2,106
Views
74
CrossRef citations to date
0
Altmetric
Review Article

Film forming microbial biopolymers for commercial applications—A review

&
Pages 338-357 | Received 14 May 2012, Accepted 10 Apr 2013, Published online: 06 Aug 2013

References

  • Abdel-Fattah AM, Gamal-Eldeen AM, Helmy WA, Esawy MA. (2012). Antitumor and antioxidant activities of levan and its derivative from the isolate Bacillus subtilis NRC1aza. Carbohydr Polym, 89, 314–22
  • Adachi S, Toba T, Mukai T, et al. (1993). Lactobacillus sp. KPB-167 and method of manufacturing viscose polysaccharide employing the same. US Patent US 5, 204,247
  • Akaraonye E, Keshavarz TT, Roy I. (2010). Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol, 85, 732–43
  • Ananthalakshmy VK, Gunasekaran P. (1999). Optimization of levan production by Zymomonas mobilis. Braz Arch Biol Technol (Brazil), 42, 291–7
  • Anil Kumar P, Shamala TR, Lakshman S, et al. (2007). Bacterial synthesis of poly(hydroxybutyrate- co-hydroxyvalerate) using carbohydrate-rich mahua (Madhuca sp.) flowers. J Appl Microbiol, 103, 204–9
  • Anonymous. (2012a). Hayashibara in worldwide license and supply agreement with Pfizer using pullulan for oral use. Available at: http://www.hayshibara.co.jp/eng/contents_hn.html
  • Anonymous. (2012b). Non-animal capsules. Available at: http://www.capsugel.com
  • Anonymous. (2012c). Pullulan. Available at: http://www.intl.hayashibara.co.jp/
  • Anonymous. (2012d). Technical data sheets. NatureWorks LLC, USA. Available at: http://www.natureowrksllc.com
  • Anonymous. (2012e). About levan. Technical data sheet. Montana Polysaccharides Corp. Available at: http://www.polysaccharides.us/aboutlevan_technical.php
  • Antón J, Meseguer I, Rodríguez-Valera F. (1988). Production of an extracellular polysaccharide by Haloferax mediterranei. Appl Environ Microbiol, 54, 2381–6
  • Arockiasamy S, Banik RM. (2008). Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J Biosci Bioeng, 105, 204–10
  • Audet J, Lounes M, Thibault J. (1996). Pullulan fermentation in a reciprocating plate bioreactor. Bioprocess Eng, 15, 209–14
  • Babel W, Riis V, Hainich E. (1990). Mikrobelle thermoplaste: biosynthese, eigenschaften und anwendung. Plaste UndKautschuk, 37, 109–15
  • Bäckdahl H, Helenius G, Bodin A, et al. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 27, 2141–9
  • Bae S, Sugano Y, Shoda M. (2004). Improvement of bacterial cellulose production by addition of agar in a jar fermenter. J Biosci Bioeng, 97, 33–8
  • Bahl MA, Schultheis E, Hempel DC, et al. (2010). Recovery and purification of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa DSM 13101. Carbohydr Polym, 80, 1037–41
  • Baird JK, Cleary JM. (1994). PHB-free gellan gum broth. US Patent US 5,300,429
  • Bajaj IB, Saudagar PS, Singhal RS, Pandey A. (2006). Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. J Biosci Bioeng, 102, 150–6
  • Bajaj IB, Survase SA, Saudagar PS, Singhal RS. (2007). Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol, 45, 341–54
  • Bajpai PK, Singh I, Madaan J. (2012). Development and characterization of PLA-based green composites: a review. J Thermoplast Compos Mater [Epub ahead of print]. doi:10.1177/0892705712439571
  • Balakrishnan H, Hassan A, Imran M, Wahit MU. (2012). Toughening of polylactic acid nanocomposites: a short review. Polym-Plast Technol Eng, 51, 175–92
  • Bang G, Kim SW. (2012). Biodegradable poly(lactic acid)-based hybrid coating materials for food packaging films with gas barrier properties. J Ind Eng Chem, 18, 1063–8
  • Bangyekan C, Aht-Ong D, Srikulkit K. (2006). Preparation and properties evaluation of chitosan-coated cassava starch films. Carbohydr Polym, 63, 61–71
  • Banik RM, Santhiagu A. (2006). Improvement in production and quality of gellan gum by Sphingomonas paucimobilis under high dissolved oxygen tension levels. Biotechnol Lett, 28, 1347–50
  • Banik RM, Santhiagu A, Upadhyay SN. (2007). Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in molasses based medium using response surface methodology. Bioresour Technol, 98, 792–7
  • Barone JR, Medynets M. (2007). Thermally processed levan polymers. Carbohydr Polym, 69, 554–61
  • Beaudet N, Dupont C, Lemieux P, et al. (2012). Exopolysaccharides delivery systems for active molecules. US Patent US 8,088,605
  • Borsari RRJ, Celligoi MAPC, Buzato JB, da Silva RSSF. (2006). Influence of carbon source and the fermentation process on levan production by Zymomonas mobilis analyzed by the surface response method. Ciênc Tecnol Aliment Campinas, 26, 604–9
  • Brigham CJ, Sinskey AJ. (2012). Applications of polyhydroxyalkanoates in the medical industry. Int J Biotechnol Wellness Ind, 1, 53–60
  • Cai S, Cai L, Liu H, et al. (2012). Identification of the haloarchaeal phasin (PhaP) that functions in polyhydroxyalkanoate accumulation and granule formation in Haloferax mediterranei. Appl Environ Microbiol, 78, 1946–52
  • Castro C, Zuluaga R, Álvarez C, et al. (2012). Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym, 89, 1033–7
  • Cha DS, Chinnan MS. (2004). Biopolymer-based antimicrobial packaging: a review. Crit Rev Food Sci Nutr, 44, 223–372
  • Chang HF, Chang WC, Tsai CY. (2012). Synthesis of poly(3-hydroxybutyrate/3-hydroxyvalerate) from propionate-fed activated sludge under various carbon sources. Bioresour Technol, 113, 51–7
  • Chang SJ, Kuo SM, Liu WT, et al. (2010). Gellan gum films for effective guided bone regeneration. J Med Biol Eng, 30, 99–103
  • Chanprateep S. (2010). Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng, 110, 621–32
  • Chawla PR, Bajaj IB, Survase SA, Singhal RS. (2009). Microbial cellulose: fermentative production and applications. Food Technol Biotechnol, 47, 107–24
  • Chen GQ. (2009). A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev, 38, 2434–46
  • Chen GQ. (2010). Plastics completely synthesized by bacteria: polyhydroxyalkanoates. In: Chen GQ, ed. Plastics From Bacteria: Natural Functions and Applications, Microbiology Monographs. Vol. 14, Berlin: Springer-Verlag, 17–37
  • Chen J, Wu S, Pan S. (2012). Optimization of medium for pullulan production using a novel strain of Aureobasidium pullulans isolated from sea mud through response surface methodology. Carbohydr Polym, 87, 771–4
  • Cheng KC, Catchmark JM, Demirci A. (2009a). Production and application of bacterial cellulose. Curr Trends Biotechnol, 5, 1–20
  • Cheng KC, Catchmark JM, Demirci A. (2009b). Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng, 3, 12
  • Cheng KC, Demirci A, Catchmark J. (2009c). Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose, 16, 1033–45
  • Cheng KC, Demirci A, Catchmark JM. (2011a). Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol, 92, 29–44
  • Cheng KC, Demirci A, Catchmark JM. (2011b). Evaluation of medium composition and fermentation parameters on pullulan production by Aureobasidium pullulans. Food Sci Technol Int, 17, 99–109
  • Cheng KC, Demirci A, Catchmark JM. (2011c). Continuous pullulan fermentation in a biofilm reactor. Appl Microbiol Biotechnol, 90, 921–7
  • Cheng KC, Catchmark JM, Demirci A. (2011d). Effects of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules, 12, 730–6
  • Cheirsilp B. (2006). Simulation of kefiran production of Lactobacillus kefiranofaciens special issues on Biocat Agri Biotechnol (7–9), JCM6985 in fed-batch reactor. Songklanakarin J Sci Technol, 28, 1059–69
  • Cheirsilp B, Radchabut S. (2011). Use of whey lactose from dairy industry for economical kefiran production by Lactobacillus kefiranofaciens in mixed cultures with yeasts. New Biotechnol, 28, 574–80
  • Chien P, Sheu F, Yang F. (2007). Effects of edible chitosan coating on quality and shelf life of sliced mango fruit. J Food Eng, 78, 225–9
  • Chittra Y, Supitchaya C, Cheirsilp B. (2008). Sago starch as a low-cost carbon source for exopolysaccharide production by Lactobacillus kefiranofaciens. World J Microbiol Biotechnol, 24, 1195–201
  • Choi J, Lee SY. (1999). Factors affecting the economics of polyhydroxyalkanoates production by bacterial fermentation. Appl Microbiol Biotechnol, 51, 13–21
  • Clarinval AM, Halleux J. (2005). Classification of biodegradable polymers. In: Smith R, ed. Biodegradable Polymers for Industrial Applications. Boca Raton: CRC Press, 3–56
  • Cleary JM, Coleman RJ, Harding NE, Patel YN (2008). Genetically purified gellan gum. US Patent US 7,361,754
  • Costa LMM, de Olyveira GM, Basmaji P, Filho LX. (2012). Bacterial cellulose towards functional medical materials. J Biomater Tissue Eng, 2, 185–96
  • Criddle CS, Wu W, Hopkins GD, Sundstrom ER. (2012). High solids fermentation for synthesis of PHA from gas substrates. US Patent application. 20120028321
  • Datta R, Henry M. (2006). Lactic acid: recent advances in products, processes and technologies – a review. J Chem Technol Biotechnol, 81, 1119–29
  • Davis R, Anil Kumar PK, Chandrashekar A, Shamala TR. (2008a). Biosynthesis of polyhydroxyalkanoate copolymers in E. coli using genes from Pseudomonas and Bacillus. Anton van Leeuw, 94, 207–16
  • Davis R, Chandrashekar A, Shamala TR. (2008b). Role of (R)-specific enoyl coenzyme A hydratases of Pseudomonas sp. in the production of polyhydroxyalkanoates. Anton van Leeuw, 93, 285–96
  • Debnath M, Paul AK, Bisen PS. (2007). Natural bioactive compounds and biotechnological potential of marine bacteria. Curr Pharm Biotechnol, 8, 253–60
  • Diab T, Biliaderis CG, Gerasopoulos D, Sfakiotakis E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. J Sci Food Agric, 81, 988–1000
  • Divyashree MS, Shamala TR. (2009). Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus. Radiat Phys Chem, 78, 147–52
  • Divyashree MS, Rastogi NK, Shamala TR. (2009a). A simple kinetic model for growth and biosynthesis of polyhydroxyalkanoate in Bacillus flexus. New Biotechnol, 26, 92–8
  • Divyashree MS, Shamala TR, Rastogi NK. (2009b). Isolation of polyhydroxyalkanoate from hydrolyzed cells of Bacillus flexus using aqueous two-phase system containing polyethylene glycol and phosphate. Biotechnol Bioprocess Eng, 14, 482–9
  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S. (2012). Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym, 87, 951–62
  • Du C, Sabirova J, Soetaert W, Lin SKC. (2012). Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol, 6, 14–22
  • Duan XH, Chi ZM, Wang L, Wang XH. (2008). Influence of different sugars on pullulan production and activities of α-phosphoglucose mutase, UDPG-pyrophosphorylase and glucosyltransferase involved in pullulan synthesis in Aureobasidium pullulans Y68. Carbohydr Polym, 73, 587–93
  • Eichhorn SJ, Dufresne A, Aranguren M, et al. (2010). Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci, 45, 1–33
  • Fialho A, Martins L, Donval M, et al. (1999). Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl Environ Microbiol, 65, 2485–91
  • Fortunati E, Armentano I, Zhou Q, et al. (2012). Multifunctional bionano-composite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym, 87, 1596–605
  • Freitas F, Alves VD, Reis MAM. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotehnol, 29, 388–98
  • Gao W, Kim YJ, Chung CH, et al. (2010). Pilot-scale optimization of parameters related to dissolved oxygen for mass production of pullulan by Aureobasidium pullulans HP-2001. Korean J Life Sci, 20, 1433–42
  • Gaur R, Singh R, Tiwari S, et al. (2010a). Optimization of physicochemical and nutritional parameters for a novel pullulan-producing fungus, Eurotium chevalieri. J Appl Microbiol, 109, 1035–43
  • Gaur R, Singh R, Gupta M, Gaur MK. (2010b). Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan. Afr J Biotechnol, 9, 7989–97
  • George J, Ramana KV, Sabapathy SN, et al. (2005). Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: Some thermo-mechanical properties. Int J Biol Macromol, 37, 189–94
  • Ghasemlou, M, Khodaiyan F, Oromiehie A. (2011a). Physical, mechanical, barrier, and thermal properties of polyol-plasticized biodegradable edible film made from kefiran. Carbohydr Polym, 84, 477–83
  • Ghasemlou M, Khodaiyan F, Oromiehie A. (2011b). Rheological and structural characterisation of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types. Int J Biol Macromol, 49, 814–21
  • Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS. (2011c). Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem, 127, 1496–502
  • Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS. (2011d). Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. Int J Biol Macromol, 49, 378–84
  • Giavasis I, Harvey LM, McNeil B. (2000). Gellan gum. Crit Rev Biotechnol, 20, 177–211
  • Giavasis I, Harvey LM, McNeil B. (2006). The effect of agitation and aeration on the synthesis and molecular weight of gellan in batch cultures of Sphingomonas paucimobilis. Enz Microbial Technol, 38, 101–8
  • Goksungur Y, Uzunogullari P, Dagbagli S. (2011). Optimization of pullulan production from hydrolysed potato starch waste by response surface methodology. Carbohydr Polym, 83, 1330–7
  • Gong Y, Wang C, Lai RC, et al. (2009). An improved injectable polysaccharide hydrogel; modified gellan gum for long term cartilage regeneration in vitro. J Mater Chem, 19, 1968–77
  • Gontard N, Angellier-Coussy H, Chalier P, et al. (2011). Food packaging applications of biopolymer-based films. In: Plackett D. ed. Biopolymers: New Materials for Sustainable Films and Coatings. Chichester, UK: John Wiley & Sons Ltd., doi:10.1002/9781119994312.ch10
  • Gounga ME, Xu SY, Wang Z, Yang WG. (2008). Effect of whey protein isolate-pullulan edible coatings on the quality and shelf-life of freshly roasted and freeze-dried Chinese chestnut. J Food Sci, 73, E155–61
  • Guo J, Catchmark JM. (2011). Surface area and porosity of acid hydrolyzed cellulose nanowhiskers and cellulose produced by Gluconacetobacter xylinus. Carbohy Poly, 87, 1026–37
  • Gumel AM, Annuar MSM, Chisti Y. (2012). Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ [Epub ahead of print]. doi:10.1007/s10924-012-0527-1
  • Halami PM. (2008). Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol, 24, 805–12
  • Han J, Lu Q, Zhou L, et al. (2009). Identification of the polyhydroxyalkanoate (PHA)-specific acetoacetyl coenzyme A reductase among multiple FabG paralogs in Haloarcula hispanica and reconstruction of the PHA biosynthetic pathway in Haloferax volcanii. Appl Environ Microbiol, 75, 6168–75
  • Han YW. (1989). Levan production by Bacillus polymyxa. J Ind Microbiol, 4, 447–52
  • Han YW, Clarke MA. (1996). Production of fructan (levan) polyfructose polymer from Bacillus polymyxa. US Patent 5,547,863
  • Han YW, Watson MA. (1992). Production of microbial levan from sucrose, sugarcane juice and beet molasses. J Ind Microbiol, 9, 257–60
  • Haugaard VK, Festersen RM. (2000). Biobased packaging materials for foods. Proceedings of the Food Biopack Conference; 2000 Aug 27–29; Copenhagen, p. 119–20
  • Hijiya H, Shiosaka M. (1975). Shaped bodies of pullulan esters and their use. US Patent 3,871,892
  • Hocking PJ, Marchessault RH. (1994). Biopolyesters. In: Griffin, GJL, ed. Chemistry and Technology of Biodegradable Polymers. London: Blackie Academic & Professional, 49–96
  • Hu Y, Catchmark JM. (2011a). In-vitro biodegradability and mechanical properties of bioabsorbable bacterial cellulose incorporating cellulase enzymes. Acta Biomater, 7, 2835–45
  • Hu Y, Catchmark JM. (2011b). Integration of cellulases into bacterial cellulose: toward bioabsorbable cellulose composites. J Biomed Mater Res B, 97B, 114–23
  • Huang TY, Duan KJ, Huang SY, Chen CW. (2006). Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol, 33, 701–6
  • Huang J, Jiang S, Xu XQ, et al. (2012). Effects of carbon/nitrogen ratio, dissolved oxygen and impeller type on gellan gum production in Sphingomonas paucimobilis. Ann Microbiol, 62, 299–305
  • Ibrahim MHA, Steinbüchel A. (2010). High-cell-density cyclic fed-batch fermentation of a poly(3-hydroxybutyrate)-accumulating thermophile, Chelatococcus sp. strain MW10. Appl Environ Microbiol, 76, 7890–5
  • Ibrahim MHA, Willems A, Steinbüchel A. (2010). Isolation and characterization of new poly(3HB)-accumulating star-shaped cell-aggregates-forming thermophilic bacteria. J Appl Microbiol, 109, 1579–90
  • Iguchi M, Yamanaka S, Budhiono A. (2000). Bacterial cellulose' a masterpiece of nature's arts. J Materials Sci, 35, 261–70
  • Ikeda S, Yuan R, Talashek TA. (2009). Isothermal preparation of heat resistant gellan gels with reduced syneresis. US Patent application US 20090104141
  • Imai K, Shiomi T, Tesuka Y. (1991). Sulfinyl ethyl pullulan and production thereof. Japanese Patent 3,021,602
  • Inkinen S, Hakkarainen M, Albertsson AC, Södergård A. (2011). From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors. Biomacromolecules, 12, 523–32
  • Ismaiel AA, Ghaly MF, El-Naggar AK. (2011). Milk kefir: ultrastructure, antimicrobial activity and efficacy on aflatoxin B1 production by Aspergillus flavus. Curr Microbiol, 62, 1602–9
  • Jain R, Kosta S, Tiwari A. (2010). Polyhydroxyalkanoates: a way to sustainable development of bioplastics. Chron Young Scientists, 1, 10–5
  • Jiang L, Wu S, Kim JM. (2011). Effect of different nitrogen sources on activities of UDPG-pyrophosphorylase involved in pullulan synthesis and pullulan production by Aureobasidium pullulans. Carbohydr Polym, 86, 1085–8
  • Johnson DC, Neogi AN. (1989). Sheeted products formed from reticulated microbial cellulose. US Patent 4,863,565
  • Jung JY, Park JK, Chang HN. (2005). Bacterial cellulose production by Gluconoacetobacter hansenii in an agitated culture without living non-cellulose producing cells. Enzyme Microb Technol, 37, 47–54
  • Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G. (2012). Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: perspective. Int J Microbiol, 2012, 317828
  • Kadouri D, Jurkevitch E, Okon Y, Castro-Sowinski S. (2005). Ecological and agricultural significance of bacterial polyhydroxyalkanoates. Crit Rev Microbiol, 31, 55–67
  • Kandemir N, Yemenicioğlu A, Mecitoğlu C, et al. (2005). Production of antimicrobial films by incorporation of partially purified lysozyme into biodegradable films of crude exopolysaccharides obtained from Aureobasidium pullulans fermentation. Food Technol Biotechnol, 43, 343–50
  • Kang SA, Jang KH, Seo JW, et al. (2009). Levan: applications and perspectives. In: Rehm BHA, ed. Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. Norfolk, UK: Caister Academic Press, 145–61
  • Kang JX, Chen XJ, Chen WR, et al. (2011). Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochem, 46, 792–5
  • Kaplan DL, Mayer JM, Ball D, et al. (1993). Fundamentals of biodegradable polymers. In: Ching CTK, Kaplan DL, Thomas E, et al., eds. Biodegradable Polymers and Packaging. Lancaster, PA: Technomic Publishing, 1–42
  • Keshavarz T, Roy I. (2010). Polyhydroxyalkanoates: bioplastics with a green agenda. Curr Opin Microbiol, 13, 321–6
  • Keshk S, Sameshima K. (2006). The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol, 72, 291–6
  • Kato K, Shiosaka M. (1974). Method of producing pullulan. US Patent 3,827,937
  • Kato K, Shiosaka M. (1975). Process for the production of pullulan. US Patent 3,912,591
  • Kim SY, Kim JN, Wee YJ, et al. (2006). Production of bacterial cellulose by Gluconacetobacter sp. RKY5 isolated from persimmon vinegar. Appl Biochem Biotechnol, 131, 705–15
  • Klemm D, Schumann D, Udhardt U, Marsch S. (2001). Bacterial synthesized cellulose – artificial blood vessels for microsurgery. Prog Polym Sci, 26, 1561–603
  • Koktysh DS, Liang X, Yun BG, et al. (2002). Biomaterials by design: layer by layer assembled ion-selective and biocompatible films of TiO2 nanoshells for neurochemical monitoring. Adv Funct Mater, 12, 255–65
  • Kooiman P. (1968). The chemical structure of kefiran, the water-soluble polysaccharide of kefir grain. Carbohydr Res, 7, 200–11
  • Kouda T, Nagata Y, Yano H, Yoshinaga F. (2000a). Method for cultivating apparatus for the production of bacterial cellulose in an aerated and agitated culture. US Patent 6,013,490
  • Kouda T, Naritomi T, Yano H, Yoshinaga F. (2000b). Process for the production of bacterial cellulose. US Patent 66,017,740
  • Krochta JM, De Mulder-Johnston C. (1997). Edible and biodegradable polymer films: challenges and opportunities. Food Technol, 51, 61–74
  • Kubo W, Miyazaki S, Attwood D. (2003). Oral sustained delivery of paracetamol from in situ gelling gellan and sodium alginate formulations. Int J Pharm, 258, 55–64
  • Küçükaşik F, Kazak H, Güney D, et al. (2011). Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol, 89, 1729–40
  • Kumar AS, Mody K. (2009). Microbial exopolysaccharides: variety and potential applications. In: Rehm BHA, ed. Microbial Production of Biopolymers and Polymer Precursors: Applications and Perspectives. Norfolk, UK: Caister Academic Press, 229–54
  • Kwon S, Yoo IK, Lee WG, et al. (2001). High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng, 73, 25–34
  • Lacroix M, Tien CL. (2005). Edible films and coatings from non starch polysaccharides. In: Han JH, ed. Innovations in Food Packaging. CA, USA: Elsevier, 338–61
  • Lakshman K, Shamala TR. (2003). Enhanced biosynthesis of polyhydroxyalkanoates in a mutant strain of Rhizobium meliloti. Biotechnol Lett, 25, 115–9
  • Lakshman K, Shamala TR. (2006). Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzyme Microb Technol, 39, 1471–5
  • Lakshman K, Rastogi NK, Shamala TR. (2004). Simultaneous and comparative assessment of parent and mutant strain of Rhizobium meliloti for nutrient limitation and enhanced polyhydroxyalkanoates (PHA) production using optimization studies. Process Biochem, 39, 1977–83
  • Lam E, Male KB, Chong JH, et al. (2012). Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trends Biotechnol, 30, 283–90
  • Lasprilla AJR, Martinez GAR, Lunelli BH, et al. (2012). Poly-lactic acid synthesis for application in biomedical devices - a review. Biotechnol Adv, 30, 321–8
  • Lauzier CA, Monasterios CJ, Saracovan I, et al. (1993). Film formation and paper coating with poly(β-hydroxyalkanoate), a biodegradable latex. Tappi J, 76, 71–7
  • Lazaridou A, Roukas T, Biliaderis CG, Vaikousi H. (2002). Characterization of pullulan produced from beet molasses by Aureobasidium pullulans in a stirred tank reactor under varying agitation. Enzyme Microb Technol, 31, 122–32
  • Leathers TD. (2003). Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol, 62, 468–73
  • Lee MS, Chang KP. (2011). Biaxially oriented polylactic acid film with high barrier. US Patent 7,951,438
  • Lee KY, Shim J, Lee HG. (2004). Mechanical properties of gellan and gelatin composite films. Carbohydr Polym, 56, 251–4
  • Lee KY, Yoo YJ. (1993). Optimization of pH for high molecular weight pullulan. Biotechnol Lett, 15, 1021–4
  • Legge RL. (1990). Microbial cellulose as a specialty chemical. Biotechnol Adv, 8, 303–19
  • Lemieux P, Precourt LP, Simard E. (2009). Use of Lactobacillus kefiranofaciens as a probiotic and symbiotic. US Patent application 0,130,072 A1
  • Li J, Kamath K, Dwivedi C. (2001). Gellan film as an implant for insulin delivery. J Biomater Appl, 15, 321–43
  • Li BX, Zhang N, Peng Q, et al. (2009). Production of pigment free pullulan by swollen cell in Aureobasidium pullulans NG which cell differentiation was affected by pH and nutrition. Appl Microbiol Biotechnol, 84, 293–300
  • Li SY, Dong CL, Wang SY, et al. (2011). Microbial production of polyhydroxyalkanoate block copolymer by recombinant Pseudomonas putida. Appl Microbiol Biotechnol, 90, 659–69
  • Lim LT, Auras R, Rubino M. (2008). Processing technologies for poly(lactic acid). Prog Polym Sci, 33, 820–52
  • Litchfield CD. (2011). Potential for industrial products from the halophilic Archaea. J Ind Microbiol Biotechnol, 38, 1635–47
  • Longano D, Ditaranto N, Cioffi N, et al. (2012). Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem [Epub ahead of print]. doi:10.1007/s00216-011-5689-5
  • Lopez-Rubio A, Almenar E, Hernandez-Munoz P, et al. (2004). Overview of active polymer-based packaging technologies for food applications. Food Rev Int, 20, 357–87
  • Lunelli BH, Andrade RR, Atala DIP, et al. (2010). Production of lactic acid from sucrose: strain selection, fermentation, and kinetic modeling. Appl Biochem Biotechnol, 161, 227–37
  • Madera-Santana TJ, Robledo D, Freile-Pelegrín Y. (2011). Physicochemical properties of biodegradable polyvinyl alcohol–agar films from the red algae Hydropuntia cornea. Mar Biotechnol, 13, 793–800
  • Maeda H, Zhu X, Omura K, et al. (2004a). Effects of an exopolysaccharides (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors, 22, 197–200
  • Maeda H, Zhu X, Suzuki S, et al. (2004b). Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus Kefiranofaciens WT-2B. J Agri Food Chem, 52, 5533–8
  • Mahapatro A, Singh DK. (2011). Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol, 9, 55
  • Manandhar S, Vidhate S, D’Souza N. (2009). Water soluble levan polysaccharide biopolymer electrospun fibers. Carbohydr Polym, 78, 794–8
  • Matsuoka M, Tsuchida T, Matsushita K, et al. (1996). A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem, 60, 575–9
  • Mays TD, Dally EL. (1989). Microbial production of polyfructose. US Patent 4,879,228
  • Melo IR, Pimentel MF, Lopes CE, Calazans GMT. (2007). Application of fractional factorial design to levan production by Zymomonas mobilis. Braz J Microbiol, 38, 45–51
  • Mironescu ID, Mironescu M, Georgescu C, et al. (2011). Analysis of the extracellular polysaccharide-based structures produced by a halophylic archaeon. Bull UASVM Animal Sci Biotechnol, 68, 346–51
  • Mironescu M. (2008). Determination of sugars from biofilms using RP-HPLC. Acta Universitatis Cibiniensis, series F: Chemia, 11, 45–50
  • Mironescu M, Mironescu ID. (2011). Rheological behaviour of a novel microbial polysaccharide. Romanian Biotechnol Lett, 16, 6105–14
  • Mironescu M, Mironescu V. (2006). New concept for obtention of biopolymer based food films. J Agroalimentary Process Technol, 12, 209–16
  • Micheli L, Uccelletti D, Palleschi C, Crescenzi V. (1999). Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Appl Microbiol Biotechnol, 53, 69–74
  • Moosavi-Nasab M, Layegh B, Aminlari L, Hashemi MB. (2010). Microbial production of levan using date syrup and investigation of its properties. World Academy Sci Eng Technol, 68, 1238–44
  • Morris ER, Nishinari K, Rinaudo M. (2012). Gelation of gellan - a review. Food Hydrocolloids, 28, 373–411
  • Nampoothiri KM, Singhania RR, Sabarinath C, Pandey A. (2003). Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochem, 38, 1513–9
  • Nguyen VT, Gidley MJ, Dykes GA. (2008). Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiol, 25, 471–8
  • Nicolaus B, Kambourova M, Oner ET. (2010). Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol, 31, 1145–58
  • Nienow AW. (1990). Agitators for mycelial fermentations. Trends Biotechnol, 8, 224–31
  • Ntwampe SKO, Williams CC, Sheldon MS. (2010). Water-immiscible dissolved oxygen carriers in combination with Pluronic F 68 in bioreactors. Afr J Biotechnol, 9, 1106–14
  • Oh DK, Kim JH, Yoshida T. (1997). Production of a high viscosity polysaccharide, methylan, in a novel bioreactor. Biotechnol Bioeng, 54, 115–21
  • Ohara H, Ito M, Sawa S. (2003). Process for producing lactide and process for producing polylactic cid from fermented lactic acid employed as starting material. US Patent 6,569,989
  • Okiyama A, Motoki M, Yamanaka S. (1992). Bacterial cellulose. II: Processing of the gelatinous cellulose for food. Food Hydrocoll, 6, 479–87
  • Oliveira MR, Silva RSSF, Buzato JB, Celligoi MAPC. (2007). Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem Eng J, 37, 177–83
  • Oomoto T, Uno Y, Asai I. (1999). The latest technologies for the application of gellan gum. Prog Colloid Polym Sci, 114, 123-126
  • Oren A. (2002). Diversity of halophilic microorganisms: environments, phylogeny, physiology and applications. J Ind Microbiol Biotechnol, 28, 56–63
  • Orts WJ, Nobes GA, Kawada J, et al. (2008). Polyhydroxyalkanoates: biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Canadian J Chem, 86, 628–40
  • Orts WJ, Shey J, Imam SH, et al. (2005). Application of cellulose microfibrils in polymer nanocomposites. J Polym Environ, 13, 301–6
  • Pan W, Perrotta JA, Stipanovic AJ, et al. (2012). Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J Ind Microbiol Biotechnol, 39, 459–69
  • Parolis H, Parolis LAS, Boán IF, et al. (1996). The structure of the exopolysaccharide produced by the halophilic Archaeon Haloferax mediterranei strain R4 (ATCC 33500). Carbohydr Res, 295, 147–56
  • Parolis LA, Parolis H, Paramonov NA, et al. (1999). Structural studies on the acidic exopolysaccharide from Haloferax denitrificans ATCC 35960. Carbohydr Res, 319, 133–40
  • Patel S, Majumder A, Goyal A. (2012). Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol [Epub ahead of print]. doi:10.1007/s12088-011-0148-8
  • Patnaik PR. (2005). Perspectives in the modeling and optimization of PHB production by pure and mixed cultures. Crit Rev Biotechnol, 25, 153–71
  • Peña C, Millán M., Galindo E. (2008). Production of alginate by Azotobacter vinelandii in a stirred fermenter simulating the evolution of power input observed in shake flasks. Process Biochem, 43, 775–8
  • Philip S, Keshavarz T, Roy I. (2007). Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol, 82, 233–47
  • Picart C. (2008). Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem, 15, 685–97
  • Piermaria JA, de la Canal ML, Abraham AG. (2008). Gelling properties of kefiran, a food-grade polysaccharide obtained from kefir grain. Food Hydrocolloids, 22, 1520–7
  • Piermaria JA, Pinotti A, Garcia MA, Abraham AG. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocolloids, 23, 684–90
  • Piermaria J, Bosch A, Pinotti A, et al. (2011). Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocolloids, 25, 1261–9
  • Podsiadlo P, Tang Z, Shim BS, Kotov NA. (2007). Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett, 7, 1224–31
  • Poli A, Anzelmo G, Nicolaus B. (2010). Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs, 8, 1779–802
  • Poli A, Donato PD, Abbamondi GR, Nicolaus B. (2011). Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea [Epub ahead of print]. doi:10.1155/2011/693253
  • Poli A, Kazak H, Gurleyendağ B, et al. (2009). High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym, 78, 651–7
  • Rajkumar R, Vijayendra SVN, Prasad MS. (2003). Optimisation of exopolysaccharide production from Alcaligenes eutrophus. Trends Carbohydr Chem, 8, 211–7
  • Ramakrishna SV, Rangaswamy V, Jain D, et al. (2009). Process for the production of polylactic acid (PLA) from renewable feedstocks. US Patent 7,507,561
  • Reddy MV, Mohan SV. (2012a). Effect of substrate load and nutrients concentration on the polyhydroxyalkanoates (PHA) production using mixed consortia through wastewater treatment. Bioresorce Technol, 114, 573–82
  • Reddy MV, Mohan SV. (2012b). Influence of aerobic and anoxic microenvironments on polyhydroxyalkanoates (PHA) production from food waste and acidogenic effluents using aerobic consortia. Bioresource Technol, 103, 313–21
  • Riedel SL, Bader J, Brigham CJ, et al. (2012). Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng, 109, 74–83
  • Roberts EJ, Garegg PJ. (1998). Levan derivatives, their preparation, composition and applications including medical and food applications. WO 98/03184
  • Ruka DR, Simon GP, Dean KM. (2012). Altering the growth conditions of Gluconacetobacter xylinus to maximize the yield of bacterial cellulose. Carbohydr Polym, 89, 613–22
  • Saranya Devi E, Vijayendra SVN, Shamala TR. (2012). Exploration of rice bran, an agro-industry residue, for the production of intra and extra cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatal Agri Biotechnol, 1, 80–4
  • Satpute SK, Banat IM, Dhakephalkar PK, et al. (2010). Biosurfactants, bioemulsifiers and exopolysaccharides from marine microorganisms. Biotechnol Adv, 28, 436–50
  • Satkowski MM, Knapmeyer JT, Kreuzer DP. (2010). Nucleating agents for polyhydroxyalkanoates. EP1789488
  • Saxena A, Tiwari A. (2011). Polyhydroxyalkonates: green plastics of the future. Int J Biomed Adv Res, 2, 356–67
  • Schneider A, Bolcato-Bellemin AL, Francius G, et al. (2006). Multifunctional polyelectrolyte multilayer films: combining mechanical resistance, biodegradability, and bioactivity. Biomacromolecules, 8, 139–45
  • Senthilkumar V, Gunasekaran P. (2005). Influence of fermentation conditions on levan production by Zymomonas mobilis CT2. Indian J Biotechnol, 4, 491–6
  • Seto A, Saito Y, Matsushige M, et al. (2006). Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Appl Microbiol Biotechnol, 73, 915–21
  • Seviour RJ, McNeil B, Fazenda ML, Harvey LM. (2011). Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol, 31, 170–85
  • Seviour RJ, Schmid F, Campbell BC. (2010). Polysaccharides in medicinal and pharmaceutical application. In: Popa V, ed. Shrewsbury: Smithers Rapra (in press), 92
  • Seviour RJ, Stasinopoulos SJ, Auer DPF, Gibbs PA. (1992). Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol, 12, 279–98
  • Shah JN, Jani GK, Parikh JR. (2007). Gellan gum and its applications – a review. Pharma Info [online]. Available at: http://www.pharmainfo.net/reviews/gellan-gum-and-its-applications-review
  • Shamala TR, Chandrashekar A, Vijayendra SVN, Lakshman K. (2003). Identification of polyhydroxyalkanoates (PHA) producing Bacillus using the polymerase chain reaction (PCR). J Appl Microbiol, 94, 369–74
  • Shamala TR, Divyashree MS, Davis R, et al. (2009). Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by Fourier transform infrared spectroscopy and scanning electron microscopy. Indian J Microbiol, 49, 251–8
  • Shamala TR, Vijayendra SVN, Joshi GJ. (2012). Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67. Braz J Microbiol, 43, 1094–102
  • Shih FF. (1996). Edible films from rice protein concentrate and pullulan. Cereal Chem, 73, 406–9
  • Shih IL, Yu YT, Shieh CJ, Hsieh CY. (2005). Selective production and characterization of levan by Bacillus subtilis (Natto) Takahashi. J Agric Food Chem, 53, 8211–5
  • Shoda M, Sugano Y. (2005). Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng, 10, 1–8
  • Sima F, Mutlu EC, Eroglu MS, et al. (2011). Levan nanostructured thin films by MAPLE assembling. Biomacromolecules, 12, 2251–6
  • Singh AK, Mallick N. (2009). Exploitation of inexpensive substrates for production of a novel SCL-LCL-PHA co-polymer by Pseudomonas aeruginosa MTCC 7925. J Ind Microbiol Biotechnol, 36, 347–54
  • Singh RS, Saini GK. (2012). Biosynthesis of pullulan and its applications in food and pharmaceutical industry. In: Satyanarayana T, Jori BN, Prakash A, eds. Microorganisms in Sustainable Agricultural Biotechnology, Part 2. India: Springer, 509–53
  • Singh RS, Saini GK, Kennedy JF. (2008). Pullulan: Microbial sources, production and applications. Carbohydr Polym, 73, 515–31
  • Singha TK. (2012). Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharmacy, 2, 276–81
  • Siró I, Plackett D. (2010). Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose, 17, 459–94
  • Södergaard A. (2000). Lactic acid based polymers for packaging materials for the food industry. Proceedings of the Food Biopack Conference; Copenhagen, 14–19
  • Son HJ, Heo MS, Kim YG, Lee SJ. (2001). Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter sp. A9 in shaking cultures. Biotechnol Appl Biochem, 33, 1–5
  • Song HJ, Li H, Seo JH, et al. (2009). Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng, 26, 141–6
  • Srikanth MS, Vijayendra SVN, Joshi GJ, Shamala TR. (2013). Effect of carbon and nitrogen sources on simultaneous production of α-amylase and green food packaging polymer by Bacillus sp. CFR 67. J. Food Sci Technol, 50, 404--8
  • Sudesh K, Loo CY, Goh LK, et al. (2007). The oil-absorbing property of polyhydroxyalkanoate films and its practical application: a refreshing new outlook for an old degrading material. Macromolecular Biosci, 7, 1199–205
  • Sutherland IW. (1994). Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv, 12, 393–448
  • Sutherland IW. (2005). Biotechnology of Microbial Polysaccharides in Food. In: Shetty K, Paliyath G, Pometto A, et al., ed. Food Biotechnology, 2nd ed. Boca Raton: CRC Press, 193–222
  • Suwannapinunt N, Burakorn J, Thaenthanee S. (2007). Effect of culture conditions on bacterial cellulose (BC) production from Acetobacter Xylinum TISTR976 and physical properties of BC parchment paper. Suranaree J Sci Technol, 14, 357–65
  • Tada S, Katakura Y, Nonomiya K, Shioya S. (2007). Fed-batch coculture of Lactobacillus kefiranofaciens with Saccharomyces cerevisiae for effective production of kefiran. J Biosci Bioeng, 103, 557–62
  • Tan D, Xue YS, Aibaidula G, Chen GQ. (2011). Unsterile and continuous production of polyhydroxybutyrate by Halomonas TD01. Bioresource Technol, 102, 8130–6
  • Tapia MS, Rojas-Graü MA, Rodríguez FJ, et al. (2007). Alginate and gellan-based edible films for probiotic coatings on fresh-cut fruits. J Food Sci, 72, E190–6
  • Teramoto N, Saitoh M, Kuroiwa J, et al. (2001). Morphology and mechanical properties of pullulan/poly(vinyl alcohol) blends crosslinked with glyoxal. J Appl Polym Sci, 82, 2273–80
  • Thirumavalavan K, Manikkadan TR, Dhanasekar R. (2009). Pullulan production from coconut by-products by Aureobasidium pullulans. Afr J Biotechnol, 8, 254–8
  • Thomson N, Roy I, Summers D, Sivaniah E. (2010). In vitro production of polyhydroxy-alkanoates: achievements and applications. J Chem Technol Biotechnol, 85, 760–7
  • Tong Q, Xiao Q, Lim LT. (2008). Preparation and properties of pullulan-alginate-arboxymethylcellulose blend films. Food Res Int, 41, 1007–14
  • Thorat SS. (1997). Studies on the production, purification and characterization of pullulan from Aureobasidium pullulans [dissertation]. Mysore, India: University of Mysore
  • Tian PY, Shang L, Ren H, et al. (2009). Biosynthesis of polyhydroxy-alkanoates: current research and development. Afr J Biotechnol, 8, 709–14
  • Tripathi L, Wu LP, Jinchun Chen J, Chen GQ. (2012). Synthesis of Diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a beta-oxidation weakened Pseudomonas putida KT2442. Microbial Cell Factories, 11, 44
  • Usha Rani M, Anu Appaiah KA. (2011). Optimization of culture conditions for bacterial cellulose production from Gluconacetobacter hansenii UAC09. Ann Microbiol, 61, 781–7
  • Usha Rani M, Rastogi NK, Anu Appaiah KA. (2011a). Statistical optimization of medium composition for bacterial cellulose production by Gluconacetobacter hansenii UAC09 using coffee cherry husk extract - an agro-industry waste. J Microbiol Biotechnol, 21, 739–45
  • Usha Rani M, Udayasankar K, Anu Appaiah KA. (2011b). Properties of bacterial cellulose produced in grape medium by native isolate Gluconacetobacter sp. J Appl Polym Sci, 120, 2835–41
  • Vandamme EJ, De Baets S. Vanbaelen A, et al. (1998). “Improved production of bacterial cellulose and its application potential". Polym Degrad Stabil, 59(1-3), 93–9
  • Vincent S, Brandt M, Cavadini C, et al. (2005). Levan producing Lactobacillus strain and method of preparing human or pet food products using the same. US Patent 6,932,991
  • Vinderola G, Perdigon G, Duarte J, et al. (2006). Effects of the oral administration of the exopolysaccharide produced by Lactobacillus kefiranofaciens on the gut mucosal immunity. Cytokine, 36, 254–60
  • Vijayendra SVN, Bansal D, Prasad MS, Nand K. (2001). Jaggery: a novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process Biochem, 37, 359–64
  • Vijayendra SVN, Yamini D, Sudhamani SR, Prasad MS. (2003). Effect of hexose sugars on exopolysaccharide production by selected bacterial cultures. J Food Sci Technol, 40, 611–4
  • Vijayendra SVN, Rastogi NK, Shamala TR, et al. (2007). Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J Microbiol, 47, 170–5
  • Vijayendra SVN, Veeramani S, Shamala TR. (2008). Optimization of polyhydroxybutyrate production by β-carotene producing strain of Micrococcus sp. J Food Sci Technol, 45, 506–9
  • Vodouhê C, Guen EL, Garza JM, et al. (2006). Control of drug accessibility on functional polyelectrolyte multilayer films. Biomaterials, 27, 4149–56
  • Waller JL, Green PG, Loge FJ. (2012). Mixed-culture polyhydroxyalkanoate production from olive oil mill pomace. Bioresource Technol [Epub ahead of print]. doi:10.1016/j.biortech.2012.06.024
  • Wang M, Bi J. (2008). Modification of characteristics of kefiran by changing the carbon source of Lactobacillus kefiranofaciens. J Sci Food Agric, 88, 763–9
  • Wang X, Xu P, Yuan Y, et al. (2006). Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl Environ Microbiol, 72, 3367–74
  • Wang H, Zhou X, Liu Q, Chen GQ. (2011). Biosynthesis of polyhydroxyalkanoate homopolymers by Pseudomonas putida. Appl Microbiol Biotechnol, 89, 1497–507
  • Watanabe K, Takemura H, Tabuchi M, et al. (1999). Cellulose producing bacteria. US Patent 5,962,277
  • Weber CJ, Haugaard V, Festersen R, Bertelsen G. (2002). Production and applications of biobased packaging materials for the food industry. Food Addit Contam, 19, S1, 172–7
  • Wee YJ, Kim JN, Ryu HW. (2006). Biotechnological production of lactic acid and its recent applications. Food Technol Biotechnol, 44, 163–72
  • West TP. (2003). Effect of temperature on bacterial gellan production. World J Microbiol Biotechnol, 19, 649–52
  • West TP, Fullenkamp NA. (2001). Effect of culture medium pH on bacterial gellan production. Microbios, 105, 133–40
  • Winston Jr. PE, Miskiel FJ, Valli RC. (1994). Composition and process for gelatin free soft capsules. US Patent US 5,342,626
  • Wu X, Li O, Chen Y, et al. (2011). A carotenoid-free mutant strain of Sphingomonas paucimobilis ATCC 31461 for the commercial production of gellan. Carbohydr Polym, 84, 1201–7
  • Xia Z, Wu S, Pan S. (2011). Effect of two-stage controlled pH and temperature on pullulan production by Auerobasidium pullulans. Carbohydr Polym, 86, 1814–6
  • Xiao G, Zhu Y, Wang L, et al. (2011). Production and storage of edible film using gellan gum. Procedia Environ Sci, 8, 756–63
  • Xu X, Li B, Kennedy JF, et al. (2007). Characterization of konjac glucomannan–gellan gum blend films and their suitability for release of nisin incorporated therein. Carbohydr Polym, 70, 192–7
  • Yan J, Li Z, Zhang J, Qiao C. (2012). Preparation and properties of pullulan composite films. Adv Mater Res, 476–8, 2100–4
  • Yang L. (2007). Physicochemical properties of biodegradable/edible films made with gellan gum. Technical University of Nova Scotia, Canada. pp. 218
  • Yang L, Paulson AT. (2000). Mechanical and water vapour barrier properties of edible gellan films. Food Res Int, 33, 563–70
  • Yang L, Paulson AT, Nickerson MT. (2010). Mechanical and physical properties of calcium-treated gellan films. Food Res Int, 43, 1439–43
  • Yano H, Sugiyama J, Nakagaito AN, et al. (2005). Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater, 17, 153–5
  • Yatmaz E, Turhan I. (2012). Pullulan production by fermentation and usage in food industry. GIDA J Food, 37, 95–102
  • Yoo SH, Yoon EJ, Cha J, Lee HG. (2004). Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol, 34, 37–41
  • Yu L, Dean K, Li L. (2006). Polymer blends and composites from renewable resources. Prog Polym Sci, 31, 576–602
  • Yuen S. (1974). Pullulan and its applications. Process Biochem, 9, 7–9
  • Zajsek K, Kolar M, Gorsek A. (2011). Characterisation of the exopolysaccharide kefiran produced by lactic acid bacteria entrapped within natural kefir grains. Int J Dairy Technol, 64, 544–8
  • Zhang XJ, Luo RC, Wang Z, et al. (2009). Applications of (R)-3- hydroxy-alkanoate methyl esters derived from microbial polyhydroxyalkanoates as novel biofuel. Biomacromolecules, 10, 707–11

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.