843
Views
39
CrossRef citations to date
0
Altmetric
Review Article

Advances in Candida detection platforms for clinical and point-of-care applications

, , , , , & show all
Pages 441-458 | Received 05 Jun 2015, Accepted 08 Feb 2016, Published online: 19 Apr 2016

References

  • De Hoog G, Guarro J, Gene J, et al. Atlas of clinical fungi Centraalbureau voor Schimmelcultures. Universitat Rovira i Virgili, Amer Society for Microbiology. 2000;164–174.
  • Fridkin SK, Jarvis WR. Epidemiology of nosocomial fungal infections. Clin Microbiol Rev. 1996;9:499–511.
  • Guarro J, Gené J, Stchigel AM. Developments in fungal taxonomy. Clin Microbiol Rev. 1999;12:454–500.
  • Phaff HJ, Yeasts eLS, 2001;1–11.
  • Kulp K. Handbook of Cereal Science and Technology, Revised and Expanded: CRC; 2000.
  • Christian V, Shrivastava R, Shukla D, et al. Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 2005;43:301.
  • Fincham J. Transformation in fungi. Microbiol Rev. 1989;53:148–170.
  • Hawkins KM, Smolke CD. Production of benzylisoquinoline alkaloids in Saccharomyces cerevisiae. Nat Chem Biol. 2008;4:564–573.
  • Huang B, Guo J, Yi B, et al. Heterologous production of secondary metabolites as pharmaceuticals in Saccharomyces cerevisiae. Biotechnol Lett. 2008;30:1121–1137.
  • Joseph B, Ramteke PW, Thomas G. Cold active microbial lipases: some hot issues and recent developments. Biotechnol Adv. 2008;26:457–470.
  • Kendrick B. Fungi: ecological importance and impact on humans. eLS. 2001.
  • Murray PR, Rosenthal KS, Pfaller MA. Opportunistic mycoses/candidiasis. Medical microbiology. 44. 7th ed. Philadelphia, PA: Elsevier Saunders; 2013. p. 6776–6783.
  • Pappas PG. Opportunistic fungi: a view to the future. Am J Med Sci. 2010;340:253–257.
  • Michallet M, Ito JI. Approaches to the management of invasive fungal infections in hematologic malignancy and hematopoietic cell transplantation. J Clin Oncol. 2009;27:3398–3409.
  • Baddley JW, Stroud TP, Salzman D, et al. Invasive mold infections in allogeneic bone marrow transplant recipients. Clin Infect Dis. 2001;32:1319–1324.
  • Person AK, Kontoyiannis DP, Alexander BD. Fungal infections in transplant and oncology patients. Hematol Oncol Clin North Am. 2011;25:193–213.
  • Kaufman D. Fungal infections in neonates: update on prevention and treatment. Minerva Ginecol 2007;59:311–329.
  • Smith JA, Kauffman CA. Recognition and prevention of nosocomial invasive fungal infections in the intensive care unit. Crit Care Med. 2010;38:S380–S387.
  • Lionakis MS, Kontoyiannis DP. Glucocorticoids and invasive fungal infections. The Lancet. 2003;362:1828–1838.
  • Sullivan D, Coleman D. Candida dubliniensis: characteristics and identification. J Clin Microbiol. 1998;36:329–334.
  • Zilberberg MD, Shorr AF, Kollef MH. Secular trends in candidemia-related hospitalization in the United States, 2000-2005. Infect Control Hosp Epidemiol. 2008;29:978–980.
  • Ferwerda G, Meyer‐Wentrup F, Kullberg BJ, et al. Dectin-1 synergizes with TLR2 and TLR4 for cytokine production in human primary monocytes and macrophages. Cell Microbiol. 2008;10:2058–2066.
  • Neely LA, Audeh MJ, Blanco M, et al. Inventors; T2 Biosystems, Inc., assignee. NMR systems and methods for the rapid detection of analytes. United States patent US8409807 B2. 2012.
  • Cheng IF, Chang HC, Hou D, et al. An integrated dielectrophoretic chip for continuous bioparticle filtering, focusing, sorting, trapping, and detecting. Biomicrofluidics. 2007;1:021503.
  • Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–428.
  • Whiteway M, Oberholzer U. Candida morphogenesis and host-pathogen interactions. Curr Opin Microbiol. 2004;7:350–357.
  • Jarvis WR. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis. 1995;20:1526–1530.
  • Jarvis WR, Martone WJ. Predominant pathogens in hospital infections. J Antimicrob Chemother. 1992;29:19.
  • Richards MJ, Edwards JR, Culver DH, et al. Nosocomial infections in medical intensive care units in the United States. Crit Care Med. 1999;27:887.
  • Richards MJ, Edwards JR, Culver DH, et al. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect Control Hosp Epidemiol. 2000;21:510–515.
  • Edmond MB, Wallace SE, McClish DK, et al. Nosocomial bloodstream infections in United States hospitals: a three-year analysis. Clin Infect Dis. 1999;29:239–244.
  • Villamizar RA, Maroto A, Riusa FX, et al. Fast detection of Salmonella Infantis with carbon nanotube field effect transistors. Biosens Bioelectron 2008;24:279–283.
  • Hall KK, Lyman JA. Updated review of blood culture contamination. Clin Microbiol Rev. 2006;19:788–802.
  • Morgan J, Meltzer MI, Plikaytis BD, et al. Excess mortality, hospital stay, and cost due to candidemia: a case-control study using data from population-based candidemia surveillance. Infect Control. 2005;26:540–547.
  • Wey SB, Mori M, Pfaller MA, et al. Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Inter Med. 1988;148:2642
  • Fraser VJ, Jones M, Dunkel J, et al. Candidemia in a tertiary care hospital: epidemiology, risk factors, and predictors of mortality. Clin Infect Dis. 1992;15:414–421.
  • Leleu G, Aegerter P, Guidet B. Systemic candidiasis in intensive care units: a multicenter, matched-cohort study. J Critical Care. 2002;17:168–175.
  • Méan M, Marchetti O, Calandra T. Bench-to-bedside review: Candida infections in the intensive care unit. Crit Care. 2008;12:204.
  • Saghrouni F, Ben Abdeljelil J, Boukadida J, et al. Molecular methods for strain typing of Candida albicans: a review. J Appl Microbiol. 2013;114:1559–1574.
  • Jain N, Mathur P, Misra MC, et al. Rapid identification of yeast isolates from clinical specimens in critically Ill trauma ICU patients. J Lab Physicians. 2012;4:30.
  • Zilberberg MD, Kollef MH, Arnold H, et al. Inappropriate empiric antifungal therapy for candidemia in the ICU and hospital resource utilization: a retrospective cohort study. BMC Infect Dis. 2010;10:150.
  • Rex JH, Pfaller MA, Barry AL, et al. Antifungal susceptibility testing of isolates from a randomized, multicenter trial of fluconazole versus amphotericin B as treatment of nonneutropenic patients with candidemia. NIAID Mycoses study group and the Candidemia study group. Antimicrob Agents Chemother. 1995;39:40–44.
  • Wingard JR, Merz WG, Rinaldi MG, et al. Association of Torulopsis glabrata infections with fluconazole prophylaxis in neutropenic bone marrow transplant patients. Antimicrob Agents Chemother. 1993;37:1847–1849.
  • Canuto MM, Rodero FG. Antifungal drug resistance to azoles and polyenes. Lancet Infect Dis. 2002;2:550–563.
  • Rangel-Frausto MS, Wiblin T, Blumberg HM, et al. National epidemiology of mycoses survey (NEMIS): variations in rates of bloodstream infections due to Candida species in seven surgical intensive care units and six neonatal intensive care units. Clin Infect Dis. 1999;29:253–258.
  • Pfaller MA, Diekema DJ, Jones RN, et al. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol. 2001;39:3254–3259.
  • Agarwal S, Manchanda V, Verma N, et al. Yeast identification in routine clinical microbiology laboratory and its clinical relevance. Indian J Med Microbiol. 2012;29:172.
  • Larone DH. Medically important fungi: a guide to identification. 2nd ed. New York: Elsevier Science Publishing Co; 1987.
  • Koneman EW, Roberts GD. Practical laboratory mycology. Baltimore, MD: Williams & Wilkins; 1985.
  • Adams AEM, Stearns TIM. Fluorescence microscopy methods for yeast. Methods in cell biology, volume 31: Vesicular transport, Part A: Vesicular transport. 1989:357.
  • Hageage GJ, Harrington BJ. Use of calcofluor white in clinical mycology. Lab Med. 1984;15:109–112.
  • Perry JL, Miller GR. Quality control slide for potassium hydroxide and cellufluor fungal preparations. J Clin Microbiol. 1989;27:1411–1412.
  • Ruiz-Herrera J. Fungal cell wall: structure, synthesis, and assembly. Boca Raton, Florida: CRC press; 1991.
  • Harrington BJ, Hageage GJ. Calcofluor white: a review of its uses and applications in clinical mycology and parasitology. Lab Med. 2003;34:361–367.
  • Harrington BJ, Williams DL. Rapid, presumptive identification of Torulopsis (Candida) Glabrata and Candida Krusei using Calcofluor White. Lab Med. 2007;38:227–231.
  • Baselski VS, Robison MK, Pifer LW, et al. Rapid detection of Pneumocystis carinii in bronchoalveolar lavage samples by using Cellufluor staining. J Clin Microbiol. 1990;28:393–394.
  • Sautter RL, Kwee HG. Calcofluor white stain for fungi. Am J Clin Pathol. 1987;87:295.
  • Lischewski A, Kretschmar M, Hof H, et al. Detection and identification of Candida species in experimentally infected tissue and human blood by rRNA-specific fluorescent in situ hybridization. J Clin Microbiol. 1997;35:2943–2948.
  • Bisha B, Kim HJ, Brehm-Stecher BF. Improved DNA-FISH for cytometric detection of Candida spp. J Appl Microbiol. 2011;110:881–892.
  • Rigby S, Procop GW, Haase G, et al. Fluorescence in situ hybridization with peptide nucleic acid probes for rapid identification of Candida albicans directly from blood culture bottles. J Clin Microbiol. 2002;40:2182–2186.
  • Trnovsky J, Merz W, Della-Latta P, et al. Rapid and accurate identification of Candida albicans isolates by use of PNA FISHFlow. J Clin Microbiol. 2008;46:1537–1540.
  • Gherna M, Merz WG. Identification of Candida albicans and Candida glabrata within 1.5 hours directly from positive blood culture bottles with a shortened peptide nucleic acid fluorescence in situ hybridization protocol. J Clin Microbiol. 2009;47:247–248.
  • Borekci G, Ersoz G, Otag F, et al. Identification of Candida species from blood cultures with fluorescent in situ hybridization (FISH), polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and conventional methods. Balkan Med J. 2010;27:183–191.
  • Kempf VAJ, Trebesius K, Autenrieth IB. Fluorescent in situ hybridization allows rapid identification of microorganisms in blood cultures. J Clin Microbiol. 2000;38:830–838.
  • Rij KV. The yeasts. A taxonomic study. New York, NY: Elsevier Science Publishers BV; 1984.
  • Espinel-Ingroff A, Stockman L, Roberts G, et al. Comparison of RapID yeast plus system with API 20C system for identification of common, new, and emerging yeast pathogens. J Clin Microbiol. 1998;36:883–886.
  • Davey KG, Chant PM, Downer CS, et al. Evaluation of the AUXACOLOR system, a new method of clinical yeast identification. J Clin Pathol. 1995;48:807–809.
  • El-Zaatari M, Pasarell L, McGinnis MR, et al. Evaluation of the updated Vitek yeast identification data base. J Clin Microbiol. 1990;28:1938–1941.
  • Fenn JP, Segal H, Barland B, et al. Comparison of updated Vitek yeast biochemical card and API 20C yeast identification systems. J Clin Microbiol.1994;32:1184–1187.
  • Campbell CK, Davey KG, Holmes AD, et al. Comparison of the API Candida system with the AUXACOLOR system for identification of common yeast pathogens. J Clin Microbiol. 1999;37:821–823.
  • Verweij PE, Breuker IM, Rijs AJ, et al. Comparative study of seven commercial yeast identification systems. J Clin Pathol. 1999;52:271–273.
  • Koehler AP, Chu KC, Houang ETS, et al. Simple, reliable, and cost-effective yeast identification scheme for the clinical laboratory. J Clin Microbiol. 1999;37:422–426.
  • Willinger B, Manafi M. Evaluation of CHROMagar Candida for rapid screening of clinical specimens for Candida species. Mycoses. 2002;42:61–65.
  • Adam HJ, Richardson SE, Roscoe M, et al. An implementation strategy for the use of chromogenic media in the rapid, presumptive identification of Candida species. Open Mycol J. 2010;4:33–38.
  • Pfaller MA, Houston A, Coffmann S. Application of CHROMagar Candida for rapid screening of clinical specimens for Candida albicans, Candida tropicalis, Candida krusei, and Candida (Torulopsis) glabrata. J Clin Microbiol. 1996;34:58–61.
  • Sivakumar VG, Shankar P, Nalina K, et al. Use of CHROMagar in the differentiation of common species of Candida. Mycopathologia. 2009;167:47–49.
  • Sudbery P, Gow N, Berman J. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004;12:317–324.
  • Whiteway M, Bachewich C. Morphogenesis in Candida albicans*. Annu Rev Microbiol. 2007;61:529–553.
  • Kadosh D, Johnson AD. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell. 2005;16:2903–2912.
  • Nakamoto S. Germ tube formation of Candida albicans in corn meal broth using the non-slip slide glass incubation method. Yonago Acta Medica. 1998;41:65–72.
  • Sahand IH, Maza JL, Eraso E, et al. Evaluation of CHROM-Pal medium for the isolation and direct identification of Candida dubliniensis in primary cultures from the oral cavity. J Med Microbiol. 2009;58:1437–1442.
  • Horvath LL, Hospenthal DR, Murray CK, et al. Direct isolation of Candida spp. from blood cultures on the chromogenic medium CHROMagar Candida. J Clin Microbiol. 2003;41:2629–2632.
  • BacT/ALERT® MB, BioMerieux. [cited 2015 Dec 26]. Available from: http://www.biomerieux-usa.com/clinical/bact-alert-3d-healthcare.
  • TREK Diagnostic System. [cited 2015 Feb 04]. Available from: http://www.trekds.com/products/versatrek/media.asp.
  • João Inácio OFaIS-M. Efficient identification of clinically relevant Candida yeast species by use of an assay combining Panfungal loop-mediated isothermal DNA amplification with hybridization to species-specific oligonucleotide probes. J Clin Microbiol. 2008;46:713–720.
  • Clancy CJ, Nguyen ML, Cheng S, et al. Immunoglobulin G responses to a panel of Candida albicans antigens as accurate and early markers for the presence of systemic candidiasis. J Clin Microbiol. 2008;46:1647–1654.
  • Medical microbiology. 7th ed. Philadelphia, PA: Elsevier Saunders; 2013.
  • Reiss E, De Repentigny L, Kuykendall R, et al. Monoclonal antibodies against Candida tropicalis mannan: antigen detection by enzyme immunoassay and immunofluorescence. J Clin Microbiol. 1986;24:796–802.
  • Philip A, Odabasi Z, Matiuzzi G, et al. Syscan3, a kit for detection of anti-candida antibodies for diagnosis of invasive candidiasis. J Clin Microbiol. 2005;43:4834–4835.
  • Mitsutake K, Miyazaki T, Tashiro T, et al. Enolase antigen, mannan antigen, Cand-Tec antigen, and beta-glucan in patients with candidemia. J Clin Microbiol. 1996;34:1918–1921.
  • Stickle D, Kaufman L, Blumer SO, et al. Comparison of a newly developed latex agglutination test and an immunodiffusion test in the diagnosis of systemic candidiasis. Appl Microbiol. 1972;23:490–499.
  • Marot-Leblond A, Beucher B, David S, et al. Development and evaluation of a rapid latex agglutination test using a monoclonal antibody to identify Candida dubliniensis colonies. J Clin Microbiol. 2006;44:138–142.
  • Fujita S, Hashimoto T. Detection of serum Candida antigens by enzyme-linked immunosorbent assay and a latex agglutination test with anti-Candida albicans and anti-Candida krusei antibodies. J Clin Microbiol. 1992;30:3132–3137.
  • Matthews R, Burnie J. Diagnosis of systemic candidiasis by an enzyme-linked dot immunobinding assay for a circulating immunodominant 47-kilodalton antigen. J Clin Microbiol. 1988;26:459–463.
  • Manning-Zweerink M, Maloney C, Mitchell T, et al. Immunoblot analyses of Candida albicans-associated antigens and antibodies in human sera. J Clin Microbiol. 1986;23:46–52.
  • Kostiala I, Kostiala A, Larinkari U, et al. Antibodies against antigens of Candida albicans in patients with fungaemia and bacteraemia, studied by ELISA, precipitation, passive haemagglutination and immunofluorescence techniques. J Med Microbiol. 1981;14:483–492.
  • Fujita S, Matsubara F, Matsuda T. Enzyme-linked immunosorbent assay measurement of fluctuations in antibody titer and antigenemia in cancer patients with and without candidiasis. J Clin Microbiol. 1986;23:568–575.
  • Laín A, Elguezabal N, Brena S, et al. Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candida albicans hyphal wall protein 1. BMC Microbiol. 2007;7:35.
  • Laín A, Moragues MD, Ruiz JCG, et al. Evaluation of a novel enzyme-linked immunosorbent assay to detect immunoglobulin G antibody to enolase for serodiagnosis of invasive candidiasis. Clin Vaccine Immunol. 2007;14:318–319.
  • Van Deventer A, Van Vliet H, Hop W, et al. Diagnostic value of anti-Candida enolase antibodies. J Clin Microbiol. 1994;32:17–23.
  • Pisa D, Ramos M, Molina S, et al. Evolution of antibody response and fungal antigens in the serum of a patient infected with Candida famata. J Med Microbiol. 2007;56:571–578.
  • Strockbine NA, Largen MT, Buckley HR. Production and characterization of three monoclonal antibodies to Candida albicans proteins. Infect Immun. 1984;43:1012–1018.
  • Ponton J, Marot-Leblond A, Ezkurra P, et al. Characterization of Candida albicans cell wall antigens with monoclonal antibodies. Infect Immun. 1993;61:4842–4847.
  • Schneider J, Moragues D, MartÃnez N, et al. Cross-reactivity between Candida albicans and human ovarian carcinoma as revealed by monoclonal antibodies PA10F and C6. Br J Cancer. 1998;77:1015.
  • Rodriguez MJ, Schneider J, Moragues MD, et al. Cross-reactivity between Candida albicans and oral squamous cell carcinoma revealed by monoclonal antibody C7. Anticancer Res. 2007;27:3639–3643.
  • Kaufman L, Kovacs JA, Reiss E. Clinical immunomycology. Manual of clinical laboratory immunology. Washington, DC: American Society for Microbiology; 1997:575–583.
  • Marcilla A, Monteagudo C, Mormeneo S, et al. Monoclonal antibody 3H8: a useful tool in the diagnosis of candidiasis. Microbiology. 1999;145:695–701.
  • Yeo SF, Wong B. Current status of nonculture methods for diagnosis of invasive fungal infections. Clin Microbiol Rev. 2002;15:465–484.
  • Jarvensivu A, Hietanen J, Rautemaa R, et al. Candida yeasts in chronic periodontitis tissues and subgingival microbial biofilms in vivo. Oral Dis. 2004;10:106–112.
  • Bikandi J, San Millán R, Moragues MD, et al. Rapid identification of Candida dubliniensis by indirect immunofluorescence based on differential localization of antigens on C. dubliniensis blastospores and Candida albicans germ tubes. J Clin Microbiol. 1998;36:2428–2433.
  • Jarvensivu A, Rautemaa R, Sorsa T, et al. Specificity of the monoclonal antibody 3H8 in the immunohistochemical identification of Candida species. Oral Dis. 2006;12:428–433.
  • Chang CM, Chang WH, Wang CH, et al. Nucleic acid amplification using microfluidic systems. Lab Chip. 2013;13:1225–1242.
  • Simon D, Atkins IMC. Fungal molecular diagnostics: a mini review. J Appl Genet. 2004;45:3–15.
  • Arvanitis M, Anagnostou T, Fuchs BB, et al. Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev. 2014;27:490–526.
  • Zourob M, Elwary S, Turner AP. Principles of bacterial detection: biosensors, recognition receptors and microsystems. New York (NY): Springer Science & Business Media; 2008.
  • Campa D, Tavanti A, Gemignani F, et al. DNA microarray based on arrayed-primer extension technique for identification of pathogenic fungi responsible for invasive and superficial mycoses. J Clin Microbiol. 2008;46:909–915.
  • Spiess B, Seifarth W, Hummel M, et al. DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J Clin Microbiol. 2007;45:3743–3753.
  • Leinberger DM, Schumacher U, Autenrieth IB, et al. Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J Clin Microbiol. 2005;43:4943–4953.
  • Reiss E, Tanaka K, Bruker G, et al. Molecular diagnosis and epidemiology of fungal infections. Med Mycol. 1997;36:249–257.
  • Mullis K, Faloona F, Scharf S, et al. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symp Quant Biol. 1986;51:263–273.
  • Kan VL. Polymerase chain reaction for the diagnosis of candidemia. J Infect Dis. 1993;168:779–783.
  • Jordan JA. PCR identification of four medically important Candida species by using a single primer pair. J Clin Microbiol. 1994;32:2962–2967.
  • Einsele H, Hebart H, Roller G, et al. Detection and identification of fungal pathogens in blood by using molecular probes. J Clin Microbiol. 1997;35:1353–1360.
  • Burnie JP, Golband N, Matthews RC. Semiquantitative polymerase chain reaction enzyme immunoassay for diagnosis of disseminated candidiasis. Eur J Clin Microbiol Dis. 1997;16:346–350.
  • Widjojoatmodjo MN, Borst A, Schukkink RAF, et al. Nucleic acid sequence-based amplification (NASBA) detection of medically important Candida species. J Microbiol Meth. 1999;38:81–90.
  • Zhou X, Kong F, Sorrell TC, et al. Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling-circle amplification▿. J Clin Microbiol. 2008;46:2423–2427.
  • Prasad JK, Feller I, Thomson PD. A ten-year review of Candida sepsis and mortality in burn patients. Surgery. 1987;101:213–216.
  • Kurita H, Kamata T, Zhao C, et al. Usefulness of a commercial enzyme-linked immunosorbent assay kit for Candida mannan antigen for detecting Candida in oral rinse solutions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107:531–534.
  • Lehmann LE, Hunfeld K-P, Emrich T, et al. A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol. 2008;197:313–324.
  • Ilyas A, Asghar W, Allen PB, et al. Electrical detection of cancer biomarker using aptamers with nanogap break-junctions. Nanotechnology. 2012;23:275502.
  • Wan Y, Tan J, Asghar W, et al. Velocity effect on aptamer-based circulating tumor cell isolation in microfluidic devices. J Phys Chem B. 2011;115:13891–13896.
  • Pulcrano G, Iula DV, Vollaro A, et al. Rapid and reliable MALDI-TOF mass spectrometry identification of Candida non-albicans isolates from bloodstream infections. J Microbiol Methods. 2013;94:262–266.
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507:181–189.
  • Asghar W, El Assal R, Shafiee H, et al. Preserving human cells for regenerative, reproductive, and transfusion medicine. Biotechnol J. 2014;9:895–903.
  • Asghar W, El Assal R, Shafiee H, et al. Engineering cancer microenvironments for in vitro 3-D tumor models. Mater Today. 2015;18:539–553.
  • Asghar W, Ramachandran PP, Adewumi A, et al. Rapid nanomanufacturing of metallic break junctions using focused ion beam scratching and electromigration. J Manufact Sci Eng. 2010;132:030911.
  • Asghar W, Velasco V, Kingsley JL, et al. Selection of functional human sperm with higher DNA integrity and fewer reactive oxygen species. Adv Healthc Mater. 2014;3:1671–1679.
  • Asghar W, Wan Y, Ilyas A, et al. Electrical fingerprinting, 3D profiling and detection of tumor cells with solid-state micropores. Lab on a Chip. 2012;12:2345–2352.
  • Ilyas A, Asghar W, Ahmed S, et al. Electrophysiological analysis of biopsy samples using elasticity as an inherent cell marker for cancer detection. Anal Methods. 2014;6:7166–7174.
  • Ilyas A, Asghar W, Kim YT, et al. Parallel recognition of cancer cells using an addressable array of solid-state micropores. Biosens Bioelectron. 2014;62:343–349.
  • Wang L, Asghar W, Demirci U, et al. Nanostructured substrates for isolation of circulating tumor cells. Nano today. 2013;8:374–387.
  • Asghar W, Islam M, Wadajkar AS, et al. PLGA micro-and nanoparticles loaded into gelatin scaffold for controlled drug release. IEEE Trans Nanotechnol. 2012;11:546–553.
  • Ramachandran A, Liu Y, Asghar W, et al. Characterization of DNA-nanopore interactions by molecular dynamics. Am J Biomed Sci. 2009;1:344–351.
  • Vidyala SD, Asghar W, Iqbal SM. Porous organic nanolayers for coating of solid-state devices. J Nanobiotechnol. 2011;9:18.
  • Ilyas A, Islam M, Asghar W, et al. Salt-leaching synthesis of porous PLGA nanoparticles. IEEE Trans Nanotechnol. 2013;12:1082–1088.
  • Ilyas A, Asghar W, Billo J, et al. From molecular electronics to proteonics: break junctions for biomarker detection. Life Science Systems and Applications Workshop (LiSSA), 2011 IEEE/NIH; 2011: Bethesda, MD: IEEE.
  • Sachse S, Straube E, Lehmann M, et al. Truncated human cytidylate-phosphatedeoxyguanylate-binding protein for improved nucleic acid amplification technique-based detection of bacterial species in human samples. J Clin Microbiol. 2009;47:1050–1057.
  • Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, et al. T2 magnetic resonance assay for the rapid diagnosis of candidemia in whole blood: a clinical trial. Clin Infect Dis. 2015;60:892–899.
  • Baeumner SJ. Microfluidic isolation of nucleic acids. Angew Chem Int Ed. 2014;53:2–16.
  • Cai D, Xiao M, Xu P, et al. An integrated microfluidic device utilizing dielectrophoresis and multiplex array PCR for point-of-care detection of pathogens. Lab Chip. 2014;14:3917–3924.
  • Boles DJ, Benton JL, Siew GJ, et al. Droplet-based pyrosequencing using digital microfluidics. Anal Chem. 2011;83:8439–8447.
  • Schell WA, Benton JL, Smith PB, et al. Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood. Eur J Microbiol Infect Dis. 2012;31:2237–2245.
  • Schumacher S, Nestler J, Otto T, et al. Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab Chip. 2012;12:464–473.
  • Lee H, Sun E, Ham D, et al. Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med. 2008;14:869–874.
  • Gervais L, de Rooij N, Delamarche E. Microfluidic chips for point-of-care immunodiagnostics. Adv Mater Weinheim. 2011;23:H151–HH76.
  • Shafiee H, Sano MB, Henslee EA, et al. Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab on a Chip. 2010;10:438–445.
  • Fujita SI, Takamura T, Nagahara M, et al. Evaluation of a newly developed down-flow immunoassay for detection of serum mannan antigens in patients with candidaemia. J Med Microbiol. 2006;55:537–543.
  • Sogawa K, Watanabe M, Sato K, et al. Use of the MALDI BioTyper system with MALDI-TOF mass spectrometry for rapid identification of microorganisms. Anal Bioanal Chem. 2011;400:1905–1911.
  • Yetisen AK, Akram MS, Lowe CR. Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 2013;13:2210.
  • Shafiee H, Asghar W, Inci F, et al. Paper and flexible substrates as materials for biosensing platforms to detect multiple biotargets. Scientific Rep. 2015;5:8719.
  • Sista R, Hua Z, Thwar P, et al. Development of a digital microfluidic platform for point of care testing. Lab Chip. 2008;8:2091–2104.
  • Eggimann P, Garbino J, Pittet D. Epidemiology of Candida species infections in critically ill non-immunosuppressed patients. Lancet Infect Dis. 2003;3:685–702.
  • Safavieh M, Kanakasabapathy MK, Tarlan F, et al. Emerging loop-mediated isothermal amplification-based microchip and microdevice technologies for nucleic acid detection. ACS Biomater Sci Eng. 2016;3:278–294.
  • Asghar W, Yuksekkaya M, Shafiee H, et al. Engineering long shelf life multi-layer biologically active surfaces on microfluidic devices for point of care applications. Sci Rep. 2016;6:21163.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.