911
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Cyclodextrin-based hydrogels toward improved wound dressings

, , &
Pages 328-337 | Received 23 Mar 2012, Accepted 06 Mar 2013, Published online: 06 Aug 2013

References

  • Arun R, Ashok KCK, Sravanthi VVNSS. (2008). Cyclodextrins as drug carrier molecule: a review. Scientia Pharmaceutica, Österreichische Apotheker-Verlagsgesellschaft, 76, 567–98
  • Ather S, Hargding K. (2009). Wound management and dressings. In: Rajendran S, ed. Advanced Textiles for Wound Care. 1st ed. Cardiff: Woodhead Publising Limited, 3–19
  • Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A. (2005). Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26, 6335–42
  • Beneke CE, Viljoen AM, Hamman JH. (2009). Polymeric plant-derived excipients in drug delivery. Molecules, 14, 2602–20
  • Bibby D. (1999). Investigations into the structure and composition of β-cyclodextrin/poly(acrylic acid) microspheres. Int J Pharm, 180, 161–8
  • Blanco-Fernandez B, Lopez-Viota M, Concheiro A, Alvarez-Lorenzo C. (2011). Synergistic performance of cyclodextrin-agar hydrogels for ciprofloxacin delivery and antimicrobial effect. Carbohyd Polym, 85, 765–74
  • Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. (2008). Wound healing dressings and drug delivery systems: a review. J Pharm Sci, 97, 2892–923
  • Boucard N, Viton C, Agay D, et al. (2007). The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials, 28, 3478–88
  • Buschmann H-J, Schollmeyer E. (2002). Applications of cyclodextrins in cosmetic products: a review. J Cosmet Sci, 53, 185–91
  • Cal K, Centkowska K. (2008). Use of cyclodextrins in topical formulations: practical aspects. Eur J Pharm Biopharm, 68, 467–78
  • Cesteros LC, Ramírez CA, Peciña A, Katime I. (2007). Synthesis and properties of hydrophilic networks based on poly(ethylene glycol) and β-cyclodextrin. Macromol Chem Phys, 208, 1764–72
  • Chen G, Jiang M. (2011). Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem Soc Rev, 40, 2254–66
  • Chen GQ. (2011). Biofunctionalization of polymers and their applications. In: Nyanhongo GS, Steiner W, Gübitz G. eds. Advances in Biochemical Engineering/Biotechnology. Heidelberg: Springer, 29–45
  • Chen Y, Liu Y. (2010). Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev, 39, 495–505
  • Del Valle E. (2004). Cyclodextrins and their uses: a review. Process Biochem, 39, 1033–46
  • Duan MS, Zhao N, Ossurardóttir IB, et al. (2005). Cyclodextrin solubilization of the antibacterial agents triclosan and triclocarban: formation of aggregates and higher-order complexes. Int J Pharm, 297, 213–22
  • Duchêne D, Bochot A, Yu S, et al. (2003). Cyclodextrins and emulsions. Int J Pharm, 266, 85–90
  • Fonder MA, Lazarus GS, Cowan DA, et al. (2008). Treating the chronic wound: a practical approach to the care of nonhealing wounds and wound care dressings. J Am Acad Dermatol, 58, 185–206
  • Guptaa B, Agarwal R, Alan MS. (2010). Textile-based smart wound dressings. Indian J Fibre Text Res, 35, 174–87
  • Harada A, Takashima Y, Yamaguchi H. (2009). Cyclodextrin-based supramolecular polymers. Chem Soc Rev, 38, 875–82
  • Harding K G, Jones V, Price P. (2000). Topical treatment: which dressing to choose. Diabetes Metab Res Rev, 16, S47–50
  • Hoare TR, Kohane DS. (2008). Hydrogels in drug delivery: progress and challenges. Polymer, 49, 1993–2007
  • Hoffman AS. (2002). Hydrogels for biomedical applications. Adv Drug Deliv Rev, 54, 3–12
  • Hong KH, Sun G. (2010). Photoactive antimicrobial PVA hydrogel prepared by freeze-thawing process for wound dressing. J Appl Polym Sci, 116, 2418–24
  • Huh KM, Ooya T, Lee WK, et al. (2001). Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and α-cyclodextrin. Macromolecules, 34, 8657–62
  • Irie T, Uekama K. (1997). Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci, 86, 147–62
  • Ishihara M, Nakanishi K, Ono K, et al. (2002). Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials, Elsevier, 23, 833–40
  • Jones D, Lorimer C, McCoy C, Gorman SP. (2008). Characterization of the physicochemical, antimicrobial, and drug release properties of thermoresponsive hydrogel copolymers designed for medical device applications. J Biomed Mater Res B Appl Biomater, 85, 417–26
  • Jones V, Grey JE, Harding Keith G. (2006). Wound dressings. BMJ, 332, 777–80
  • Jug M, Bećirević-Laćan M, Beæireviæ-laæan M. (2008). Cyclodextrin-based pharmaceuticals. Rad Medical Sciences, 499, 9–26
  • Juris S, Mueller A, Smith B, et al. (2011). Biodegradable Polysaccharide Gels for Skin Scaffolds. J Biomater Nanobiotechnol, 2, 216–25
  • Kanjickal D, Lopina S, Evancho-Chapman MM, et al. (2005). Improving delivery of hydrophobic drugs from hydrogels through cyclodextrins. J Biomed Mater Res A, 74, 454–60
  • Ke C-F, Hou S, Zhang H-Y, et al. (2007). Controllable DNA condensation through cucurbit[6]uril in 2D pseudopolyrotaxanes. Chem Commun, Aug, 3374–6
  • Kirker KR, Luo Y, Nielson JH, et al. (2002). Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials, Elsevier, 23, 3661–71
  • Kokabi M, Sirousazar M, Hassan ZM. (2007). POLYMER PVA – clay nanocomposite hydrogels for wound dressing. Eur Polym J, 43, 773–81
  • Kujath P, Michelsen A. (2008). Wounds - from physiology to wound dressing. Deutsches Ärzteblatt international, Deutscher Arzte-Verlag GmbH, 105, 239–48
  • Lee KY, Mooney DJ. (2001). Hydrogels for tissue engineering. Chem Rev, ACS Publications, 101, 1869–79
  • Lee MS, Seo SR, Kim J-C. (2012). A β-cyclodextrin, polyethyleneimine and silk fibroin hydrogel containing Centella asiatica extract and hydrocortisone acetate: releasing properties and in vivo efficacy for healing of pressure sores. Clin Exp Dermatol, 37, 762–71
  • Leung DK. (2000). Selective disruption of protein aggregation by cyclodextrin dimers. Proc Natl Acad Sci, 97, 5050–3
  • Li J. (2010). Self-assembled supramolecular hydrogels based on polymer–cyclodextrin inclusion complexes for drug delivery. NPG Asia Materials, 2, 112–18
  • Li J, Loh X. (2008). Cyclodextrin-based supramolecular architectures: syntheses, structures, and applications for drug and gene delivery. Adv Drug Deliv Rev, 60, 1000–17
  • Li J, Xiao H, Li J, Zhong Y. (2004). Drug carrier systems based on water-soluble cationic beta-cyclodextrin polymers. Int J Pharm, 278, 329–42
  • Li JJ, Zhao F, Li J. (2011). Polyrotaxanes for applications in life science and biotechnology. Appl Microbiol Biotechnol, Springer, 90, 427–43
  • Lim Y, An S, Kim H-K, et al. (2009). Preparation of hydrogels for atopic dermatitis containing natural herbal extracts by gamma-ray irradiation. Radiat Phys Chem, 78, 441–4
  • Liu Y, Chen G-S, Li L, et al. (2003). Inclusion complexation and solubilization of paclitaxel by bridged bis(beta-cyclodextrin)s containing a tetraethylenepentaamino spacer. J Med Chem, 46, 4634–7
  • Liu Y, Fan X. (2003). Preparation and characterization of a novel responsive hydrogel with a β-cyclodextrin-based Macromonomer. J Appl Polym Sci, 89, 361--7
  • Liu Y, Fan X. (2005). Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups. Biomaterials, 26, 6367–74
  • Liu L, Guo Q. (2002). The driving forces in the inclusion complexation of cyclodextrins. J Incl Phenom Macrocycl Chem, 42, 1–14
  • Liu Y, Song Y, Chen Y, et al. (2004). Biquinolino-modified beta-cyclodextrin dimers and their metal complexes as efficient fluorescent sensors for the molecular recognition of steroids. Chemistry, 10, 3685–96
  • Loethen S, Kim JM, Thompson DH. (2007). Biomedical applications of cyclodextrin based polyrotaxanes. Polym Rev, 47, 383–418
  • Loftsson T, Duchêne D. (2007). Cyclodextrins and their pharmaceutical applications. Int J Pharm, 329, 1–11
  • Loftsson T, Masson M. (2001). Cyclodextrins in topical drug formulations: theory and practice. Int J Pharm, 225, 15–30
  • Luo Y, Kirker KR, Prestwich GD. (2000). Cross-linked hyaluronic acid hydrogel films: new biomaterials for drug delivery. J Control Release, 69, 169–84
  • Manakker F, van der Pot M, Vermonden T, et al. (2008). Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes. Macromolecules, 41, 1766–73
  • Manakker F, Vermonden T, Vans Nostrum CF, Hennink WE. (2009). Cyclodextrin-based polymeric materials: synthesis, properties, and pharmaceutical/biomedical applications. Biomacromolecules, 10, 3157–74
  • Marques HMC. (2010). A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J, 25, 313–26
  • Matsuda H, Arima H. (1999). Cyclodextrins in transdermal and rectal delivery. Adv Drug Deliv Rev, 36, 81–99
  • Mehyar GF, Liu Z, Han JH. (2008). Dynamics of antimicrobial hydrogels in physiological saline. Carbohydr Polym, 74, 92–8
  • Metcalfe A, Ferguson M. (2007). Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration. J R Soc Interface, 4, 413–37
  • Molina I, Li S, Martinez MB, Vert M. (2001). Protein release from physically crosslinked hydrogels of the PLA/PEO/PLA triblock copolymer-type. Biomaterials, 22, 363–9
  • Nozaki T, Maeda Y, Kitano H. (1997). Cyclodextrin gels which have a temperature responsiveness. J Polym Sci Part A: Polym Chem, 35, 1535–41
  • Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. (2008). The development of microgels/nanogels for drug delivery applications. Prog Polym Sci, 33, 448–77
  • Ovington LG. (2007). Advances in wound dressings. Clin Dermatol, 25, 33–8
  • Paradossi G, Cavalieri F, Crescenzi V. (1997). H NMR relaxation study of a chitosan-cyclodextrin network. Carbohydr Res, 300, 77–84
  • Park S, Koo J, Suh H. (2004). Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials, 25, 3689–98
  • Peng K, Tomatsu I, Korobko AV, Kros A. (2010). Cyclodextrin–dextran based in situ hydrogel formation: a carrier for hydrophobic drugs. Soft Matter, 6, 85
  • Peppas NA, Hilt JZ, Khademhosseini A, Langer R. (2006). Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater, 18, 1345–60
  • Purna SK, Babu M. (2000). Collagen based dressings – a review. Burns, 26, 54–62
  • Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. (2002). A stepwise Huisgen cycloaddition process: copper(i)-catalyzed regioselective ligation of azides and terminal alkynes. Angew Chem Int, 41, 2596–9
  • Roy N, Saha N, Kitano T, Saha P. (2010). Development and characterization of novel medicated hydrogels for wound dressing. Soft Materials, Marcel Dekker Inc., 8, 130–48
  • Salmaso S, Semenzato A, Bersani S, et al. (2007). Cyclodextrin/PEG based hydrogels for multi-drug delivery. Int J Pharm, 345, 42–50
  • Santos J, Couceiro R, Concheiro A, et al. (2008). Poly (hydroxyethyl methacrylate-co-methacrylated-b-cyclodextrin) hydrogels: synthesis, cytocompatibility, mechanical properties and drug loading/release properties. Acta Biomater, 4, 745–55
  • Satturwar PM, Fulzele SV, Dorle AK. (2003). Biodegradation and in vivo biocompatibility of rosin: a natural film-forming polymer. AAPS PharmSciTech, 4, E55
  • Shai A, Maibach HI. (2005). Dressing materials. In: Wound Healing and Ulcers of the Skin: Diagnosis and Therapy
  • Siemoneit U, Schmitt C, Alvarez-Lorenzo C, et al. (2006). Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained release capability. Int J Pharm, 312, 66–74
  • Szejtli J. (2003). Cyclodextrins in the textile industry. Starch - Stärke, 55, 191–6
  • Szejtli J. (2004). Past, present, and future of cyclodextrin research. ChemInform, 36, 1825–45
  • Thatiparti TR, Shoffstall AJ, von Recum HA. (2010). Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials, 31, 2335–47
  • Tornøe CW, Christensen C, Meldal M. (2002). Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(I)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J Org Chem, 67, 3057–64
  • Tran NQ, Joung YK, Lih E, Park KD. (2011). In situ forming and rutin-releasing chitosan hydrogels as injectable dressings for dermal wound healing. Biomacromolecules, 12, 2872–80
  • Venugopal J, Low S, Choon AT, Ramakrishna S. (2007). Interaction of cells and nanofiber scaffolds in tissue engineering. J Biomed Mater Res B Appl Biomater, 84, 34–48
  • Wu J, Hou S, Ren D, Mather PT. (2009). Antimicrobial properties of nanostructured hydrogel webs containing silver. Biomacromolecules, 10, 2686–93
  • Yoo H, Kim H. (2008). Synthesis and properties of waterborne polyurethane hydrogels for wound healing dressings. J Biomed Mater Res B Appl Biomater, 85, 326–33
  • Yu H, Xu X, Chen X, et al. (2006). Medicated wound dressings based on poly(vinyl alcohol)/poly(N-vinyl pyrrolidone)/chitosan hydrogels. J Appl Polym Sci, 101, 2453–63
  • Zhang J-T, Huang S-W, Liu J, Zhuo RX. (2005). Temperature sensitive poly[N-isopropylacrylamide-co-(acryloyl beta-cyclodextrin)] for improved drug release. Macromol Biosci, 5, 192–6
  • Zhao M, Wang H, Yang B, Tao H. (2010). Identification of cyclodextrin inclusion complex of chlorogenic acid and its antimicrobial activity. Food Chem, 120, 1138–42
  • Zhu J, Marchant R. (2011). Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices, 8, 607–26

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.