1,603
Views
153
CrossRef citations to date
0
Altmetric
Review Article

Recent trends in nanomaterials immobilised enzymes for biofuel production

, &
Pages 108-119 | Received 07 Oct 2013, Accepted 27 Feb 2014, Published online: 14 Jul 2014

References

  • Abraham RE, Verma ML, Barrow CJ, Puri M. (2014). Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnol Biofuels, 7, 90
  • Adlercreutz P. (2013). Immobilisation and applications of lipases in organic media. Chem Soc Rev, 42, 6406–36
  • Alftren J, Hobley TJ. (2013). Covalent immobilization of β-glucosidase on magnetic particles for lignocellulose hydrolysis. Appl Biochem Biotechnol, 169, 2076–87
  • Alper H, Stephanopoulous G. (2009). Engineering for biofuels: exploiting innate microbial capacity or importing biosynthetic potential? Nature Rev Microbiol, 7, 715–23
  • Al-Zuhair S. (2007). Production of biodiesel: possibilities and challenges. Biofuel Bioprod Bioref, 1, 57–66
  • Andrade LH, Rebelo LP, Netto CGCM, Toma HE. (2010). Kinetic resolution of a drug precursor by Burkholderia cepacia lipase immobilized methodologies on superparamagnetic nanoparticles. J Mol Catal B Enzym, 66, 55–62
  • Ansari SA, Husain Q. (2012). Potential applications of enzymes immobilized on/in nanomaterials: a review. Biotechnol Adv, 30, 512–23
  • Arico AS, Bruce P, Scrosati B, et al. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Mater, 4, 366–77
  • Becker S. (2013). Nanotechnology in the marketplace: how the nanotechnology industry views risk. J Nanopart Res, 15, 1426
  • Bhardwaj N, Kundu SC. (2010). Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 28, 325–47
  • Biswas A, Bayer IS, Biris AS, et al. (2012). Advances in top-down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv Colloid Interface Sci, 170, 2–27
  • Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR. (2013). Magnetic separations in Biotechnology. Biotechnol Adv, 31, 1374–85
  • Buzea C, Blandino IIP, Robbie K. (2007). Nanomaterials and nanoparticles: sources and toxicity. Biointerphases, 2, 17–71
  • Chan VSW. (2006). Nanomedicine: an unresolved regulatory issue. Regulatory Tox Pharmacol, 46, 218–24
  • Chandel AK, Chandrasekhar G, Silva MB, Silva SSD. (2012). The realm of cellulases in biorefinery development. Crit Rev Biotechnol, 32, 187–202
  • Chang RHY, Jang J, Wu KCW. (2011). Cellulase immobilized mesoporous silica nanocatalysts for efficient cellulose-to-glucose conversion. Green Chem, 13, 2844–50
  • Cho EJ, Jung S, Kim HJ, et al. (2012). Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem Commun, 48, 886–88
  • Chronopoulou L, Kamel G, Sparago C, et al. (2011). Structure-activity relationships of Candida rugosa lipase immobilized on polylactic acid nanoparticles. Soft Matter, 7, 2653–62
  • Cruz JC, Pfromm PH, Tomich JM, Rezac ME. (2010). Conformational changes and catalytic competency of hydrolases adsorbing on fumed silica nanoparticles: i. tertiary structure. Colloid Surf B, 79, 97–104
  • Cui T, Zhang J, Wang J, et al. (2005). CdS nanoparticles/polymer composite shells on silica nanospheres grown by atom transfer radical polymerization. Adv Funct Mat, 15, 481–6
  • Deng Y, Qi D, Deng C, et al. (2008). Superparamagnetic high-magnetization microspheres with an Fe3O4-SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins. J Am Chem Soc, 130, 28–9
  • Derewenda ZS, Sharp AM. (1993). News from the interface: the molecular structure of triacylglyceride lipases. Trends Biochem Sci, 18, 20–5
  • Dhiman SS, Jagtap SS, Jeya M, et al. (2012). Immobilization of Pholiota adiposa xylanase onto SiO2 nanoparticles and its application for production of xylooligosaccharides. Biotech Lett, 34, 1307–13
  • Dordick JS, Kane RS, Asuri P, et al. (2012). Enhanced stability of proteins immobilized on nanoparticles. US Patent, 302870
  • Du W, Xu YY, Liu DH, Li ZB. (2005). Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J Mol Catal B Enzym, 37, 68–71
  • El-Zahab B, Jia H, Wang P. (2004). Enabling multienzyme biocatalysis using nanoporous materials. Biotechnol Bioeng, 87, 178–83
  • Ganesan A, Moore BD, Kelly SM, et al. (2009). Optical spectroscopic methods for probing the conformational stability of immobilised enzymes. ChemPhysChem, 10, 1492–9
  • Gao SL, Wang YJ, Diao X, et al. (2010). Effect of pore diameter and cross-linking method on the immobilization efficiency of Candida rugosa lipase in SBA-15. Bioresour Technol, 101, 3830–7
  • Garvey M, Klose H, Fischer R, et al. (2013). Cellulases for biomass degradation: comparing recombinant cellulose expression platforms. Trends Biotechnol, 31, 581–9
  • Georgelin T, Maurice V, Malezieux B, et al. (2010). Design of multifunctionalized γ-Fe2O3@SiO2 core-shell nanoparticles for enzymes immobilization. J Nanopart Res, 12, 675–80
  • Goswami D, Basu JK, De S. (2013). Lipase applications in oil hydrolysis with a case study on castor oil: a review. Crit Rev Biotechnol, 33, 81–96
  • Gupta MN, Kaloti M, Kapoor M, Solanki K. (2011). Nanomaterials as matrices for enzyme immobilisation. Artif Cell Blood Substit Biotechnol, 39, 98–109
  • Hama S, Yamaji H, Fukumizu T, et al. (2007). Biodiesel-fuel production in a packed-bed reactor using lipase-producing Rhizopus oryzae cells immobilized within biomass support particles. Biochem Eng J, 34, 273–8
  • Huang XJ, Chen PC, Huang F, et al. (2011). Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. J Mol Catal B Enzym, 70, 95–100
  • Huang XJ, Yu AG, Xu ZK. (2008). Covalent immobilisation of lipase from Candida rugosa onto poly(acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrous membranes for potential bioreactor application. Bioresour Technol, 99, 5459–65
  • Hwang ET, Gu MB. (2013). Enzyme stabilization by nano/microsized hybrid materials. Eng Life Sci, 13, 49–61
  • Ivanova V, Petrova P, Hristov J. (2011). Application in the ethanol fermentation of immobilized yeast cells in matrix of alginate/magnetic nanoparticles on chitosan-magnetic microparticles and cellulose-coated magnetic nanoparticles. Int Rev Chem Eng, 3, 89–299
  • Jacoby M. (2013). The mystery of hot gold nanoparticles. Chem Eng News, 91, 44–6
  • Jegannathan KR, Abang S, Poncelet D, Chan ES, Ravindra P. (2008). Production of biodiesel using immobilized lipase – a critical review. Crit Rev Biotechnol, 28, 253–64
  • Ji PJ, Tan HS, Xu X, Feng W. (2010). Lipase covalently attached to multiwalled carbon nanotubes as an efficient catalyst in organic solvent. Aiche J, 56, 3005–11
  • Jia H, Zhu G, Vugrinovich B, et al. (2002). Enzyme-carrying polymeric nanofibers prepared via electrospinning for use as unique biocatalysts. Biotechnol Prog, 18, 1027–32
  • Jiang S, Win KY, Liu S, et al. (2013). Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale, 5, 3127–48
  • Jin Q, Jia G, Zhang Y, et al. (2011). Hydrophobic surface induced activation of Pseudomonas cepacia lipase immobilised into mesoporous silica. Langmuir, 27, 12016–24
  • Johnson PA, Park HJ, Driscoll AJ. (2011). Enzyme nanoparticle fabrication: magnetic nanoparticle synthesis and enzyme immobilization. Methods Mol Biol, 679, 183–91
  • Kaieda M, Samukawa T, Kondo A, Fukuda H. (2001). Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. J Biosci Bioeng, 91, 12–15
  • Kalantari M, Kazemeini M, Tabandeh F, Arpanaei A. (2012). Lipase immobilisation on magnetic silica nanocomposite particles: effects of the silica structure on properties of the immobilised enzyme. J Mater Chem, 22, 8385–93
  • Kanwar SS, Gehlot S, Verma ML, et al. (2009). Synthesis of geranyl butyrate with the poly (acrylic acid-co-hydroxy propyl methacrylate-cl-ethylene glycol dimethacrylate) hydrogel immobilized lipase of Pseudomonas aeruginosa MTCC-4713. J Appl Polym Sci, 110, 2681–92
  • Kanwar SS, Verma ML. (2010). Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. In: Michael CF, ed. Lipase. Canada: John Wiley and Sons
  • Kim BC, Nair S, Kim J, et al. (2005). Preparation of biocatalytic nanofibers with high activity and stability via enzyme aggregate coating on polymer nanofibers. Nanotechnol, 16, S382–8
  • Kim J, Grate JW, Wang P. (2008). Nanobiocatalysis and its potential applications. Trends Biotechnol, 26, 639–46
  • Kim J, Jia H, Wang P. (2006). Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol Adv, 24, 296–308
  • Kim MI, Kim J, Lee J, et al. (2007). Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol Bioeng, 96, 210–18
  • Kishore D, Talat M, Srivastava ON, Kayastha AM. (2012). Immobilization of β-galactosidase onto functionalized graphene nanosheets using response surface methodology and its analytical applicatiuons. PLoS One, 7, e40708
  • Klein MP, Nunes MR, Rodrigues RC, et al. (2012). Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomacromolecules, 13, 2456–64
  • Kralova I, Sjooblom J. (2010). Biofuels-renewable energy sources: a review. J Disper Sci Technol, 31, 409–25
  • Kralovec JA, Wang W, Barrow CJ. (2010). Production of omega-3 triacylglycerol concentrates using a new food grade immobilized Candida antarctica lipase B. Aus J Chem, 63, 922–8
  • Kralovec JA, Zhang S, Barrow CJ. (2012). A review of the progress in enzymatic concentration and microencapsulation of omega-3 rich oil from fish and microbial sources. Food Chem, 131, 639–44
  • Krumov N, Perner-Nochta I, Oder S, et al. (2009). Production of inorganic nanoparticles by microorganisms. Chem Eng Technol, 32, 1026–35
  • Kumari A, Mahapatra P, Garlapati VK, Banerjee R. (2009). Enzymatic transesterification of jatropha oils. Biotechnol Biofuels, 2, 1
  • Lee CH, Lin TS, Mou CY. (2009). Mesoporous materials for encapsulating enzymes. Nano Today, 4, 165–79
  • Lee DG, Ponvel KM, Kim M, et al. (2009). Immobilization of lipase on hydrophobic nano-sized magnetite particles. J Mol Catal B Enzym, 57, 62–6
  • Lee HK, Lee JK, Kim MJ, Lee CJ. (2010). Immobilization of lipase on single walled carbon nanotubes in ionic liquid. B Korean Chem Soc, 31, 650–2
  • Lee SM, Jin LH, Kim JH, et al. (2010). Beta-glucosidase coating on polymer nanofibers for improved cellulosic ethanol production. Bioproc Biosyst Eng, 33, 141–7
  • Li SF, Fan YH, Hu RF, Wu WT. (2011). Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. J Mol Catal B Enzym, 72, 40–5
  • Liu CH, Huang CC, Wang YW, et al. (2012). Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Appl Energy, 100, 41–6
  • Lu AH, Salabas EL, Schuth F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl, 46, 1222–44
  • Lupoi JS, Smith EA. (2011). Evaluation of nanoparticle-immobilized cellulase for improved yield in simultaneous saccharification and fermetation reactions. Biotechnol Bioeng, 108, 2835–43
  • Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev, 66, 506–77
  • Macario A, Verri F, Diaz U, et al. (2013). Pure silica nanoparticles for liposome/lipase system encapsulation: application in biodiesel production. Catal Today, 204, 148–55
  • Margeot A, Hahn-Hagerdal B, Edlund M, et al. (2009). New improvements for lignocellulose ethanol. Curr Opin Biotechnol, 20, 372–80
  • Matano Y, Hasunuma T, Kondo A. (2013). Cell recycle batch fermentation of high-solid lignocellulose using a recombinant cellulose-displaying yeast strain for high yield ethanol production in consolidated bioprocessing. Bioresour Technol, 135, 403–9
  • Mateo C, Palomo JM, Fernandez-Lorente G, et al. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Tech, 40, 1451–63
  • Nair S, Kim J, Crawford B, Kim SH. (2007). Improving biocatalytic activity of enzyme-loaded nanofibers by dispersing entangled nanofiber structure. Biomacromolecules, 8, 1266–70
  • Ngo TPN, Li A, Tiew KW, Li Z. (2013). Efficient transformation of grease to biodiesel using highly active and easily recyclable magnetic nanobiocatalyst aggregates. Bioresour Technol, 145, 233–9
  • Oberdorster G, Maynard A, Donaldson K, et al.; ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group. (2005). Principles for characterizing the potential human health effects from exposure to nanomaterial: elements of a screening strategy. Part Fibre Toxicol, 2, 1–35
  • Pavlidis IV, Tsoufis T, Enotiadis A, et al. (2010). Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv Eng Mater, 12, B179–83
  • Pavlidis IV, Vorhaben T, Gournis D, et al. (2012a). Regulation of catalytic behaviour of hydrolases through interactions with functionalised carbon-based nanomaterials. J Nanopart Res, 14, 842
  • Pavlidis IV, Vorhaben T, Tsoufis T, et al. (2012b). Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour Technol, 115, 164–71
  • Pugh S, McKenna R, Moolick R, Nielsen DR. (2011). Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Can J Chem Eng, 89, 2–12
  • Puri M, Abraham RE, Barrow CJ. (2012). Biofuel production: prospects, challenges and feedstock in Australia. Renew Sust Energ Rev, 16, 6022–31
  • Puri M, Barrow CJ, Verma ML. (2013). Enzyme immobilization on nanomaterials for biofuel production. Trends Biotechnol, 31, 215–16
  • Qiu H, Xu C, Huang X, et al. (2008). Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. J Phys Chem C, 112, 14781–5
  • Ren Y, Rivera JG, He L, et al. (2011). Facile, high efficiency immobilisation of lipase enzyme on magnetic iron oxide nanoparticle via a biomimetic coating. BMC Biotechnol, 11, 63
  • Rozenberga BA, Tenne R. (2008). Polymer-assisted fabrication of nanoparticles and nanocomposites. Prog Polym Sci, 33, 40–112
  • Safarik I, Safarikova M. (2009). Magnetic nano and microparticles in biotechnology. Chem Pap, 63, 497–505
  • Saifuddin N, Raziah AZ, Junizah AR. (2013). Carbon nanotubes: a review on structure and their interaction with proteins. J Chem, 2013, 18
  • Sakai S, Antoku K, Yamaguchi T, Kawakami K. (2008). Transesterification by lipase entrapped in electrospun poly(vinyl alcohol) fibers and its application to a flow-through reactor. J Biosci Bioeng, 105, 687–9
  • Sakai S, Liu YP, Yamaguchi T, et al. (2010). Production of butyl-biodiesel using lipase physically-adsorbed onto electrospun polyacrylonitrile fibers. Bioresour Technol, 101, 7344–9
  • Sen T, Bruce IJ, Mercer T. (2010). Fabrication of novel hierarchically ordered porous magnetic nanocomposites for biocatalysis. Chem Commun, 46, 6807–9
  • Shang W, Nuffer JH, Dordick JS, Siegel RW. (2007). Unfolding of ribonuclease A on silica nanoparticle surfaces. Nano Lett, 7, 1991–95
  • Sharifi S, Behzadi S, Laurent S, et al. (2012). Toxicity of nanomaterials. Chem Soc Rev, 41, 2323–43
  • Shaw SY, Chen YJ, Ou JJ, Ho L. (2006). Preparation and characterization of Pseudomonas putida esterase immobilized on magnetic nanoparticles. Enzyme Microb Technol, 39, 1089–95
  • Shi Q, Yang D, Su Y, et al. (2007). Covalent functionalization of multi-walled carbon nanotubes by lipase. J Nanopart Res, 9, 1205–10
  • Shim M, Kam NWS, Chen RJ, et al. (2002). Functionalisation of carbon nanotubes for biocompatibility and biomolecular recognition. Nano Lett, 2, 285–8
  • Sill TJ, Recum HAV. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29, 1989–2006
  • Singh RK, Zhang YW, Nguyen NPT, et al. (2011). Covalent immobilization of β-1,4-glucosidase from Agaricus arvensis onto functionalized silicon oxide nanoparticles. Appl Microbiol Biotechnol, 89, 337–44
  • Song YS, Shin HY, Lee JY, et al. (2012). β-galactosidase-immobilised microreactor fabricated using a novel technique for enzyme immobilisation and its application for continuous synthesis of lactulose. Food Chem, 133, 611–17
  • Stark WJ. (2011). Nanoparticles in biological systems. Angew Chem Int Ed, 50, 1242–58
  • Stergiou PY, Foukis A, Filippou M, et al. (2013). Advances in lipase-catalyzed esterification reactions. Biotechnol Adv, 31, 1846–59
  • Thanh LT, Oitsu K, Sadanaga Y, et al. (2011). A two-step continuous ultrasound assisted production of biodiesel fuel from waste cooking oils: a practical and economical approach to produce high quality biodiesel fuel. Bioresour Technol, 101, 639–45
  • Tran DT, Chen CL, Chang JS. (2012). Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. J Biotechnol, 158, 112–9
  • Valenzuela R, Castro JF, Parra C, et al. (2014). β-Glucosidase immobilisation on synthetic superparamagnetic magnetite nanoparticles and their application in saccharification of wheat straw and Eucalyptus globulus pulps. J Exp Nanosci, 9, 177–85
  • Verma ML, Azmi W, Kanwar SS. (2008a). Microbial lipases: at the interface of aqueous and non-aqueous media. Acta Microbiol Immunol Hung, 55, 265–93
  • Verma ML, Azmi W, Kanwar SS. (2009). Synthesis of ethyl acetate employing celite-immobilized lipase of Bacillus cereus MTCC 8372. Acta Microbiol Immunol Hung, 56, 229–42
  • Verma ML, Azmi W, Kanwar SS. (2011). Enzymatic synthesis of isopropyl acetate by immobilized Bacillus cereus lipase in organic medium. Enzyme Res, 2011, 37
  • Verma ML, Barrow CJ, Kennedy JF, Puri M. (2012). Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis. Int J Biol Macromol, 50, 432–7
  • Verma ML, Barrow CJ, Puri M. (2013a). Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol, 97, 23–39
  • Verma ML, Chaudhary R, Tsuzuki T, et al. (2013b). Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis. Bioresour Technol, 135, 2–6
  • Verma ML, Chauhan GS, Kanwar SS. (2008b). Enzymatic synthesis of isopropyl myristate using immobilized lipase from Bacillus cereus MTCC 8372. ActaMicrobiolImmunol Hung, 55, 327--42
  • Verma ML, Kanwar SS. (2008). Properties and application of Poly (MAc-co-DMA-cl-MBAm) hydrogel immobilized Bacillus cereus MTCC 8372 lipase for synthesis of geranyl acetate. J Appl Polym Sci, 110, 837–46
  • Verma ML, Naebe M, Barrow CJ, Puri M. (2013c). Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PLoS One, 8, e73642
  • Verma ML, Rajkhowa R, Wang X, et al. (2013d). Exploring novel ultrafine Eri silk bioscaffold for enzyme stabilisation in cellobiose hydrolysis. Bioresour Technol, 145, 302–6
  • Verma S, Domb AJ, Kumar N. (2011). Nanomaterials for regenerative medicine. Nanomedicine, 6, 157–81
  • Volder MFLD, Tawfick SH, Baughman RH, Hart AJ. (2013). Carbon nanotubes: present and future commercial applications. Science, 339, 535–9
  • Wang J, Meng G, Tao K, et al. (2012). Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity. PLoS One 7(8), e43478
  • Wang L, Jiang R. (2011). Reversible His-tagged enzyme immobilization on functionalized carbon nanotubes as nanoscale biocatalyst. Methods Mol Biol, 743, 95–106
  • Wang P. (2006). Nanoscale biocatalyst systems. Curr Opin Biotechnol, 17, 574–9
  • Wang X, Dou P, Zhao P, et al. (2009). Immobilization of lipases onto magnetic Fe3O4 nanoparticles for application in biodiesel production. ChemSusChem, 2, 947–50
  • Wang X, Liu X, Yan X, et al. (2011b). Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS One, 6, e24207
  • Wang X, Liu X, Zhao C, et al. (2011a). Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresor Technol, 102, 6352–5
  • Watanabe Y, Shimmada Y, Sugihara A, et al. (2000). Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. J Am Oil Chem Soc, 77, 355–60
  • Wolf LK. (2011). Personalizing nanomedicine. Chem Eng News, 89, 29–32
  • Wu W, He Q, Jiang C. (2008). Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett, 3, 397–15
  • Xie W, Ma N. (2009). Immobilised lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energ Fuel, 23, 1347–53
  • Xie W, Ma N. (2010). Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass Bioenerg, 34, 890–6
  • Yiu HHP, Keane MA. (2012). Enzyme-magnetic nanoparticle hybrids: new effective catalysts for the production of high value chemicals. J Chem Technol Biotechnol, 87, 583–94
  • Yu LT, Banerjee IA, Gao XY, et al. (2005). Fabrication and application of enzyme-incorporated peptide nanotubes. Bioconjug Chem, 16, 1484–7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.