1,557
Views
101
CrossRef citations to date
0
Altmetric
Review Article

Essential prerequisites for successful bioprocess development of biological CH4 production from CO2 and H2

, &
Pages 141-151 | Received 27 Nov 2012, Accepted 05 Jun 2013, Published online: 11 Sep 2013

References

  • Adelt M, Vogel A. (2010). Bio-SNG-prospective renewable energy carrier in the E.ON gas grid. Erdoel Erdgas Kohle, 126, 338–41
  • Archer DB. (1985). Uncoupling of methanogenesis from growth of Methanosarcina barkeri by phosphate limitation. Appl Environ Microbiol, 50, 1233–7
  • Asada Y, Miyake J. (1999). Photobiological hydrogen production. J Biosci Bioeng, 88, 1–6
  • Balch WE, Wolfe RS. (1976). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol, 32, 781–91
  • Benemann JR. (2000). Hydrogen production by microalgae. J Appl Phycol, 12, 291–300
  • Bonacker LG, Baudner S, Moerschel E, et al. (1993). Properties of the two isoenzymes of methyl-coenzyme M reductase in Methanobacterium thermoautotrophicum. Eur J Biochem, 217, 587–95
  • Brandis A, Thauer RK, Stetter KO. (1981). Relatedness of strains Delta H and Marburg of Methanobacterium thermoautotrophicum. Zentralbl Bakteriol Mikrobiol Hyg, 2, 311–7
  • Bredwell MD, Srivastava P, Worden RM. (1999). Reactor design issues for synthesis gas fermentations. Biotechnol Prog, 15, 834–44
  • Brooks KP, Hu J, Zhu H, Kee RJ. (2007). Methanation of carbon dioxide by hydrogen reduction using the Sabatier process in microchannel reactors. Chem Eng Sci, 62, 1161–70
  • Cavicchioli R. (2011). Archaea – timeline of the third domain. Nat Rev Microbiol, 9, 51–61
  • de Filippis P, Borgianni C, Paolucci M, Pochetti F. (2004). Prediction of syngas quality for two-stage gasification of selected waste feedstocks. Waste Manage, 24, 633–9
  • de Poorter LMI, Geerts WJ, Keltjens JT. (2007). Coupling of Methanothermobacter thermautotrophicus methane formation and growth in fed-batch and continuous cultures under different H2 gassing regimens. Appl Environ Microbiol, 73, 740–9
  • Deppenmeier U. (2002). The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol, 71, 223–83
  • Fardeau ML, Belaich JP. (1986). Energetics of the growth of Methanococcus thermolithotrophicus. Arch Microbiol, 144, 381–5
  • Fardeau ML, Peillex JP, Belaich JP. (1987). Energetics of the growth of Methanobacterium thermoautotrophicum and Methanococcus thermolithotrophicus on ammonium chloride and dinitrogen. Arch Microbiol, 148, 128–31
  • Fuchs G, Stupperich E, Thauer RK. (1978). Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol, 117, 61–6
  • Gabelman A, Hwang ST. (1999). Hollow fiber membrane contactors. J Membr Sci, 159, 61–106
  • Garcia-Ochoa F, Gomez E. (2005). Prediction of gas-liquid mass transfer coefficient in sparged stirred tank bioreactors. Biotechnol Bioeng, 92, 761–72
  • Garcia-Ochoa F, Gomez E. (2009). Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv, 27, 153–76
  • Gerhard E, Butsch BM, Marison IW, von Stockar U. (1993). Improved growth and methane production conditions for Methanobacterium thermoautotrophicum. Appl Microbiol Biotechnol, 40, 432–7
  • Ghirardi ML, Zhang L, Lee JW, et al. (2000). Microalgae: a green source of renewable H2. Trends Biotechnol, 18, 506–11
  • Grasso D, Strevett K, Fisher R. (1995). Uncoupling mass transfer limitations of gaseous substrates in microbial systems. Chem Eng J, 59, 195–204
  • Herwig C, Marison I, von Stockar U. (2001). On-line stoichiometry and identification of metabolic state under dynamic process conditions. Biotechnol Bioeng, 75, 345–54
  • Hoekman SK, Broch A, Robbins C, Purcell R. (2009). CO2 recycling by reaction with renewably-generated hydrogen. Int J Greenhouse Gas Control, 4, 44–50
  • Huang SW, Zhang HY, Marshall S, Jackson TA. (2010). The scarab gut: a potential bioreactor for bio-fuel production. Insect Sci, 17, 175–83
  • Jarrell KF. (1985). Extreme oxygen sensitivity in methanogenic archaebacteria. BioScience, 35, 298–302
  • Jee HS, Yano T, Nishio N, Nagai S. (1987a). Biomethanation of hydrogen and carbon dioxide by Methanobacterium thermoautotrophicum in membrane and ceramic bioreactors. J Ferment Technol, 65, 413–8
  • Jee HS, Nishio N, Nagai S. (1987b). Influence of redox potential on biomethanation of hydrogen and carbon dioxide by Methanobacterium thermoautotrophicum in Eh-stat batch cultures. J Gen Appl Microbiol, 33, 401–8
  • Jee HS, Nishio N, Nagai S. (1988a). Methane production from hydrogen and carbon dioxide by Methanobacterium thermoautotrophicum cells fixed on hollow fibers. Biotechnol Lett, 10, 243–8
  • Jee HS, Nishio N, Nagai S. (1988b). Continuous methane production from hydrogen and carbon dioxide by Methanobacterium thermoautotrophicum in a fixed-bed reactor. J Ferment Technol, 66, 235–8
  • Jud G, Schneider K, Bachofen R. (1997). The role of hydrogen mass transfer for the growth kinetics of Methanobacterium thermoautotrophicum in batch and chemostat cultures. J Ind Microbiol Biotechnol, 19, 246–51
  • Kawaguchi H, Sakuma T, Nakata Y, et al. (2010). Methane production by Methanothermobacter thermautotrophicus to recover energy from carbon dioxide sequestered in geological reservoirs. J Biosci Bioeng, 110, 106–8
  • Kitaura S, Nishimura N, Mimura A, Takahara Y. (1992). Isolation and characterization of a fast-growing, thermophilic, hydrogenotrophic methanogen. J Ferment Bioeng, 74, 244–7
  • Liesack W, Schnell S, Revsbech NP. (2000). Microbiology of flooded rice paddies. FEMS Microbiol Rev, 24, 625–45
  • Liu JS, Schill N, van Gulik WM, et al. (1999). The coupling between catabolism and anabolism of Methanobacterium thermoautotrophicum in H2- and iron-limited continuous cultures. Enzyme Microb Technol, 25, 784–94
  • Liu Y, Whitman WB. (2008). Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci, 1125, 171–89
  • Mohammadi M, Najafpour GD, Younesi H, et al. (2011). Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev, 15, 4255–73
  • Morgan RM, Pihl TD, Nolling J, Reeve JN. (1997). Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum Delta H. J Bacteriol, 179, 889–98
  • Morii H, Koga Y, Nagai S. (1987). Energetic analysis of the growth of Methanobrevibacter arboriphilus A2 in hydrogen-limited continuous cultures. Biotechnol Bioeng, 29, 310–5
  • Mukhopadhyay B, Purwantini E, de Macario E, Daniels L. (1991). Characterization of a Methanosarcina strain isolated from goat feces, and that grows on hydrogen-carbon dioxide only after adaptation. Curr Microbiol, 23, 165–73
  • Munasinghe PC, Khanal SK. (2010). Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer coefficient (kLa) in different reactor configurations. Biotechnol Prog, 26, 1616–21
  • Munasinghe PC, Khanal SK. (2012). Syngas fermentation to biofuel: evaluation of carbon monoxide mass transfer and analytical modeling using a composite hollow fiber (CHF) membrane bioreactor. Bioresour Technol, 122, 130–6
  • Nielsen J, Villadsen J, Liden G. (2011). Bioreaction engineering principles. New York: Springer
  • Nikitin GA. (1968). Changes of the oxidation-reduction potential and intensity of methane formation during fermentation of different media by a batch culture of methane-forming bacteria. Prikl Biokhim Mikrobiol, 4, 510–6
  • Nishimura N, Kitaura S, Mimura A, Takahara Y. (1992). Cultivation of thermophilic methanogen KN-15 on hydrogen-carbon dioxide under pressurized conditions. J Ferment Bioeng, 73, 477–80
  • Ohya H, Fun J, Kawamura H, et al. (1997). Methanation of carbon dioxide by using membrane reactor integrated with water vapor permselective membrane and its analysis. J Membr Sci, 131, 237–47
  • Patwardhan AW, Joshi JB. (1999). Design of gas-inducing reactors. Ind Eng Chem Res, 38, 49–80
  • Paynter MJ, Hungate RE. (1968). Characterization of Methanobacterium mobilis, sp. n., isolated from the bovine rumen. J Bacteriol, 95, 1943–51
  • Peillex JP, Fardeau ML, Belaich JP. (1990). Growth of Methanobacterium thermoautotrophicum on hydrogen-carbon dioxide: high methane productivities in continuous culture. Biomass, 21, 315–21
  • Pennings JLA, Keltjens JT, Vogels GD. (1998). Isolation and characterization of Methanobacterium thermoautotrophicum ΔH mutants unable to grow under hydrogen-deprived conditions. J Bacteriol, 180, 2676–81
  • Pennings JLA, Vermeij P, de Poorter LMI, et al. (2000). Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain Delta H) in a fed-batch fermentor. Antonie van Leeuwenhoek, 77, 281–91
  • Martinez Porqueras EM, Rittmann S, Herwig C. (2012). Biofuels and CO2 neutrality: an opportunity. Biofuels, 3, 413–26
  • Rajagopal BS, Belay N, Daniels L. (1988). Isolation and characterization of methanogenic bacteria from rice paddies. FEMS Microbiol Ecol, 53, 153–8
  • Redwood MD, Macaskie LE. (2006). A two-stage, two-organism process for biohydrogen from glucose. Int J Hydrogen Energ, 31, 1514–21
  • Redwood MD, Orozco RL, Majewski AJ, Macaskie LE. (2012). Electro-extractive fermentation for efficient biohydrogen production. Bioresour Technol, 107, 166–74
  • Rittmann S, Herwig C. (2012). A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact, 11, 115
  • Rittmann S, Seifert A, Herwig C. (2012). Quantitative analysis of media dilution rate effects on Methanothermobacter marburgensis grown in continuous culture on H2 and CO2. Biomass Bioenerg, 36, 293–301
  • Roennow PH, Gunnarsson LAH. (1982). Response of growth and methane production to limiting amounts of sulfide and ammonia in two thermophilic methanogenic bacteria. FEMS Microbiol Lett, 14, 311–5
  • Rospert S, Boecher R, Albracht SPJ, Thauer RK. (1991). Methyl-coenzyme M reductase preparations with high specific activity from hydrogen-preincubated cells of Methanobacterium thermoautotrophicum. FEBS Lett, 291, 371–5
  • Rospert S, Linder D, Ellermann J, Thauer RK. (1990). Two genetically distinct methyl-coenzyme M reductases in Methanobacterium thermoautotrophicum strain Marburg and Delta H. Eur J Biochem, 194, 871–7
  • Schill N, van Gulik WM, Voisard D, von Stockar U. (1996). Continuous cultures limited by a gaseous substrate: development of a simple, unstructured mathematical model and experimental verification with Methanobacterium thermoautotrophicum. Biotechnol Bioeng, 51, 645–58
  • Schoenheit P, Moll J, Thauer RK. (1979). Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol, 123, 105–7
  • Schoenheit P, Moll J, Thauer RK. (1980). Growth parameters (Ks, µmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol, 127, 59–65
  • Seedorf H, Hagemeier CH, Shima S, et al. (2007). Structure of coenzyme F420H2 oxidase (FprA), a di-iron flavoprotein from methanogenic Archaea catalyzing the reduction of O2 to H2O. FEBS J, 274, 1588–99
  • Seifert AH, Rittmann S, Herwig C. Analysis of process related factors to increase volumetric productivity and quality of biomethane with Methanothermobacter marburgensis. Appl Energ, submitted to journal for publication at 05.08.2013
  • Seifert A, Herwig C. (2012). Selektive Abtrennung von Wasser bei gleichzeitiger Biomasse- und Medienkomponentenretention. Patent Application, A 50508/2012
  • Seifert A, Rittmann S, Bernacchi C, Herwig C. (2013). Method for assessing the impact of emission gasses on physiology and productivity in biological methanogenesis. Bioresour Technol, 136, 747--51
  • Shcherbakova VA, Laurinavichus KS, Obraztsova AY, Akimenko VK. (1997). The effect of redox potential on methanogenesis by thermophilic methanogens. Microbiology, 66, 642–6
  • Sideman S, Hortacsu O, Fulton JW. (1966). Mass transfer in gas-liquid contacting systems. J Ind Eng Chem, 58, 32–47
  • Sowers KR, Boone JE, Gunsalus RP. (1993). Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol, 59, 3832–9
  • Specht M, Brellochs J, Frick V, et al. (2010). Storage of renewable energy in the natural gas grid. Erdoel Erdgas Kohle, 126, 342–5
  • Strevett KA, Vieth RF, Grasso D. (1995). Chem.-autotrophic biogas purification for methane enrichment: mechanism and kinetics. Chem Eng J, 58, 71–9
  • Taylor GT, Pirt SJ. (1977). Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum). Arch Microbiol, 113, 17–22
  • Thauer RK, Kaster AK, Seedorf H, et al. (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol, 6, 579–91
  • Thauer RK, Kaster AK, Goenrich M, et al. (2010). Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage. Annu Rev Biochem, 79, 507–36
  • Treude T, Smith CR, Wenzhoefer F, et al. (2009). Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis. Mar Ecol, 382, 1–21
  • Tsao JH, Kaneshiro SM, Yu SS, Clark DS. (1994). Continuous culture of Methanococcus jannaschii: an extremely thermophilic methanogen. Biotechnol Bioeng, 43, 258–61
  • Ungerman AJ, Heindel TJ. (2007). Carbon monoxide mass transfer for syngas fermentation in a stirred tank reactor with dual impeller configurations. Biotechnol Prog, 23, 613–20
  • Wagner ID, Wiegel J. (2008). Diversity of thermophilic anaerobes. Ann N Y Acad Sci, 1125, 1–43
  • Weimer PJ, Zeikus JG. (1978). One carbon metabolism in methanogenic bacteria: cellular characterization and growth of Methanosarcina barkeri. Arch Microbiol, 119, 49–57
  • Weissgram M, Bernacchi S, Wukovits W, Herwig C. Simulation of the influence of process parameters on the efficiency of the process for biological methanogenesis. J Clean Prod, originally submitted for publication on 21.11.2012, second revision submitted on 27.07.2013
  • Zehnder AJB, Wuhrmann K. (1977). Physiology of a Methanobacterium strain AZ. Arch Microbiol, 111, 199–205
  • Zhu H, Shanks BH, Choi DW, Heindel TJ. (2010). Effect of functionalized MCM41 nanoparticles on syngas fermentation. Biomass Bioenerg, 34, 1624–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.