245
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Calcium-energized motor protein forisome controls damage in phloem: potential applications as biomimetic “smart” material

, &
Pages 173-183 | Received 18 Mar 2013, Accepted 09 Jun 2013, Published online: 11 Sep 2013

References

  • Alosi MC, Melroy DL, Park RB. (1988). The regulation of gelation of phloem exudate from Cucurbita fruit by dilution, glutathione, and glutathione reductase. Plant Physiol, 86, 1089–94
  • Atkinson HJ, Babbitt PC. (2009). An atlas of the thioredoxin fold class reveals the complexity of function-enabling adaptations. PLoS Comput Biol, 5, e1000541
  • Barnes A, Bale J, Constantinidou C, et al. (2004). Determining protein identity from sieve element sap in Ricinus communis L. by quadrupole time of flight (Q-TOF) mass spectrometry. J Expt Bot, 55, 1473–81
  • Bearda NA, Laverb DR, Dulhuntya AF. (2004). Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol, 85, 33–69
  • Behnke HD, Sjolund RD. (1990). Sieve elements: comparative structure, induction and development. Berlin, Germany: Springer
  • Behnke HD. (1991a). Nondispersive protein bodies in sieve elements: a survey and review of their origin, distribution and taxonomic significance. IAWA Bull, 12, 143–75
  • Behnke HD. (1991b). Distribution and evolution of forms and types of sieve-element plastids in the dicotyledons. ALISO, 3, 167–82
  • Beyenbach J, Weber C, Kleinig H. (1974). Sieve-tube proteins from Cucurbita maxima. Planta, 119, 113–24
  • Bostwick DE, Dannenhoffer JM, Skaggs MI, et al. (1992). Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell, 4, 1539–48
  • Bucsenez M, Rüping B, Behrens S, et al. (2012). Multiple cis-regulatory elements are involved in the complex regulation of the sieve element-specific MtSEO-F1 promoter from Medicago truncatula. Plant Biol, 14, 714--24
  • Buttafoco L, Kolman NG, Engbers-Buijtenhuijs P, et al. (2006). Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials, 27, 724–34
  • Carolan JC, Fitzroy CI, Ashton PD, et al. (2009). The secreted salivary proteome of the pea aphid Acyrthosiphon pisum characterised by mass spectrometry. Proteomics, 9, 2457–67
  • Chakraborty I, Tang WC, Bame DP, Tang TK. (2000). MEMS Micro valve for space applications. Sens Actuators A: Physical, 88, 188–93
  • Clark AM, Jacobsen KR, Bostwick DE, et al. (1997). Molecular characterization of a phloem-specific gene encoding the filament protein, Phloem Protein 1 (PP1), from Cucurbita maxima. Plant J, 12, 49–61
  • Cronshaw J, Esau K. (1967). Tubular and fibrillar components of mature and differentiating sieve elements. J Cell Biol, 34, 801–15
  • Ehlers K, Knoblauch M, van Bel AJE. (2000). Ultrastructural features of well-preserved and injured sieve elements: minute clamps keep the phloem transport conduits free for mass flow. Protoplasma, 214, 80–92
  • Eleftheriou E. (1990). Monocotyledons. In: Behnke HD, Sjolund RD, eds. Sieve elements. Comparative structure, induction and development. Berlin, Germany: Springer, 139–59
  • Engleman EM, Esau K. (1964). The problem of callose deposition in phloem. Science, 144, 562
  • Ernst AM, Jekat SB, Zielonka S, et al. (2012). Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proc Natl Acad Sci USA, 109, 980–9
  • Esau K. (1969). The phloem. Encyclopedia of plant anatomy, Vol. 5. Berlin, Germany: Bornträger
  • Evert RF. (1982). Sieve-tube structure in relation to function. BioScience, 32, 789–95
  • Evert RF. (1990). Dicotyledons. In: Behnke HD, Sjolund RD, eds. Sieve elements. Comparative structure, induction and development. Berlin, Germany: Springer, 103–37
  • Evert RF, Eschrich W, Eichhorn SE. (1973). P-protein distribution in mature sieve elements of Cucurbita maxima. Planta, 109, 193–210
  • Fisher DB. (1975). Structure of functional soybean sieve elements. Plant Physiol, 56, 555–69
  • Fontanellaz ME. (2006). Cloning and molecular characterization of vff1 gene encoding forisomes of Vicia faba [dissertation]. Germany: RWTH
  • Furch AC, Hafke JB, Schulz A, van Bel AJ. (2007). Ca2+ mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot, 58, 2827–38
  • Furch ACU, Zimmermann MR, Will T, et al. (2010). Remote-controlled stop of phloem mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot, 61, 3697–708
  • Gaupels F, Furch AC, Will T, et al. (2008). Nitric oxide generation in Vicia faba phloem cells reveals them to be sensitive detectors as well as possible systemic transducers of stress signals. New Phytol, 178, 634–46
  • Giavalisco P, Kapitza K, Kolasa A, et al. (2006). Towards the proteome of Brassica napus phloem sap. Proteomics, 6, 896–909
  • Glowacki J, Mizuno S. (2007). Collagen scaffolds for tissue engineering. Biopolymers, 89, 338–44
  • Golecki B, Schulz A, Thompson GA. (1999). Translocation of structural P proteins in the phloem. Plant Cell, 11, 127–40
  • Groscurth S, Müller B, Schwan S, et al. (2012). Artificial forisomes are ideal models of forisome assembly and activity that allow the development of technical devices. Biomacromolecules, 13, 3076–86
  • Hartig T. (1854). Ueber die Querscheidewaende zwischen den einzelnen Gliedern derSiebröhren in Cucurbita pepo. Botanische Zeitung, 12, 51–4
  • Hayashi H, Fukuda A, Suzui N, Fujimaki S. (2000). Proteins in the sieve tube-companion cell complexes: their detection, localization and possible functions. Aust J Plant Physiol, 27, 489–96
  • Ishiwatari Y, Honda C, Kawashima I, et al. (1995). Thioredoxin h is one of the major proteins in rice phloem sap. Planta, 195, 456–63
  • Jaeger M, Uhlig K, Clausen-Schaumann H, Duschl C. (2008). The structure and functionality of contractile forisome protein aggregates. Biomaterials, 29, 247–56
  • Jekat SB, Ernst AM, Zielonka S, et al. (2012). Interactions among tobacco sieve element occlusion (SEO) proteins. Plant Signal Behav, 7, 1724–6
  • Kempers R, Ammerlaan A, van Bel AJE. (1998). Symplasmic constriction and ultrastructural features of the sieve element/companion cell complex in the transport phloem of apoplasmically and symplasmically phloem-loading species. Plant Physiol, 116, 271–8
  • Kempers R, van Bel AJE. (1997). Symplasmic connections between sieve element and companion cell in the stem phloem of Vicia faba L. have a size exclusion limit of at least 10 kDa. Planta, 201, 195–201
  • Knoblauch M, Peters WS. (2004a). Forisomes, a novel type of Ca2+ dependent contractile protein motor. Cell Motil Cytoskeleton, 58, 137–42
  • Knoblauch M, Peters WS. (2004b). Biomimetic actuators: where technology and cell biology merge. CMLS, 61, 2497–509
  • Knoblauch M, Peters WS, Ehlers K, van Bel AJE. (2001). Reversible calcium-regulated stopcocks in legume sieve tubes. Plant Cell, 13, 1221–30
  • Knoblauch M, Stubenrauch M, van Bel AJ, Peters WS. (2012). Forisome performance in artificial sieve tubes. Plant Cell Environ, 35, 1419–27
  • Knoblauch M, van Bel AJE. (1998). Sieve tubes in action. Plant Cell, 10, 35–50
  • Knoblauch M, Noll GA, Müller T, et al. (2003). ATP-independent contractile proteins from plants. Nat Mater, 2, 600–3
  • Kollmann R. (1973). Cytologie des Phloems. In: Ruska H, Sitte P, eds. Grundlagen der cytologie. Jena, Germany: Gustav Fischer, 479–505
  • Lawton DM. (1978a). Ultrastructural comparison of tailed and tail-less P-protein crystals respectively of runner bean (Phaseolus multiflorus) and garden pea (Pisum sativum) with tilting stage electron micoscopy. Protoplasma, 97, 1–11
  • Lawton DM. (1978b). P-protein crystals do not disperse in uninjured sieve elements in roots of runner bean (Phaseolus multiflorus) fixed with glutaraldehyde. Ann Bot, 42, 353–61
  • Lee DR, Arnold DC, Fensom DS. (1971). Some microscopical observations of functioning sieve tubes of Heracleum using Nomarski optics. J Exp Bot, 22, 25–38
  • Lin M-K, Lee Y-J, Lough TJ, et al. (2009). Analysis of the pumpkin phloem proteome provides insights into angiosperm sieve tube function. Mol Cell Proteomics, 8, 343–56
  • MacLennan DH, Reithmeier RAF. (1998). Ion tamers. Nat Struct Biol, 5, 409–11
  • Martin LM. (1995). Thioredoxin – a fold for all reasons. Structure, 3, 245–50
  • McNairn RB, Currier HB. (1968). Translocation blockage by sieve plate callose. Planta, 82, 369–80
  • Miki H, Okada Y, Hirokawa N. (2005). Analysis of the kinesin superfamily: insights into structure and function. Trends Cell Biol, 15, 467–76
  • Miles PW. (1999). Aphid saliva. Biol Rev Camb Philos Soc, 74, 41–85
  • Mrazek A. (1910). Über geformte eiweiβhaltige inhaltstoffe bei den leguminosen. Österr Bot Z, 60, 198–201
  • Müller B, Noll GA, Ernst AM. (2010). Recombinant artificial forisomes provide ample quantities of smart biomaterials for use in technical devices. Appl Microbiol Biotechnol, 88, 689–98
  • Musetti R, Buxa SV, Marco FD, et al. (2013). Phytoplasma-triggered Ca2+ influx is involved in sieve-tube blockage. Mol Plant Microbe Interact, 4, 379–86
  • Murray C, Christeller JT. (1995). Purification of a trypsin inhibitor (PFTI) from pumpkin fruit phloem exudate and isolation of putative trypsin and chymotrypsin inhibitor cDNA clones. Biol Chem, 376, 281–7
  • Noll GA. (2005). Molekularbiologische Charakterisierung der Forisome. Doctoral Thesis (in German; supervisor: A.J.E. van Bel), Justus-Liebig Universität, Gießen, Germany. http://geb.unigiessen.de/geb/volltexte/2007/4805/pdf/NollGundula-2005–12–12.pdf
  • Noll GA, Fontanellaz ME, Rüping B, et al. (2007). Spatial and temporal regulation of the forisome gene for1 in the phloem during plant development. Plant Mol Biol, 65, 285–94
  • Noll GA, Müller B, Ernst AM, et al. (2011). Native and artificial forisomes: functions and applications. Appl Microbiol Biotechnol, 89, 1675–82
  • Palevitz BA, Newcomb EH. (1971). The ultrastructure and development of tubular and crystalline P-protein in the sieve elements of certain Papilionaceous legumes. Protoplasma, 72, 399–426
  • Parthasarathy MV, Pesacreta TC. (1980). Microfilaments in plant vascular cells. Can J Bot, 58, 807–15
  • Pélissier HC, Peters WS, Collier R, et al. (2008). GFP tagging of sieve element occlusion [SEO] proteins results in green fluorescent forisomes. Plant Cell Physiol, 49, 1699–710
  • Peters WS, Knoblauch M, Warmann SA, et al. (2007a). Tailed forisomes of Canavalia gladiata: a new model to study Ca2+ driven protein contractility. Ann Bot, 100, 101–9
  • Peters WS, Schnetter R, Knoblauch M. (2007b). Reversible birefringence suggests a role for molecular self-assembly in forisome contractility. FPB, 34, 302–6
  • Przybyla DE, Chmielewski J. (2010). Higher-order assembly of collagen peptides into nano- and microscale materials. Biochemistry, 49, 4411–19
  • Read SM, Northcote DH. (1983). Subunit structure and interactions of the phloem proteins of Cucurbita maxima (pumpkin). Eur J Biochem, 134, 561–9
  • Ruiz-Medrano R, Xoconostle-Cazares B, Lucas WJ. (2001). The phloem as a conduit for inter-organ communication. Curr Opin Plant Biol, 4, 202–9
  • Rüping B, Ernst AM, Jekat SB, et al. (2010). Molecular and phylogenetic characterization of the sieve element occlusion gene family in Fabaceae and non-Fabaceae plants. BMC Plant Biol, 10, 219
  • Roy A, Kucukural A, Zhang Y. (2010). I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc, 5, 725–38
  • Roy A, Yang J, Zhang Y. (2012). COFACTOR: an accurate comparative algorithm for structure-based protein function annotation. Nucleic Acids Res, 40, W471–7
  • Sabnis DD, Hart JW. (1973). P-protein in sieve elements. I. Ultrastructure after treatment with vinblastine and colchicine. Planta, 109, 127–33
  • Sabnis DD, Sabnis HM. (1995). Phloem proteins: structure, biochemistry and function. In: Iqbal M, eds. The cambial derivatives, encyclopedia of plant anatomy. Vol. 9, Berlin, Germany: Borntraeger, 271–92
  • Schobert C, Grosmann P, Gottschalk M, et al. (1995). Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta, 196, 205–10
  • Schwan S, Fritzsche M, Cismak A, et al. (2007). In vitro investigation of the geometric contraction behavior of chemo-mechanical P-protein aggregates [forisomes]. Biophys Chem, 125, 444–52
  • Shahinpoor M. (2003). Ionic polymer-conductor composites as biomimetic sensors, robotic actuators and artificial muscles – a review. Electrochim Acta, 48, 2343–53
  • Shoureshi RA, Shen AQ. (2007). Design of a biomimetic-based monitoring and diagnostic system for civil structures. Int J Nanotechol, 4, 309–24
  • Sjolund RD. (1997). The phloem sieve element: a river runs through it. Plant Cell, 9, 1137–46
  • Smith LM, Sabnis DD, Johnson RPC. (1987). Immunocytochemical localization of phloem lectin from Cucurbita maxima using peroxidase and colloidal-gold labels. Planta, 170, 461–70
  • Steer MW, Newcomb EH. (1969). Development and dispersal of P-protein in the phloem of Coleus blumei Benth. J Cell Sci, 4, 155–69
  • Straβburger E. (1891). Über den Bau und die Verrichtungen der Leitungsbahnen in den Pflanzen. Histologische Beitrage 3. Jena: Gustav Fischer
  • Tuteja N, Sopory SK. (2008). Chemical signaling under abiotic stress environment in plants. Plant Signal Behav, 3, 525–36
  • Tuteja N, Tuteja R. (1996). DNA helicases: the long unwinding road. Nat Genet, 13, 11–12
  • Tuteja N, Tuteja R. (2006). DNA helicases as molecular motors: an insight. Phys A: Statist Mech App, 372, 70–83
  • Tuteja N, Umate P, van Bel AJE. (2010). Forisomes: calcium-powered protein complexes with potential as ‘smart’ biomaterials. Trends Biotechnol, 28, 102–10
  • Tuteja N. (1997). Unraveling DNA helicases from plant cells. Plant Mol Biol, 33, 947–52
  • Tuteja N. (2009). Integrated calcium signaling in plants. In: Baluska F, Mancuso S, eds. Signaling in plants. Berlin Heidelberg, Germany: Springer-Verlag, 29–49
  • Uhlig K, Jaeger MS, Lisdat F, Duschl C. (2008). A biohybrid microfluidic valve based on forisome protein complexes. J Microelectrochem Syst, 17, 1322–8
  • Van Bel AJE, Knoblauch M. (2000). Sieve element and companion cell: the story of the comatose patient and the hyperactive nurse. Aust J Plant Physiol, 27, 477–87
  • Van Bel AJE, Knoblauch M, Furch ACU, Hafke, J.B. (2011). (Questions)n on phloembiology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci, 181, 210–18
  • Van Bel AJE. (1993). The transport phloem. Specifics of its functioning. Progress Botany, 54, 134–50
  • van der Schoot C, van Bel AJE. (1989). Glass microelectrode measurements of sieve tube membrane potentials in internodes and petioles of tomato (Solanum lycopersicum L.). Protoplasma, 149, 144–54
  • Walz C, Giavalisco P, Schad M, et al. (2004). Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry, 65, 1795–804
  • Walz C, Juenger M, Schad M, Kehr J. (2002). Evidence for the presence and activity of a complete antioxidant defence system in mature sieve tubes. Plant J, 31, 189–97
  • Wang S, Trumble WR, Liao H, et al. (1998). Crystal structure of calsequestrin from rabbit skeletal muscle sarcoplasmic reticulum. Nat Struct Biol, 5, 476–83
  • Wergin WP, Newcomb EH. (1970). Formation and dispersal of crystalline P-protein in sieve elements of soybean (Glycine max L.). Protoplasma, 71, 365–88
  • Will T, Tjallingii WF, Thönnessen A, van Bel AJE. (2007). Molecular sabotage of plant defense by aphid saliva. Proc Natl Acad Sci USA, 104, 10536–41
  • Will T, van Bel AJE. (2006). Physical and chemical interactions between aphids and plants. J Exp Bot, 57, 729–37
  • Zhang Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9, 40--8
  • Zimmermann MR, Hafke JB, van Bel AJ, Furch AC. (2013). Interaction of xylem and phloem during exudation and wound occlusion in Cucurbita maxima. Plant Cell Environ, 36, 237–47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.