan J, Wei XY, Li DL, Zhang WM, Tan JW. (2011). A novel sesquiterpene alcohol from Fimetariella rabenhorstii, an endophytic fungus of Aquilaria sinensis. Nat Prod Commun, 6, 763–766.
  • Teles HL, Sordi R, Silva GH, Castro-Gamboa I, Bolzani Vda S, Pfenning LH, de Abreu LM, Costa-Neto CM, Young MC, Araújo AR. (2006). Aromatic compounds produced by Periconia atropurpurea, an endophytic fungus associated with Xylopia aromatica. Phytochemistry, 67, 2686–2690.
  • Ting ASY, Mah SW, Tee CS. (2010). Identification of volatile metabolites from fungal endophytes with biocontrol potential towards Fusarium oxysporum F. sp. cubense Race 4. Am J Agr Biol Sci, 5, 177–182.
  • Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D. (2010). Hypoxylon sp., an endophyte of Persea indica, producing 1, 8-cineole and other bioactive volatiles with fuel potential. Microb Ecol, 60, 903–914.
  • Wani MA, Sanjana K, Kumar DM, Lal DK. (2010). GC-MS analysis reveals production of 2-phenylethanol from Aspergillus niger endophytic in rose. J Basic Microbiol, 50, 110–114.
  • Wihlborg R, Pippitt D, Marsili R. (2008). Headspace sorptive extraction and GC-TOFMS for the identification of volatile fungal metabolites. J Microbiol Methods, 75, 244–250.
  • Worapong J, Strobel GA. (2009). Biocontrol of a root rot of kale by Muscodor albus strain MFC2. BioControl, 54, 301–306.
  • Worapong J, Strobel GA, Daisy BH, Castillo U, Baird G, Hess WM. (2002). Muscodor roseus sp. nov., an endophyte from Grevillea pteridifolia. Mycotaxon, 81, 463–475.
  • Worapong J, Strobel GA, Ford E, Li JY, Baird G, Hess WM. (2001). Muscodor albus anam. gen. et sp. nov., an endophyte from Cinnamomum zeylanicum. Mycotaxon, 79, 67–79.
  • Yamagiwa Y, Inagaki Y, Ichinose Y, Toyoda K, Hyakumachi M, Shiraishi T. (2011). Talaromyces wortmannii FS2 emits β-caryphyllene, which promotes plant growth and induces resistance. J Gen Plant Pathol, doi: 10.1007/s10327-011-0340-z.
  • Yuan ZL, Su ZZ, Mao LJ, Peng YQ, Yang GM, Lin FC, Zhang CL. (2011). Distinctive endophytic fungal assemblage in stems of wild rice (Oryza granulata) in China with special reference to two species of Muscodor (Xylariaceae). J Microbiol, 49, 15–23. [a]
  • Yuan ZL, Rao LB, Chen YC, Zhang CL. (2011). From pattern to process: species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol, 115, 197–213. [b]
  • Yuan ZL, Zhang CL, Lin FC. (2010). Role of diverse non-systemic fungal endophytes in plant performance and response to stress: progress and approaches. J Plant Growth Regul, 29, 116–126.
  • Zhang CL, Wang GP, Mao LJ, Komon-Zelazowska M, Yuan ZL, Lin FC, Druzhinina IS, Kubicek CP. (2010). Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol, 114, 797–808.
  • Zhang ZM, Li GK. (2010). A review of advances and new developments in the analysis of biological volatile organic compounds. Microchem J, 95, 127–139.
  • Zhao J, Shan T, Mou Y, Zhou L. (2011). Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev Med Chem, 11, 159–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.