1,922
Views
107
CrossRef citations to date
0
Altmetric
Review Article

Microbial biosynthesis and secretion of l-malic acid and its applications

, , , &
Pages 99-107 | Received 08 Dec 2013, Accepted 14 Apr 2014, Published online: 15 Jul 2014

References

  • Battat E, Peleg Y, Bercovitz A, et al. (1991). Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol Bioeng, 37, 1108–16
  • Brown SH, Bashkirova L, Berka R, et al. (2013). Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol, 97, 8903–12
  • Chen X, Xu G, Xu N, et al. (2013). Metabolic engineering of Torulopsis glabrata for malate production. Metab Eng, 19, 10–16
  • Gadagi RS, Shin WS, Sa TM. (2007). Malic acid mediated aluminum phosphate solubilization by Penicillium oxalicum CBPS-3F-Tsa isolated from Korean paddy rhizosphere soil. In: Vela′ zquez E, Rodrı′guez-Barrueco C, eds. First International Meeting on Microbial Phosphate Solubilization. New York: Springer, 285–90
  • Giorno L, Drioli E, Carvoli G, et al. (2001). Study of an enzyme membrane reactor with immobilized fumarase for production of l-malic acid. Biotechnol Bioeng, 72, 76–84
  • Goldberg I, Rokem JS, Pines O. (2006). Organic acids: old metabolites, new themes. J Chem Technol Biotechnol, 81, 1601–11
  • Gong CS, Cao N, Sun Y. (1996). Production of L-malic acid from fumaric acid by resting cells of Brevibacterium sp. Appl Biochem Biotechnol, 57/58, 481–7
  • Hu Y, Ouyang P. (2010). L-Malic acid production by fumarase. Encycl Indu Biotechnol Bioprocess Biosep Cell Technol, John Wiley & Sons, Inc. 1–14. DOI:10.1002/9780470054581.eib393
  • Kajiyama T, Taguchi T, Kobayashi H, et al. (2003). Synthesis of high molecular weight poly(β-malic acid) for biomedical use by direct polycondensation. Polym Degrad Stabil, 81, 525–30
  • Kawagoe M, Hyakumura K, Suye SI, et al. (1997). Application of bubble column fermentors to submerged culture of Schizophyllum commune or production of l-malic acid. J Ferment Bioeng, 84, 333–6
  • Khan I, Nazir K, Wang ZP, et al. (2013). Calcium malate overproduction by Penicillium viticola 152 using the medium containing corn steep liquor. Appl Microbiol Biotechnol, 98, 1539–46
  • Kim HO, Lum CM, Lee S. (2007). Malic acid: a convenient precursor for the synthesis of peptide secondary structure mimetics. Tetrahedron Lett, 38, 4935–8
  • Knuf C, Nookaew I, Brown SH, et al. (2013). Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Appl Environ Microbiol, 79, 6050–8
  • Knuf C, Nookaew I, Remmers I, et al. (2014). Physiological characterization of the high malic acid-producing Aspergillus oryzae strain 2103a-68. Appl Microbiol Biotechnol, 98, 3517–27
  • Koganemaru K, Ohura Y, Kanda K, et al. (2001). Mechanism of malic acid production by a cycloheximide-resistant sake yeast. J Brewing Soc Jpn, 96, 275–81
  • Lin S, Wang L, Jones G. (2012). Optimized extraction of calcium malate from eggshell treated by PEF and an absorption assessment in vitro. Int J Biol Macromol, 50, 1327–33
  • Ma Y, Wang GY, Liu GL, et al. (2013). Overproduction of poly(β-malic acid) (PMA) from glucose by a novel Aureobasidium sp. P6 strain isolated from mangrove system. Appl Microbiol Biotechnol, 97, 8931–9
  • Mikova H, Rosenberg M, Kristofkova L, Solu P. (1999). Production of L-malate from fumarate by the yeast Dipodascus magnusii. Acta Biotechnol, 19, 357–63
  • Moon SY, Hong SH, Kim TY, Lee SY. (2008). Metabolic engineering of Escherichia coli for the production of malic acid. Biochem Eng J, 40, 312–20
  • Mu L, Wen J. (2013). Engineered Bacillus subtilis 168 produces l-malate by heterologous biosynthesis pathway construction and lactate dehydrogenase deletion. World J Microbiol Biotechnol, 29, 33–41
  • Nakayama S, Tabata K, Oba T, et al. (2012). Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. J Biosci Bioeng, 114, 281–5
  • Neufeld RJ, Peleg Y, Rokem JS, et al. (1991). l-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microb Technol, 13, 991–6
  • Ochsenreither K, Fischer C, Neumann A, Syldatk C. (2014). Process characterization and influence of alternative carbon sources and carbon-to-nitrogen ratio on organic acid production by Aspergillus oryzae DSM1863. Appl Microbiol Biotechnol, DOI 10.1007/s00253-014-5614-x. [Epub ahead of print]
  • Peleg Y, Rahamin E, Kessel M, Goldberg I. (1988). Malic acid accumulation by Aspergillus flavus. II, Crystals and hair-like processes formed by A. flavus in a L-malic acid production medium. Appl Microbiol Biotechnol, 28, 26–9
  • Peleg Y, Rokem JS, Goldberg I, Pines O. (1990). Inducible overexpression of the FUM1 gene in Saccharomyces cerevisiae: localization of fumarase and efficient fumaric acid bioconversion to L-malic acid. Appl Environ Microbiol, 56, 2777–83
  • Pines O, Even-Ram S, Elnathan N, et al. (1996). The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: the role of fumarase. Appl Microbiol Biotechnol, 46, 393–9
  • Pines O, Shemeshm S, Battat E. (1997). Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 48, 248–55
  • Presecki AV, Vasic-Racki D. (2005). Production of L-malate by permeabilized cells of commercial Saccharomyces sp. strains. Biotechnol Lett, 27, 1835–9
  • Queiros O, Casal M, Althoff S, et al. (1998). Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast, 14, 401–7
  • Raybaudi-Massilia R, Zambrano-Duran A, Mosqueda-Melgar J, Calderon-Gabaldon MI. (2012). Improving the safety and shelf-life of orange and mango juices using Panax ginseng, malic acid and potassium sorbate. J Verbr Lebensm, 7, 273–82
  • Redzepovic S, Orlic S, Majdak A, et al. (2003). Differential malic acid degradation by selected strains of Saccharomyces during alcoholic fermentation. Int J Food Microbiol, 83, 49–61
  • Rosenberg M, Mikova H, Kristofıkova L. (1999). Formation of L-malic acid by yeasts of the genus Dipodascus. Lett Appl Microbiol, 29, 221–3
  • Santhanam A, Hartley A, Düvel K, et al. (2004). PP2A phosphatase activity is required for stress and Tor kinase regulation of yeast stress response factor Msn2p. Eukaryot Cell, 3, 1261–71
  • Sauer M, Porro D, Mattanovich D, Branduardi P. (2008). Microbial production of organic acids: expanding the markets. Trends Biotechnol, 26, 100–8
  • Sousa MJ, Mota M, Leao C. (1992). Transport of malic acid in the yeast Schizosaccharomyces pombe – evidence for a proton dicarboxylate symport. Yeast, 8, 1025–31
  • Stojkovic G, Znidarsic-Plazl P. (2012). Continuous synthesis of l-malic acid using whole-cell microreactor. Process Biochem, 47, 1102–7
  • Straathof AJJ, van Gulik WM. (2012). Production of fumaric acid by fermentation. In: Wang X, et al, eds. Reprogramming microbial metabolic pathways, subcellular biochemistry. Dordrecht: Springer Science+Business Media, 225–40
  • Taing O, Taing K. (2007). Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur Food Res Technol, 224, 343–7
  • Tsao GT, Cao NJ, Du J, Gong CS. (1999). Production of multifunctional organic acids from renewable resources. Adv Biochem Eng Biotechnol, 65, 243–80
  • Wang X, Gong CS, Tsao GT. (1998). Production of L-malic acid via biocatalysis employing wild-type and respiratory-deficient yeasts. Appl Biochem Biotechnol, 70, 845–52
  • Wang ZP, Wang GY, Khan I, Chi ZM. (2013). High-level production of calcium malate from glucose by Penicillium sclerotiorum K302. Bioresource Technol, 143, 674–7
  • West TP. (2011). Malic acid production from thin stillage by Aspergillus species. Biotechnol Lett, 33, 2463–7
  • Ye X, Honda K, Morimoto Y, et al. (2013). Direct conversion of glucose to malate by synthetic metabolic engineering. J Biotechnol, 164, 34–40
  • Zelle RM, de Hulster E, van Winden WA, et al. (2008). Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl Environ Microbiol, 74, 2766–77
  • Zelle RM, de Hulster E, Kloezen W, et al. (2010). Key process conditions for production of C4 dicarboxylic acids in bioreactor batch cultures of an engineered Saccharomyces cerevisiae strain. Appl Environ Microbiol, 76, 744–50
  • Zhang H, Cai H, Dong J, et al. (2011). High-level production of poly (β-L-malic acid) with a new isolated Aureobasidium pullulans strain. Appl Microbiol Biotechnol, 92, 295–303
  • Zhang X, Wang X, Shanmugam KT, Ingram LO. (2011). L-Malate production by metabolically engineered Escherichia coli. Appl Environ Microbiol, 77, 427–34
  • Zheng H, Ohno Y, Nakamori T, Suy S. (2009). Production of l-malic acid with fixation of by malic enzyme-catalyzed reaction based on regeneration of coenzyme on electrode modified by layer-by-layer self-assembly method. J Biosci Bioeng, 107, 16–20
  • Zou X, Zhou Y, Yang ST. (2013). Production of polymalic acid and malic acid by Aureobasidium pullulans fermentation and acid hydrolysis. Biotechnol Bioeng, 11, 2105–13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.