1,097
Views
49
CrossRef citations to date
0
Altmetric
Review Article

Nitrile-converting enzymes as a tool to improve biocatalysis in organic synthesis: recent insights and promises

, , , , &
Pages 69-81 | Received 17 Sep 2014, Accepted 27 Sep 2015, Published online: 23 Dec 2015

References

  • Agerbirk N, Warwick SI, Hansen PR, Olsen CE. (2008). Sinapis phylogeny and evolution of glucosinolates and specific nitrile degrading enzymes. Phytochemistry, 69, 2937–49
  • Asano Y, Tani Y, Yamada H. (1980). A new enzyme ‘nitrile hydratase’ which degrades acetonitrile in combination with amidase. Agric Biol Chem, 44, 2251–52
  • Banerjee A, Sharma R, Banerjee UC. (2002). The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol, 60, 33–44
  • Bayer S, Birkemeyer C, Ballschmiter M. (2011). A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. Appl Microbiol Biotechnol, 89, 91–8
  • Bhatia SK, Mehta PK, Bhatia RK, Bhalla TC. (2014). Optimization of arylacetonitrilase production from Alcaligenes sp. MTCC 10675 and its application in mandelic acid synthesis. Appl Microbiol Biotechnol, 98, 83–94
  • Bornscheuer UT, Huisman GW, Kazlauskas RJ, et al. (2012). Engineering the third wave of biocatalysis. Nature, 485, 185–94
  • Cantarella L, Gallifuoco A, Malandra A, et al. (2011). High-yield continuous production of nicotinic acid via nitrile hydratase-amidase cascade reactions using cascade CSMRs. Enzyme Microb Technol, 48, 345–50
  • Cantone S, Ferrario V, Corici L, et al. (2013). Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem Soc Rev, 42, 6262–76
  • Chen J, Huang Y-T, Deng S-G, Li J-R. (2013). Biotransformation of adiponitrile to 5-cyanovaleramide by Pseudomonas sp. SY031 resting cells. Adv Mater Res, 791–793, 204–7
  • Chen J, Yu H, Liu C, et al. (2012). Improving stability of nitrile hydratase by bridging the salt-bridges in specific thermal-sensitive regions. J Biotechnol, 164, 354–62
  • Chen J, Zheng R-C, Zheng Y-G, Shen Y-C. (2009). Microbial transformation of nitriles to high-value acids or amides. Adv Biochem Eng Biotechnol, 113, 33–77
  • Cui Y, Cui W, Liu Z, et al. (2014). Improvement of stability of nitrile hydratase via protein fragment swapping. Biochem Biophys Res Commun, 450, 401–8
  • Davids T, Schmidt M, Böttcher D, Bornscheuer UT. (2013). Strategies for the discovery and engineering of enzymes for biocatalysis. Curr Opin Chem Biol, 17, 215–20
  • Denard CA, Ren H, Zhao H. (2015). Improving and repurposing biocatalysts via directed evolution. Curr Opin Chem Biol, 25, 55–64
  • Effenberger F, Oβwald S. (2001). Enantioselective hydrolysis of (RS)-2-fluoroarylacetonitriles using nitrilase from Arabidopsis thaliana. Tetrahedron - Asymmetr, 12, 279–85
  • Fang S, An X, Liu H, et al. (2015). Enzymatic degradation of aliphatic nitriles by Rhodococcus rhodochrous BX2, a versatile nitrile-degrading bacterium. Bioresource Technol, 185, 28–34
  • Fernandes BCM, Mateo C, Kiziak C, et al. (2006). Nitrile hydratase activity of a recombinant nitrilase. Adv Synth Catal, 348, 2597–603
  • Gohain MB, Talukdar S, Talukdar M, et al. (2015). Effect of physico-chemical parameters on nitrile hydrolyzing potentials of newly isolated nitrilase of Fusarium oxysporum f. sp. lycopercisi ED-3. Biotechnol Appl Biochem, 62, 226–36
  • Gong J-S, Li H, Zhu X-Y, et al. (2012a). Fungal His-tagged nitrilase from Gibberella intermedia: gene cloning, heterologous expression and biochemical properties. PLoS One, 7, e50622
  • Gong J-S, Lu Z-M, Li H, et al. (2012b). Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact, 11, 142
  • Gong J-S, Lu Z-M, Li H, et al. (2013). Metagenomic technology and genome mining: emerging areas for exploring novel nitrilases. Appl Microbiol Biotechnol, 97, 6603–11
  • Gong J-S, Lu Z-M, Shi J-S, et al. (2011). Isolation, identification, and culture optimization of a novel glycinonitrile – hydrolyzing fungus—Fusarium oxysporum H3. Appl Biochem Biotechnol, 165, 963–77
  • Gumataotao N, Kuhn ML, Hajnas N, Holz RC. (2013). Identification of an active site-bound nitrile hydratase intermediate through single turnover stopped-flow spectroscopy. J Biol Chem, 288, 15532–36
  • He Y-C, Xu J-H, Su J-H, Zhou L. (2010). Bioproduction of glycolic acid from glycolonitrile with a new bacterial isolate of Alcaligenes sp. ECU0401. Appl Biochem Biotechnol, 160, 1428–40
  • Hopmann KH. (2014). Full reaction mechanism of nitrile hydratase: a cyclic intermediate and an unexpected disulfide switch. Inorg Chem, 53, 2760–62
  • Huisman GW, Collier SJ. (2013). On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr Opin Chem Biol, 17, 284–92
  • Ishikawa T, Okazaki K, Kuroda H, et al. (2007). Molecular cloning of Brassica rapa nitrilases and their expression during clubroot development. Mol Plant Pathol, 8, 623–37
  • Jin L-Q, Liu Z-Q, Zheng Y-G, Shen Y-C. (2010). Identification and characterization of Serratia marcescens ZJB-09104, a nitrile-converting bacterium. World J Microbiol Biotechnol, 26, 817–23
  • Kang M-S, Han S-S, Kim M-Y, et al. (2014). High-level expression in Corynebacterium glutamicum of nitrile hydratase from Rhodococcus rhodochrous for acrylamide production. Appl Microbiol Biotechnol, 98, 4379–87
  • Kaplan O, Bezouška K, Malandra A, et al. (2011). Genome mining for the discovery of new nitrilases in filamentous fungi. Biotechnol Lett, 33, 309–12
  • Kaur G, Soni P, Tewari R, Sharma R. (2014). Isolation and characterization of a nitrile-hydrolysing bacterium Isoptericola variabilis RGT01. Indian J Microbiol, 54, 232–38
  • Kaushik S, Mohan U, Banerjee U. (2012). Exploring residues crucial for nitrilase function by site directed mutagenesis to gain better insight into sequence-function relationships. Int J Biochem Mol Biol, 3, 384–91
  • Kim J-S, Tiwari M, Moon H-J, et al. (2009). Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5. Appl Microbiol Biotechnol, 83, 273–83
  • Kiziak C, Stolz A. (2009). Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Appl Environ Microbiol, 75(17), 5592–99
  • Kobayashi M, Shimizu S. (1998). Metalloenzyme nitrile hydratase: structure, regulation, and application to biotechnology. Nat Biotechnol, 16, 733–36
  • Kuhn ML, Martinez S, Gumataotao N, et al. (2012). The Fe-type nitrile hydratase from Comamonas testosteroni Ni1 does not require an activator accessory protein for expression in Escherichia coli. Biochem Biophys Res Commun, 424, 365–70
  • Kumar V, Bhalla TC. (2013). Transformation of p-hydroxybenzonitrile to p-hydroxybenzoic acid using nitrilase activity of Gordonia terrae. Biocatal Biotransfor, 31, 42–8
  • Li B, Su J, Tao J. (2011). Enzyme and process development for production of nicotinamide. Org Process Res Dev, 15, 291–3
  • Lin Z-J, Zheng R-C, Zheng Y-G, Shen Y-C. (2011). Biosynthesis of 2-amino-2,3-dimethylbutyramide by nitrile hydratase from a newly isolated cyanide-resistant strain of Rhodococcus qingshengii. Biotechnol Lett, 33, 1809–13
  • Liu J, Yu H, Shen Z. (2008). Insights into thermal stability of thermophilic nitrile hydratases by molecular dynamics simulation. J Mol Graph Model, 27, 529–35
  • Liu Y, Cui W, Fang Y, et al. (2013a). Strategy for successful expression of the Pseudomonas putida nitrile hydratase activator P14K in Escherichia coli. BMC Biotechnol, 13, 48
  • Liu Y, Cui W, Liu Z, et al. (2014). Enhancement of thermo-stability and product tolerance of Pseudomonas putida nitrile hydratase by fusing with self-assembling peptide. J Biosci Bioeng, 118, 249–52
  • Liu Y, Cui W, Xia Y, et al. (2012a). Self-subunit swapping occurs in another gene type of cobalt nitrile hydratase. PLoS One, 7, e50829
  • Liu Z-Q, Baker PJ, Cheng F, et al. (2013b). Screening and improving the recombinant nitrilases and application in biotransformation of iminodiacetonitrile to iminodiacetic acid. PLoS One, 8, e67197
  • Liu Z-Q, Dong L-Z, Cheng F, et al. (2011). Gene cloning, expression and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. J Agric Food Chem, 59, 11560–70
  • Liu ZQ, Zhou M, Zhang XH, et al. (2012b). Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. J Mol Microbiol Biotechnol, 22, 35–47
  • Lutz S. (2010). Reengineering enzymes. Science, 329, 285–87
  • Ma Y, Yu H, Pan W, et al. (2010). Identification of nitrile hydratase-producing Rhodococcus ruber TH and characterization of an amiE-negative mutant. Bioresource Technol, 101, 285–91
  • Martínková L, Vejvoda V, Kaplan O, et al. (2009). Fungal nitrilases as biocatalysts: recent developments. Biotechnol Adv, 27, 661–70
  • Martínková L, Vejvoda V, Kren V. (2008). Selection and screening for enzymes of nitrile metabolism. J Biotechnol, 133, 318–26
  • Martinez S, Kuhn ML, Russell JT, et al. (2014). Acrylamide production using encapsulated nitrile hydratase from Pseudonocardia thermophila in a sol–gel matrix. J Mol Catal B Enzym, 100, 19–24
  • Mitra S, Holz RC. (2007). Unraveling the catalytic mechanism of nitrile hydratases. J Biol Chem, 282, 7397–404
  • Molojwane E, Adams N, Sweetlove LJ, Ingle RA. (2015). Heterologous expression of mitochondria-targeted microbial nitrilase enzymes increases cyanide tolerance in Arabidopsis. Plant Biol, 17, 922–26
  • Mylerova V, Martinkova L. (2003). Synthetic applications of nitrile-converting enzymes. Curr Org Chem, 7, 1279–95
  • Nestl BM, Hammer SC, Nebel BA, Hauer B. (2014). New generation of biocatalysts for organic synthesis. Angew Chem Int Edit, 53, 3070–95
  • Oliveira J, Mizuno C, Seleghim M, et al. (2013). Biotransformation of phenylacetonitrile to 2-hydroxyphenylacetic acid by marine fungi. Mar Biotechnol, 15, 97–103
  • Oliveira J, Seleghim M, Porto A. (2014). Biotransformation of methylphenylacetonitriles by Brazilian marine fungal strain Aspergillus sydowii CBMAI 934: eco-friendly reactions. Mar Biotechnol, 16, 156–60
  • Pace HC, Brenner C. (2001). The nitrilase superfamily: classification, structure and function. Genome Biol, 2, 1–9
  • Pai O, Banoth L, Ghosh S, et al. (2014). Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochem, 49, 655–59
  • Pawar SV, Yadav GD. (2014). Enantioselective enzymatic hydrolysis of rac-mandelonitrile to R-mandelamide by nitrile hydratase immobilized on poly(vinyl alcohol)/chitosan–glutaraldehyde support. Ind Eng Chem Res, 53(19), 7986–91
  • Pei X, Yang L, Xu G, et al. (2014). Discovery of a new Fe-type nitrile hydratase efficiently hydrating aliphatic and aromatic nitriles by genome mining. J Mol Catal B Enzym, 99, 26–33
  • Pei X, Zhang H, Meng L, et al. (2013). Efficient cloning and expression of a thermostable nitrile hydratase in Escherichia coli using an auto-induction fed-batch strategy. Process Biochem, 48, 1921–7
  • Petříčková A, Sosedov O, Baum S, et al. (2012a). Influence of point mutations near the active site on the catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa. J Mol Catal B Enzym, 77, 74–80
  • Petříčková A, Veselá A, Kaplan O, et al. (2012b). Purification and characterization of heterologously expressed nitrilases from filamentous fungi. Appl Microbiol Biotechnol, 93, 1553–61
  • Pollard DJ, Woodley JM. (2007). Biocatalysis for pharmaceutical intermediates: the future is now. Trends Biotechnol, 25, 66–73
  • Prasad S, Bhalla TC. (2010). Nitrile hydratases (NHases): at the interface of academia and industry. Biotechnol Adv, 28(6), 725–41
  • Pratush A, Seth A, Bhalla TC. (2011). Optimization of process parameters for conversion of 3-cyanpyridine to nicotinamide using resting cells of mutant 4D strain of Rhodococcus rhodochrous PA-34. Int J Bioautom, 15, 151–8
  • Pratush A, Seth A, Bhalla TC. (2012). Cloning, sequencing, and expression of nitrile hydratase gene of mutant 4D strain of Rhodococcus rhodochrous PA 34 in E. coli. Appl Biochem Biotechnol, 168, 465–86
  • Qiu J, Su E-Z, Wang H-L, et al. (2014). Cloning, overexpression, and characterization of a high enantioselective nitrilase from Sphingomonas wittichii RW1 for asymmetric synthesis of (R)-phenylglycine. Appl Biochem Biotechnol, 173, 365–77
  • Raczynska JE, Vorgias CE, Antranikian G, Rypniewski W. (2011). Crystallographic analysis of a thermoactive nitrilase. J Struct Biol, 173, 294–302
  • Raj J, Prasad S, Sharma NN, Bhalla TC. (2010). Bioconversion of acrylonitrile to acrylamide using polyacrylamide entrapped cells of Rhodococcus rhodochrous PA-34. Folia Microbiol, 55, 442–46
  • Rocha-Martin J, Harrington C, Dobson ADW, Gara FO. (2014). Emerging strategies and integrated systems microbiology technologies for biodiscovery of marine bioactive compounds. Mar Drugs, 12, 3516–59
  • Rzeznicka K, Schätzle S, Böttcher D, et al. (2010). Cloning and functional expression of a nitrile hydratase (NHase) from Rhodococcus equi TG328-2 in Escherichia coli, its purification and biochemical characterisation. Appl Microbiol Biotechnol, 85, 1417–25
  • Schmid A, Dordick JS, Hauer B, et al. (2001). Industrial biocatalysis today and tomorrow. Nature, 409, 258–66
  • Sharma N, Sharma M, Bhalla T. (2012). Nocardia globerula NHB-2 nitrilase catalysed biotransformation of 4-cyanopyridine to isonicotinic acid. AMB Express, 2, 25
  • Shaw NM, Robins KT, Kiener A. (2003). Lonza: 20 years of biotransformations. Adv Synth Catal, 345, 425–35
  • Shen Y, Wang M, Li X, et al. (2012). Highly efficient synthesis of 5-cyanovaleramide by Rhodococcus ruber CGMCC3090 resting cells. J Chem Technol Biotechnol, 87, 1396–400
  • Sipos S, Jablonkai I, Egyed O, Czugler M. (2011). Preparation of 2-amino-2-C-glycosyl-acetonitriles from C-glycosyl aldehydes by Strecker reaction. Carbohyd Res, 346, 2862–71
  • Sosedov O, Baum S, Burger S, et al. (2010). Construction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides. Appl Environ Microbiol, 76, 3668–74
  • Sosedov O, Stolz A. (2014). Random mutagenesis of the arylacetonitrilase from Pseudomonas fluorescens EBC191 and identification of variants, which form increased amounts of mandeloamide from mandelonitrile. Appl Microbiol Biotechnol, 98, 1595–607
  • Sosedov O, Stolz A. (2015). Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Appl Microbiol Biotechnol, 99, 2623–35
  • Vejvoda V, Kubác D, Davidová A, et al. (2010). Purification and characterization of nitrilase from Fusarium solani IMI196840. Process Biochem, 45, 1115–20
  • Velankar H, Clarke KG, Preez Rd, et al. (2010). Developments in nitrile and amide biotransformation processes. Trends Biotechnol, 28, 561–9
  • Veselá AB, Petříčková A, Weyrauch P, Martínková L. (2013). Heterologous expression, purification and characterization of arylacetonitrilases from Nectria haematococca and Arthroderma benhamiae. Biocatal Biotransfor, 31, 49–56
  • Wang H, Li G, Li M, et al. (2014). A novel nitrilase from Rhodobacter sphaeroides LHS-305: cloning, heterologous expression and biochemical characterization. World J Microbiol Biotechnol, 30, 245–52
  • Wang MX. (2005). Enantioselective biotransformations of nitriles in organic synthesis. Top Catal, 35, 117–30
  • Wang Y-J, Liu Z-Q, Zheng R-C, et al. (2012). Screening, cultivation, and biocatalytic performance of Rhodococcus boritolerans FW815 with strong 2,2-dimethylcyclopropanecarbonitrile hydratase activity. J Ind Microbiol Biotechnol, 39, 409–17
  • Wohlgemuth R. (2010). Biocatalysis – key to sustainable industrial chemistry. Curr Opin Biotechnol, 21, 713–24
  • Wu Y, Gong J-S, Lu Z-M, et al. (2013). Isolation and characterization of Gibberella intermedia CA3-1, a novel and versatile nitrilase-producing fungus. J Basic Microbiol, 53, 934–41
  • Xie Z, Feng J, Garcia E, et al. (2006). Cloning and optimization of a nitrilase for the synthesis of (3S)-3-cyano-5-methyl hexanoic acid. J Mol Catal B Enzym, 41, 75–80
  • Yamanaka Y, Hashimoto K, Ohtaki A, et al. (2010). Kinetic and structural studies on roles of the serine ligand and a strictly conserved tyrosine residue in nitrile hydratase. J Biol Inorg Chem, 15, 655–65
  • Yang X, Huang A, Peng J, et al. (2014). Self-assembly amphipathic peptides induce active enzyme aggregation that dramatically increases the operational stability of nitrilase. RSC Adv, 4, 60675–84
  • Yu H, Liu J, Shen Z. (2008). Modeling catalytic mechanism of nitrile hydratase by semi-empirical quantum mechanical calculation. J Mol Graph Model, 27, 522–28
  • Zhang C-S, Zhang Z-J, Li C-X, et al. (2012a). Efficient production of (R)-o-chloromandelic acid by deracemization of (R)-o-chloromandelonitrile with a new nitrilase mined from Labrenzia aggregata. Appl Microbiol Biotechnol, 95, 91–9
  • Zhang J-F, Liu Z-Q, Zheng Y-G, Shen Y-C. (2012b). Screening and characterization of microorganisms capable of converting iminodiacetonitrile to iminodiacetic acid. Eng Life Sci, 12, 69–78
  • Zhang Z-J, Pan J, Li C-X, et al. (2014). Efficient production of (R)-(-)-mandelic acid using glutaraldehyde cross-linked Escherichia coli cells expressing Alcaligenes sp. nitrilase. Bioprocess Biosyst Eng, 37, 1241–48
  • Zhang Z-J, Xu J-H, He Y-C, et al. (2011). Cloning and biochemical properties of a highly thermostable and enantioselective nitrilase from Alcaligenes sp. ECU0401 and its potential for (R)-(-)-mandelic acid production. Bioproc Biosyst Eng, 34, 315–22
  • Zhang Z-J, Xu J-H, He Y-C, et al. (2010). Efficient production of (R)-(-)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochem, 45, 887–91
  • Zheng R-C, Zheng Y-G, Shen Y-C. (2009). Acrylamide, microbial production by nitrile hydratase. In: Flickinger MC, ed. Encyclopedia of industrial biotechnology, 1–12. Weinheim: John Wiley & Sons, Inc
  • Zhou Z-M, Hashimoto Y, Kobayashi M. (2005). Nitrile degradation by Rhodococcus: useful microbial metabolism for industrial productions. Actinomycetologica, 19, 18–26
  • Zhou Z, Hashimoto Y, Cui T, et al. (2010). Unique biogenesis of high-molecular mass multimeric metalloenzyme nitrile hydratase: intermediates and a proposed mechanism for self-subunit swapping maturation. Biochemistry, 49, 9638–48
  • Zhu X-Y, Gong J-S, Li H, et al. (2014). Bench-scale biosynthesis of isonicotinic acid from 4-cyanopyridine by Pseudomonas putida. Chem Pap, 68, 739–44
  • Zhu X-Y, Gong J-S, Li H, et al. (2013). Characterization and functional cloning of an aromatic nitrilase from Pseudomonas putida CGMCC3830 with high conversion efficiency toward cyanopyridine. J Mol Catal B Enzym, 97, 175–83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.