496
Views
23
CrossRef citations to date
0
Altmetric
Review Article

Pyruvate production in Candida glabrata: manipulation and optimization of physiological function

, , &
Pages 1-10 | Received 14 Sep 2012, Accepted 07 May 2013, Published online: 24 Jul 2013

References

  • Aoki-Kinoshita KF. (2006). Overview of KEGG applications to omics-related research. J Pestic Sci, 31, 296–9
  • Bakker BM, Bro C, Kotter P, et al. (2000). The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J Bacteriol, 182, 4730–7
  • Besnainou B, Giani D, Sahut C. (1990). Method for producing pyruvic acid by fermentation. US patent 4918013
  • Boumans H, Grivell LA, Berden JA. (1998). The respiratory chain in yeast behaves as a single functional unit. J Biol Chem, 273, 4872–7
  • Canovas M, Bernal V, Sevilla A, Iborra JL. (2007). Salt stress effects on the central and carnitine metabolisms of Escherichia coli. Biotechnol Bioeng, 96, 722–37
  • Causey T, Shanmugam K, Yomano L, Ingram L. (2004). Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc Natl Acad Sci USA, 101, 2235–40
  • Chen J, Xu S, Zhou JW, Liu LM. (2011). Arginine: a novel compatible solute to protect Candida glabrata against hyperosmotic stress. Process Biochem, 46, 1230–35
  • Cordier H, Mendes F, Vasconcelos I, Francois JM. (2007). A metabolic and genomic study of engineered Saccharomyces cerevisiae strains for high glycerol production. Metab Eng, 9, 364–78
  • Cormack BP, Kaur R, Domergue R, Zupancic ML. (2005). A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol, 8, 378–84
  • Csank C, Haynes K. (2000). Candida glabrata displays pseudohyphal growth. FEMS Microbiol Lett, 189, 115–20
  • Cuellar-Cruz M, Briones-Martin-Del-Campo M, Canas-Villamar I, et al. (2008). High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell, 7, 814–25
  • Davies SE, Brindle KM. (1992). Effects of overexpression of phosphofructokinase on glycolysis in the yeast Saccharomyces cerevisiae. Biochem, 31, 4729–35
  • Du CY, Yan H, Zhang YP, et al. (2006). Use of oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by Klebsiella pneumoniae. Appl Microbiol Biotechnol, 69, 554–63
  • Dujon B, Sherman D, Fischer G, et al. (2004). Genome evolution in yeasts. Nature, 430, 35–44
  • Feist AM, Palsson BO. (2008). The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli. Nat Biotechnol, 26, 659–67
  • Fidel PL Jr, Vazquez JA, Sobel JD. (1999). Candida glabrata: review of epidemiology, pathogenesis, and clinical disease with comparison to C. albicans. Clin Microbiol Rev, 12, 80–96
  • Forster J, Famili I, Fu P, et al. (2003). Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res, 13, 244–53
  • Foster JW, Moat AG. (1980). Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol Mol Biol Rev, 44, 83–105
  • Heinemann M, Kummel A, Ruinatscha R, Panke S. (2005). In silico genome-scale reconstruction and validation of the Staphylococcus aureus metabolic network. Biotechnol Bioeng, 92, 850–64
  • Hua Q, Shimizu K. (1999). Effect of dissolved oxygen concentration on the intracellular flux distribution for pyruvate fermentation. J Biotechnol, 68, 135–47
  • Hua Q, Yang C, Shimizu K. (1999). Metabolic flux analysis for efficient pyruvate fermentation using vitamin-auxotrophic yeast of Torulopsis glabrata. J Biosci Bioeng, 87, 206–13
  • Huijing F, Slater E. (1961). The use of oligomycin as an inhibitor of oxidative phosphorylation. J Biochem, 49, 493–501
  • Hynne F, Dano S, Sorensen PG. (2001). Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys Chem, 94, 121–63
  • Johnson KM, Cleary J, Fierke CA, et al. (2006). Mechanistic basis for therapeutic targeting of the mitochondrial F1F0-ATPase. Acs Chemical Biology, 1, 304–8
  • Kertes AS, King CJ. (2009). Extraction chemistry of fermentation product carboxylic acids. Biotechnol Bioeng, 103, 432–45
  • Kim TY, Sohn SB, Kim YB, et al. (2011). Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol
  • Koebmann BJ, Westerhoff HV, Snoep JL, et al. (2002). The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J Bacteriol, 184, 3909–16
  • Kwon S, Yoo IK, Lee WG, et al. (2001). High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol Bioeng, 73, 25–34
  • Larsson C, Påhlman I, Gustafsson L. (2000). The importance of ATP as a regulator of glycolytic flux in Saccharomyces cerevisiae. Yeast, 16, 797–809
  • Li Y, Chen J, Liang DF, Lun SY. (2000). Effect of nitrogen source and nitrogen concentration on the production of pyruvate by Torulopsis glabrata. J Biotechnol, 81, 27–34
  • Li Y, Chen J, Lun SY. (2001a). Biotechnological production of pyruvic acid. Appl Microbiol Biotechnol, 57, 451–9
  • Li Y, Chen J, Lun SY, Rui XS. (2001b). Efficient pyruvate production by a multi-vitamin auxotroph of Torulopsis glabrata: key role and optimization of vitamin levels. Appl Microbiol Biotechnol, 55, 680–5
  • Li Y, Hugenholtz J, Chen J, Lun SY. (2002). Enhancement of pyruvate production by Torulopsis glabrata using a two-stage oxygen supply control strategy. Appl Microbiol Biotechnol, 60, 101–6
  • Lin H, Bennett GN, San KY. (2005). Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J Ind Microbiol Biotechnol, 32, 87–93
  • Liu L, Li Y, Du G, Chen J. (2006a). Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. J Appl Microbiol, 100, 1043–53
  • Liu L, Li Y, Du G, Chen J. (2006b). Redirection of the NADH oxidation pathway in Torulopsis glabrata leads to an enhanced pyruvate production. Appl Microbiol Biotechnol, 72, 377–85
  • Liu L, Li Y, Li H, Chen J. (2006c). Significant increase of glycolytic flux in Torulopsis glabrata by inhibition of oxidative phosphorylation. FEMS Yeast Res, 6, 1117–29
  • Liu L, Li Y, Shi Z, et al. (2006d). Enhancement of pyruvate productivity in Torulopsis glabrata: increase of NAD+ availability. J Biotechnol, 126, 173–85
  • Liu L, Li Y, Zhu Y, et al. (2007a). Redistribution of carbon flux in Torulopsis glabrata by altering vitamin and calcium level. Metab Eng, 9, 21–9
  • Liu LM, Agren R, Bordel S, Nielsen J. (2010). Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett, 584, 2556–64
  • Liu LM, Chen J, Li HZ, Li Y. (2005a). Effect of oxidative phosphorylation inhibitors on the glycolytic flux in Torulopsis glabrata. Prog Biochem Biophys, 32, 251–7
  • Liu LM, Du GC, Li Y, et al. (2005b). Enhancement of pyruvate production by Torulopsis glabrata through supplement of oxaloacetate as carbon source. Biotechnol Bioprocess Eng, 10, 136–41
  • Liu LM, Xu QL, Li Y, et al. (2007b). Enhancement of pyruvate osmotic-tolerant mutant production by of Torulopsis glabrata. Biotechnol Bioeng, 97, 825–32
  • Liu LM, Zhang DD, Liang N, et al. (2009). Enhancement of alpha-ketoglutarate production in Torulopsis glabrata: Redistribution of carbon flux from pyruvate to alpha-ketoglutarate. Biotechnol Bioprocess Eng, 14, 134–9
  • Lu WD, Chi ZM, Su CD. (2006). Identification of glycine betaine as compatible solute in Synechococcus sp. WH8102 and characterization of its N-methyltransferase genes involved in betaine synthesis. Arch Microbiol, 186, 495–506
  • Luttik MAH, Overkamp KM, Kötter P, et al. (1998). The Saccharomyces cerevisiae NDE1 and NDE2 genes encode separate mitochondrial NADH dehydrogenases catalyzing the oxidation of cytosolic NADH. J Biol Chem, 273, 24529–34
  • Marmiroli N, Tedeschi F, Truzzi G, et al. (1985). Relationship between growth inhibition and mitochondrial function in petite-negative yeasts. I. Effects of antibiotics and dyes upon pathogenic and non-pathogenic Candida species. Biol Cell, 53, 67–74
  • Miller EN, Ingram LO. (2007). Combined effect of betaine and trehalose on osmotic tolerance of Escherichia coli in mineral salts medium. Biotechnol Lett, 29, 213–17
  • Miyata R, Tsutsui H, Yonehara T. (1989). Manufacture of pyruvic acid with Torulopsis species. JP Patent 0155185
  • Miyata R, Yonehara T. (1990). Fermentative manufacture of pyruvic acid with Torulopsis species. JP patent 02308795
  • Miyata R, Yonehara T. (1999). Breeding of high-pyruvate-producing Torulopsis glabrata with acquired reduced pyruvate decarboxylase. J Biosci Bioeng, 88, 173–7
  • Miyata R, Yonehara T, Tsutsui H. (1990). Method for producing pyruvic acid by fermentation. US patent 4971907
  • Miyata R, Yonehara T, Yomoto K. (1988). Manufacture of pyruvic acid with Torulopsis species. JP patent 63258587
  • Miyata RYT. (1996). Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005. J Ferment Bioeng, 82, 475–9
  • Muller H, Hennequin C, Gallaud J, et al. (2008). The asexual yeast Candida glabrata maintains distinct a and alpha haploid mating types. Eukaryot Cell, 7, 848–58
  • Nelson DL, Cox MM. (2004). Lehninger principles of biochemistry. New York: W.H. Freeman
  • Neves AR, Ramos A, Costa H, et al. (2002). Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: kinetics of intracellular metabolite pools determined by in vivo nuclear magnetic resonance. Appl Environ Microbiol, 68, 6332–42
  • Ng CY, Jung MY, Lee J, Oh MK. (2012). Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb Cell Fact, 11, 68–81
  • Oberhardt MA, Palsson BO, Papin JA. (2009). Applications of genome-scale metabolic reconstructions. Mol Syst Biol, 5, 320–334
  • Oliveira AP, Nielsen J, Forster J. (2005). Modeling Lactococcus lactis using a genome-scale flux model. BMC Microbiol, 5, 39–53
  • Pamer EG. (2007). Immune responses to commensal and environmental microbes. Nat Immunol, 8, 1173–8
  • Park JH, Lee SY, Kim TY, Kim HU. (2008). Application of systems biology for bioprocess development. Trends Biotechnol, 26, 404–12
  • Pepperkok R, Ellenberg J. (2006). Innovation-high-throughput fluorescence microscopy for systems biology. Nat Rev Mol Cell Biol, 7, 690–96
  • Polakova S, Blume C, Zarate JA, et al. (2009). Formation of new chromosomes as a virulence mechanism in yeast Candida glabrata. Proc Natl Acad Sci USA, 106, 2688–93
  • Pronk JT, Yde Steensma H, Van Dijken JP. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast, 12, 1607–33
  • Qin Y, Dong Z, Zhou J, et al. (2009). Significantly increase of glycolytic flux and pyruvate productivity in Torulopsis glabrata by heterologous expression of NADH alternative oxidase. Acta Microbiol Sin, 49, 1483–8
  • Qin Y, Liu LM, Li CH, et al. (2010). Accelerating glycolytic flux of Torulopsis glabrata CCTCC M202019 at high oxidoreduction potential created using potassium ferricyanide. Biotechnol Prog, 26, 1551–7
  • Roetzer A, Gabaldón T, Schüller C. (2011). From Saccharomyces cerevisiae to Candida glabrata in a few easy steps: important adaptations for an opportunistic pathogen. FEMS Microbiol Lett, 314, 1–9
  • Ruijter GJ, Panneman H, Visser J. (1997). Overexpression of phosphofructokinase and pyruvate kinase in citric acid-producing Aspergillus niger. Biochim Biophys Acta, 1334, 317–26
  • Sánchez AM, Bennett GN, San KY. (2005). Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. J Biotechnol, 117, 395–405
  • Saeki H. (1997). Manufacture of pyruvic acid with Yarrowia. JP patent 09252790
  • Sanchez AM, Bennett GN, San KY. (2005). Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab Eng, 7, 229–39
  • Santana M, Ionescu MS, Vertes A, et al. (1994). Bacillus subtilis F0F1 ATPase: DNA sequence of the ATP operon and characterization of ATP mutants. J Bacteriol, 176, 6802–11
  • Saum SH, Muller V. (2007). Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol, 189, 6968–75
  • Schaaff I, Heinisch J, Zimmermann FK. (1989). Overproduction of glycolytic enzymes in yeast. Yeast, 5, 285–90
  • Schubert T, Maskow T, Benndorf D, et al. (2007). Continuous synthesis and excretion of the compatible solute ectoine by a transgenic, nonhalophilic bacterium. Appl Environ Microbiol, 73, 3343–7
  • Senior AE. (1988). ATP synthesis by oxidative phosphorylation. Physiol Rev, 68, 177–231
  • Suzuki N, Carlson J, Griffith G, Gholson RK. (1973). Studies on the de novo biosynthesis of NAD in Escherichia coli V. properties of the quinolinic acid synthetase system. Biochim Biophys Acta, 304, 309–15
  • Takagi H. (2008). Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol, 81, 211–23
  • Takemoto N, Koyano-Nakagawa N, Arai N, et al. (1997). Four P-like elements are required for optimal transcription of the mouse IL-4 gene: involvement of a distinct set of nuclear factor of activated T cells and activator protein-1 family proteins. Int Immunol, 9, 1329–38
  • Uchio R, Hirose Y. (1975). Fermentative production of pyruvic acid. JP patent 7582284
  • Uchio R, Kikuchi K, Enei H, Hirose Y. (1976). Process for producing pyruvic acid by fermentation. US patent 3993543
  • Valiyaveetil F, Hermolin J, Fillingame RH. (2002). pH dependent inactivation of solubilized F1F0 ATP synthase by dicyclohexylcarbodiimide: pK(a) of detergent unmasked aspartyl-61 in Escherichia coli subunit c. Biochim Biophys Acta, 1553, 296–301
  • van der Wielen LA, Luyben KC. (1992). Integrated product formation and recovery in fermentation. Curr Opin Biotechnol, 3, 130–8
  • van Maris AJ, Geertman JM, Vermeulen A, et al. (2004). Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. Appl Environ Microbiol, 70, 159–66
  • van Urk H, Postma E, Scheffers WA, van Dijken JP. (1989). Glucose transport in crabtree-positive and crabtree-negative yeasts. J Gen Microbiol, 135, 2399–406
  • Wang Q, He P, Lu D, et al. (2005). Metabolic engineering of Torulopsis glabrata for improved pyruvate production. Enzyme Microb Technol, 36, 832–9
  • Wargo MJ, Hogan DA. (2006). Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr Opin Microbiol, 9, 359–64
  • Willins DA, Shimer GH, Jr, Cottarel G. (2002). A system for deletion and complementation of Candida glabrata genes amenable to high-throughput application. Gene, 292, 141–9
  • Xu G, Zou W, Chen X, et al. (2012a). Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PLoS One, 7, e52086
  • Xu N, Liu L, Zou W, et al. (2012b). Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. Mol Biosyst, 9, 205–16
  • Xu S, Zhou J, Qin Y, et al. (2010a). Water-forming NADH oxidase protects Torulopsis glabrata against hyperosmotic stress. Yeast, 27, 207–16
  • Xu S, Zhou JW, Liu LM, Chen J. (2010b). Proline enhances Torulopsis glabrata growth during hyperosmotic stress. Biotechnol Bioprocess Eng, 15, 285–92
  • Yanai T, Tsunekawa H, Okamura K, Okamoto R. (1994). Manufacture of pyruvic acid with Debaryomyces. JP patent 0600091
  • Yokota A, Henmi M, Takaoka N, et al. (1997). Enhancement of glucose metabolism in a pyruvic acid-hyperproducing Escherichia coli mutant defective in F1-ATPase activity. J Ferment Bioeng, 83, 132–8
  • Yonehara T, Miyata R. (1994). Fermentative production of pyruvate from glucose by Torulopsis glabrata. J Ferment Bioeng, 78, 155–9
  • Yonehara T, Miyata R, Matsuno H, et al. (2000). Development of fermentative production of pyruvate by metabolic control. Seibutsu-Kogakkaishi, 78, 56–62
  • Yonehara T, Yomoto K. (1987). Microbial production of pyruvic acid and its enhancement by thiamine. JP patent 62201589
  • Zaunmuller T, Eichert M, Richter H, Unden G. (2006). Variations in the energy metabolism of biotechnologically relevant heterofermentative lactic acid bacteria during growth on sugars and organic acids. Appl Microbiol Biotechnol, 72, 421–9
  • Zelić B, Gerharz T, Bott M, et al. (2003). Fed-batch process forpyruvate production by recombinant Escherichia coli YYC202 Strain. Eng Life Sci, 3, 299–305
  • Zelic B, Gostovic S, Vuorilehto K, et al. (2004). Process strategies to enhance pyruvate production with recombinant Escherichia coli: from repetitive fed-batch to in situ product recovery with fully integrated electrodialysis. Biotechnol Bioeng, 85, 638–46
  • Zelle RM, de Hulster E, van Winden WA, et al. (2008). Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol, 74, 2766–77
  • Zhang D, Liang N, Shi Z, et al. (2009). Enhancement of α-ketoglutarate production in Torulopsis glabrata: redistribution of carbon flux from pyruvate to α-ketoglutarate. Biotechnol Bioprocess Eng, 14, 134–9
  • Zheng J, Ramirez VD. (1999). Purification and identification of an estrogen binding protein from rat brain: oligomycin sensitivity-conferring protein (OSCP), a subunit of mitochondrial F0F1-ATP synthase/ATPase. J Steroid Biochem Mol Biol, 68, 65–75
  • Zhou J, Huang L, Liu L, Chen J. (2009a). Enhancement of pyruvate productivity by inducible expression of a F(0)F(1)-ATPase inhibitor INH1 in Torulopsis glabrata CCTCC M202019. J Biotechnol, 144, 120–6
  • Zhou JW, Liu LM, Shi ZP, et al. (2009b). ATP in current biotechnology: regulation, applications and perspectives. Biotechnol Adv, 27, 94–101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.