2,008
Views
188
CrossRef citations to date
0
Altmetric
Review Article

Structural determinants of the substrate specificities of xylanases from different glycoside hydrolase families

, &
Pages 176-191 | Received 03 Dec 2009, Accepted 19 Jan 2010, Published online: 12 Mar 2010

References

  • Adachi W, Sakihama Y, Shimizu S, Sunami T, Fukazawa T, Suzuki M, Yatsunami R, Nakamura S, Takénaka A. 2004. Crystal structure of family GH-8 chitosanase with subclass II specificity from Bacillus sp. K17. J Mol Biol 343: 785–795.
  • André-Leroux G, Berrin JG, Georis J, Arnaut F, Juge N. 2008. Structure-based mutagenesis of Penicillium griseofulvum xylanase using computational design. Proteins 72: 1298–1307.
  • Andrews SR, Charnock SJ, Lakey JH, Davies GJ, Claeyssens M, Nerinckx W, Underwood M, Sinnott ML, Warren RA, Gilbert HJ. 2000. Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A. J Biol Chem 275: 23027–23033.
  • Armand S, Andrews SR, Charnock SJ, Gilbert HJ. 2001. Influence of the aglycone region of the substrate binding cleft of Pseudomonas xylanase 10A on catalysis. Biochemistry 40: 7404–7409.
  • Beaugrand J, Chambat G, Wong VW, Goubet F, Rémond C, Paës G, Benamrouche S, Debeire P, O’Donohue M, Chabbert B. 2004. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr Res 339: 2529–2540.
  • Beg QK, Kapoor M, Mahajan L, Hoondal GS. 2001. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56: 326–338.
  • Berrin JG, Ajandouz el H, Georis J, Arnaut F, Juge N. 2007. Substrate and product hydrolysis specificity in family 11 glycoside hydrolases: An analysis of Penicillium funiculosum and Penicillium griseofulvum xylanases. Appl Microbiol Biotechnol 74: 1001–1010.
  • Berrin JG, Juge N. 2008. Factors affecting xylanase functionality in the degradation of arabinoxylans. Biotechnol Lett 30: 1139–1150.
  • Biely P, Krátký Z, Vrsanská M. 1981a. Substrate-binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus. Eur J Biochem 119: 559–564.
  • Biely P, Vrsanská M, Krátký Z. 1981b. Mechanisms of substrate digestion by endo-1,4-beta-xylanase of Cryptococcus albidus. Lysozyme-type pattern of action. Eur J Biochem 119: 565–571.
  • Biely P, Vrsanska M, Kucar S. 1992. Identification and mode of action of endo-(1,4)-β-xylanases. In Visser J, Beldman G, Kusters-van-Someren MA, Voragen AGJ, eds. Xylans and Xylanases ( pp. 81–95). Amsterdam: Elsevier Science Publishers B.V.
  • Biely P, Kluepfel D, Morosoli R, Shareck F. 1993. Mode of action of three endo-beta-1,4-xylanases of Streptomyces lividans. Biochim Biophys Acta 1162: 246–254.
  • Biely P, Vrsanská M, Tenkanen M, Kluepfel D. 1997. Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57: 151–166.
  • Bolam DN, Ciruela A, McQueen-Mason S, Simpson P, Williamson MP, Rixon JE, Boraston A, Hazlewood GP, Gilbert HJ. 1998. Pseudomonas cellulose-binding domains mediate their effects by increasing enzyme substrate proximity. Biochem J 331: 775–781.
  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ. 2004. Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382: 769–781.
  • Bray MR, Clarke AJ. 1992. Action pattern of xylo-oligosaccharide hydrolysis by Schizophyllum commune xylanase A. Eur J Biochem 204: 191–196.
  • Brennan Y, Callen WN, Christoffersen L, Dupree P, Goubet F, Healey S, Hernández M, Keller M, Li K, Palackal N, Sittenfeld A, Tamayo G, Wells S, Hazlewood GP, Mathur EJ, Short JM, Robertson DE, Steer BA. 2004. Unusual microbial xylanases from insect guts. Appl Environ Microbiol 70: 3609–3617.
  • van den Broek LA, Lloyd RM, Beldman G, Verdoes JC, McCleary BV, Voragen AG. 2005. Cloning and characterization of arabinoxylan arabinofuranohydrolase-D3 (AXHd3) from Bifidobacterium adolescentis DSM20083. Appl Microbiol Biotechnol 67: 641–647.
  • Buchert J, Tenkanen M, Kantelinen A, Viikari L. 1994. Application of xylanases in the pulp and paper industry. Bioresour Technol 50: 65–72.
  • Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT. 2008. Xylanases and their applications in baking industry. Food Technol Biotechnol 46: 22–31.
  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res 37: D233–D238.
  • Carpita N, McCann M. 2000. The cell wall. In Buchanan B, Gruissem W, Jones R, eds. Biochemistry & Molecular Biology of Plants ( pp. 52–108). Rockville, USA: American Society of Plant Physiologists.
  • Cervera Tison M, André-Leroux G, Lafond M, Georis J, Juge N, Berrin JG. 2009. Molecular determinants of substrate and inhibitor specificities of the Penicillium griseofulvum family 11 xylanases. Biochim Biophys Acta 1794: 438–445.
  • Charnock SJ, Lakey JH, Virden R, Hughes N, Sinnott ML, Hazlewood GP, Pickersgill R, Gilbert HJ. 1997. Key residues in subsite F play a critical role in the activity of Pseudomonas fluorescens subspecies cellulosa xylanase A against xylooligosaccharides but not against highly polymeric substrates such as xylan. J Biol Chem 272: 2942–2951.
  • Charnock SJ, Spurway TD, Xie H, Beylot MH, Virden R, Warren RA, Hazlewood GP, Gilbert HJ. 1998. The topology of the substrate binding clefts of glycosyl hydrolase family 10 xylanases are not conserved. J Biol Chem 273: 32187–32199.
  • Chen NJ, Paull RE. 2003. Endoxylanase expressed during papaya fruit ripening: purification, cloning and characterization. Funct Plant Biol 30: 433–441.
  • Chithra M, Muralikrishna G. 2008. Characterization of purified xylanase from finger millet (Eleusine coracana-Indaf 15) malt. Eur Food Res Technol 227: 587–597.
  • Claeyssens M, Henrissat B. 1992. Specificity mapping of cellulolytic enzymes: classification into families of structurally related proteins confirmed by biochemical analysis. Protein Sci 1: 1293–1297.
  • Cleemput G, van Oort M, Hessing M, Bergmans MEF, Gruppen H, Grobe PJ, Delcour JA. 1995. Variation in the degree of d-xylose substitution in arabinoxylans extracted from a European wheat flour. J Cereal Sci 22, 73–84.
  • Cleemput G, Hessing M, Van Oort M, Deconynck M, Delcour JA. 1997. Purification and characterization of a [beta]-d-xylosidase and an endo-xylanase from wheat flour. Plant Physiol 113: 377–386.
  • Collins T, Meuwis MA, Stals I, Claeyssens M, Feller G, Gerday C. 2002. A novel family 8 xylanase, functional and physicochemical characterization. J Biol Chem 277: 35133–35139.
  • Collins T, De Vos D, Hoyoux A, Savvides SN, Gerday C, Van Beeumen J, Feller G. 2005a. Study of the active site residues of a glycoside hydrolase family 8 xylanase. J Mol Biol 354: 425–435.
  • Collins T, Gerday C, Feller G. 2005b. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29: 3–23.
  • Connelly GP, Withers SG, McIntosh LP. 2000. Analysis of the dynamic properties of Bacillus circulans xylanase upon formation of a covalent glycosyl-enzyme intermediate. Protein Sci 9: 512–524.
  • Coughlan MP, Hazlewood GP. 1993. beta-1,4-d-Xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem 17: 259–289.
  • Courtin CM, Delcour JA. 2002. Arabinoxylans and endoxylanases in wheat flour bread-making. J Cereal Sci 35, 225–243.
  • Davies G, Henrissat B. 1995. Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859.
  • Davies GJ, Wilson KS, Henrissat B. 1997. Nomenclature for sugar-binding subsites in glycosyl hydrolases. Biochem J 321: 557–559.
  • De Vos D, Collins T, Nerinckx W, Savvides SN, Claeyssens M, Gerday C, Feller G, Van Beeumen J. 2006. Oligosaccharide binding in family 8 glycosidases: crystal structures of active-site mutants of the beta-1,4-xylanase pXyl from Pseudoaltermonas haloplanktis TAH3a in complex with substrate and product. Biochemistry 45: 4797–4807.
  • Derewenda U, Swenson L, Green R, Wei Y, Morosoli R, Shareck F, Kluepfel D, Derewenda ZS. 1994. Crystal structure, at 2.6-A resolution, of the Streptomyces lividans xylanase A, a member of the F family of beta-1,4-d-glycanases. J Biol Chem 269: 20811–20814.
  • Ducros V, Charnock SJ, Derewenda U, Derewenda ZS, Dauter Z, Dupont C, Shareck F, Morosoli R, Kluepfel D, Davies GJ. 2000. Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J Biol Chem 275: 23020–23026.
  • Ebringerova A, Heinze T. 2000. Xylan and xylan derivatives — Biopolymers with valuable properties, 1: Naturally occurring xylans structures, procedures and properties. Macromol Rapid Commun 21: 542–556.
  • Fauré R, Courtin CM, Delcour JA, Dumon C, Faulds CB, Fincher GB, Fort S, Fry SC, Halila S, Kabel MA, Pouvreau L, Quemener B, Rivet A, Saulnier L, Schols HA, Driguez H, O’Donohue MJ. 2009. A brief and informationally rich naming system for oligosaccharide motifs of heteroxylans found in plant cell walls Symposium on Glycoscience. Chemistry and Chemical Biology ( pp. 533–537). Oslo, Norway: Csiro Publishing.
  • Fausch H, Kündig W, Neukom H. 1963. Ferulic acid as a component of a glycoprotein from wheat flour. Nature 199: 287.
  • Fincher GB, Stone BA. 1986. Cell walls and their components in cereal grain technology. In Pomeranz Y, ed. Advances in Cereal Science and Technology ( pp. 207–295). St. Paul, MN, USA: American Association of Cereal Chemists.
  • Frederix SA, Courtin CA, Delcour JA. 2004. Substrate selectivity and inhibitor sensitivity affect xylanase functionality in wheat flour gluten–starch separation. J Cereal Sci 40, 41–49.
  • Fujimoto Z, Kaneko S, Kuno A, Kobayashi H, Kusakabe I, Mizuno H. 2004. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J Biol Chem 279: 9606–9614.
  • Fushinobu S, Ito K, Konno M, Wakagi T, Matsuzawa H. 1998. Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: biased distribution of acidic residues and importance of Asp37 for catalysis at low pH. Protein Eng 11: 1121–1128.
  • Fushinobu S, Hidaka M, Honda Y, Wakagi T, Shoun H, Kitaoka M. 2005. Structural basis for the specificity of the reducing end xylose-releasing exo-oligoxylanase from Bacillus halodurans C-125. J Biol Chem 280: 17180–17186.
  • Gilkes NR, Claeyssens M, Aebersold R, Henrissat B, Meinke A, Morrison HD, Kilburn DG, Warren RA, Miller RC Jr. 1991. Structural and functional relationships in two families of beta-1,4-glycanases. Eur J Biochem 202: 367–377.
  • Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller RC Jr, Warren RA, Kilburn DG. 1992. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem 267: 6743–6749.
  • Gruber K, Klintschar G, Hayn M, Schlacher A, Steiner W, Kratky C. 1998. Thermophilic xylanase from Thermomyces lanuginosus: High-resolution X-ray structure and modeling studies. Biochemistry 37: 13475–13485.
  • Havukainen R, Törrönen A, Laitinen T, Rouvinen J. 1996. Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase II from Trichoderma reesei. Biochemistry 35: 9617–9624.
  • Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280: 309–316.
  • Henrissat B, Bairoch A. 1996. Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316: 695–696.
  • Honda Y, Kitaoka M. 2004. A family 8 glycoside hydrolase from Bacillus halodurans C-125 (BH2105) is a reducing end xylose-releasing exo-oligoxylanase. J Biol Chem 279: 55097–55103.
  • Hurlbert JC, Preston JF 3rd. 2001. Functional characterization of a novel xylanase from a corn strain of Erwinia chrysanthemi. J Bacteriol 183: 2093–2100.
  • Izydorczyk MS, Biliaderis CG. 1995. Cereal arabinoxylans: Advances in structure and physicochemical properties. 1994 Frontiers in Carbohydrate Research 4 Conference ( pp. 33–48). West Lafayette, IN, USA: Elsevier Sci Ltd.
  • Jänis J, Hakanpää J, Hakulinen N, Ibatullin FM, Hoxha A, Derrick PJ, Rouvinen J, Vainiotalo P. 2005. Determination of thioxylo-oligosaccharide binding to family 11 xylanases using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and X-ray crystallography. FEBS J 272: 2317–2333.
  • Jenkins J, Lo Leggio L, Harris G, Pickersgill R. 1995. Beta-glucosidase, beta-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold beta/alpha architecture and with two conserved glutamates near the carboxy-terminal ends of beta-strands four and seven. FEBS Lett 362: 281–285.
  • Joseleau JP, Cartier N, Chambat G, Faik A, Ruel K. 1992. Structural features and biological activity of xyloglucans from suspension-cultured plant cells. Biochimie 74: 81–88.
  • Joshi MD, Sidhu G, Pot I, Brayer GD, Withers SG, McIntosh LP. 2000. Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum of a glycosidase. J Mol Biol 299: 255–279.
  • Joshi MD, Sidhu G, Nielsen JE, Brayer GD, Withers SG, McIntosh LP. 2001. Dissecting the electrostatic interactions and pH-dependent activity of a family 11 glycosidase. Biochemistry 40: 10115–10139.
  • Kadam KL, Chin CY, Brown LW. 2008. Flexible biorefinery for producing fermentation sugars, lignin and pulp from corn stover. J Ind Microbiol Biotechnol 35: 331–341.
  • Katapodis P, Vrsanská M, Kekos D, Nerinckx W, Biely P, Claeyssens M, Macris BJ, Christakopoulos P. 2003. Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Sporotrichum thermophile. Carbohydr Res 338: 1881–1890.
  • Keen NT, Boyd C, Henrissat B. 1996. Cloning and characterization of a xylanase gene from corn strains of Erwinia chrysanthemi. Mol Plant Microbe Interact 9: 651–657.
  • Kenealy WR, Jeffries TW. 2003. Enzyme processes for pulp and paper: A review of recent developments. Wood Deterioration and Preservation: Advances in Our Changing World (pp. 210–239). ACS Symposium Series 845. Washington, DC: American Chemical Society.
  • Kolenová K, Vrsanská M, Biely P. 2006. Mode of action of endo-beta-1,4-xylanases of families 10 and 11 on acidic xylooligosaccharides. J Biotechnol 121: 338–345.
  • Kormelink FJ, Gruppen H, Viëtor RJ, Voragen AG. 1993. Mode of action of the xylan-degrading enzymes from Aspergillus awamori on alkali-extractable cereal arabinoxylans. Carbohydr Res 249: 355–367.
  • Krengel U, Dijkstra BW. 1996. Three-dimensional structure of endo-1,4-beta-xylanase I from Aspergillus niger: Molecular basis for its low pH optimum. J Mol Biol 263: 70–78.
  • Kulkarni N, Shendye A, Rao M. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23: 411–456.
  • Lagaert S, Van Campenhout S, Pollet A, Bourgois TM, Delcour JA, Courtin CM, Volckaert G. 2007. Recombinant expression and characterization of a reducing-end xylose-releasing exo-oligoxylanase from Bifidobacterium adolescentis. Appl Environ Microbiol 73: 5374–5377.
  • Larson SB, Day J, Barba de la Rosa AP, Keen NT, McPherson A. 2003. First crystallographic structure of a xylanase from glycoside hydrolase family 5: implications for catalysis. Biochemistry 42: 8411–8422.
  • Lee CC, Kibblewhite-Accinelli RE, Wagschal K, Robertson GH, Wong DW. 2006. Cloning and characterization of a cold-active xylanase enzyme from an environmental DNA library. Extremophiles 10: 295–300.
  • de Lemos Esteves F, Ruelle V, Lamotte-Brasseur J, Quinting B, Frère JM. 2004. Acidophilic adaptation of family 11 endo-beta-1,4-xylanases: modeling and mutational analysis. Protein Sci 13: 1209–1218.
  • Ludwiczek ML, Heller M, Kantner T, McIntosh LP. 2007. A secondary xylan-binding site enhances the catalytic activity of a single-domain family 11 glycoside hydrolase. J Mol Biol 373: 337–354.
  • McCarter JD, Withers SG. 1994. Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4: 885–892.
  • Mitreva-Dautova M, Roze E, Overmars H, de Graaff L, Schots A, Helder J, Goverse A, Bakker J, Smant G. 2006. A symbiont-independent endo-1,4-beta-xylanase from the plant-parasitic nematode Meloidogyne incognita. Mol Plant Microbe Interact 19: 521–529.
  • Muilu J, Törrönen A, Peräkylä M, Rouvinen J. 1998. Functional conformational changes of endo-1,4-xylanase II from Trichoderma reesei: A molecular dynamics study. Proteins 31: 434–444.
  • Murakami MT, Arni RK, Vieira DS, Degrève L, Ruller R, Ward RJ. 2005. Correlation of temperature induced conformation change with optimum catalytic activity in the recombinant G/11 xylanase A from Bacillus subtilis strain 168 (1A1). FEBS Lett 579: 6505–6510.
  • Nerinckx W, Broberg A, Duus JØ,Ntarima P, Parolis LA, Parolis H, Claeyssens M. 2004. Hydrolysis of Nothogenia erinacea xylan by xylanases from families 10 and 11. Carbohydr Res 339: 1047–1060.
  • Nishitani K, Nevins DJ. 1991. Glucuronoxylan xylanohydrolase. A unique xylanase with the requirement for appendant glucuronosyl units. J Biol Chem 266: 6539–6543.
  • Notenboom V, Birsan C, Nitz M, Rose DR, Warren RA, Withers SG. 1998. Insights into transition state stabilization of the beta-1,4-glycosidase Cex by covalent intermediate accumulation in active site mutants. Nat Struct Biol 5: 812–818.
  • Paës G, Tran V, Takahashi M, Boukari I, O’Donohue MJ. 2007. New insights into the role of the thumb-like loop in GH-11 xylanases. Protein Eng Des Sel 20: 15–23.
  • Pell G, Szabo L, Charnock SJ, Xie H, Gloster TM, Davies GJ, Gilbert HJ. 2004a. Structural and biochemical analysis of Cellvibrio japonicus xylanase 10C: How variation in substrate-binding cleft influences the catalytic profile of family GH-10 xylanases. J Biol Chem 279: 11777–11788.
  • Pell G, Taylor EJ, Gloster TM, Turkenburg JP, Fontes CM, Ferreira LM, Nagy T, Clark SJ, Davies GJ, Gilbert HJ. 2004b. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J Biol Chem 279: 9597–9605.
  • Perlin AS. 1951. Structure of the soluble pentosans of wheat flours. Cereal Chem 382–393.
  • Pollet A, Vandermarliere E, Lammertyn J, Strelkov SV, Delcour JA, Courtin CM. 2009. Crystallographic and activity-based evidence for thumb flexibility and its relevance in glycoside hydrolase family 11 xylanases. Proteins 77: 395–403.
  • Pollet A. (2010). Functional and structural analysis of glycoside hydrolase families (GH) 8, 10 and 11 xylanases with focus on GH11 Bacillus subtilis xylanase A. Ph.D. Thesis, Katholieke Universiteit Leuven, Leuven, Belgium
  • Pollet A, Lagaert S, Eneyskaya E, Kulminskaya A, Delcour JA, Courtin CM. 2010a. Mutagenesis and subsite mapping underpin the importance for substrate specificity of the aglycon subsites of glycoside hydrolase family 11 xylanases. Biochim Biophys Acta, Proteins Proteomics. Accepted for publication. doi: 10.1016/j.bbapap.2010.01.009
  • Pollet A, Schoepe J, Dornez E, Strelkov SV, Delcour JA, Courtin CM. 2010b. Hydrolysis product analysis of xylanases from glycoside hydrolase family 8 reveals large intrafamily differences in substrate specificity. Submitted for publication.
  • Puls J. 1992. α-Glucuronidases in the hydrolysis of wood xylans. In Visser J, Beldman G, Kusters-van Someren MA, Voragen AG, eds. Xylans and Xylanases ( pp. 213–224). Amsterdam: Elsevier Science Publishers B.V.
  • Reilly PJ. 1981. Xylanases: Structure and function. Basic Life Sci 18: 111–129.
  • Rye CS, Withers SG. 2000. Glycosidase mechanisms. Curr Opin Chem Biol 4: 573–580.
  • Sabini E, Sulzenbacher G, Dauter M, Dauter Z, Jørgensen PL, Schülein M, Dupont C, Davies GJ, Wilson KS. 1999. Catalysis and specificity in enzymatic glycoside hydrolysis: A 2,5B conformation for the glycosyl-enzyme intermediate revealed by the structure of the Bacillus agaradhaerens family 11 xylanase. Chem Biol 6: 483–492.
  • Saha BC. 2003. Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30: 279–291.
  • Sapag A, Wouters J, Lambert C, de Ioannes P, Eyzaguirre J, Depiereux E. 2002. The endoxylanases from family 11: Computer analysis of protein sequences reveals important structural and phylogenetic relationships. J Biotechnol 95: 109–131.
  • Schmidt A, Schlacher A, Steiner W, Schwab H, Kratky C. 1998. Structure of the xylanase from Penicillium simplicissimum. Protein Sci 7: 2081–2088.
  • Schmidt A, Gübitz GM, Kratky C. 1999. Xylan binding subsite mapping in the xylanase from Penicillium simplicissimum using xylooligosaccharides as cryo-protectant. Biochemistry 38: 2403–2412.
  • Sidhu G, Withers SG, Nguyen NT, McIntosh LP, Ziser L, Brayer GD. 1999. Sugar ring distortion in the glycosyl-enzyme intermediate of a family G/11 xylanase. Biochemistry 38: 5346–5354.
  • Solomon V, Teplitsky A, Shulami S, Zolotnitsky G, Shoham Y, Shoham G. 2007. Structure–specificity relationships of an intracellular xylanase from Geobacillus stearothermophilus. Acta Crystallogr D Biol Crystallogr 63: 845–859.
  • Sørensen HR, Jørgensen CT, Hansen CH, Jørgensen CI, Pedersen S, Meyer AS. 2006. A novel GH43 alpha-l-arabinofuranosidase from Humicola insolens: Mode of action and synergy with GH51 alpha-l-arabinofuranosidases on wheat arabinoxylan. Appl Microbiol Biotechnol 73: 850–861.
  • Sørensen HR, Pedersen S, Jørgensen CT, Meyer AS. 2007. Enzymatic hydrolysis of wheat arabinoxylan by a recombinant “minimal” enzyme cocktail containing beta-xylosidase and novel endo-1,4-beta-xylanase and alpha-l-arabinofuranosidase activities. Biotechnol Prog 23: 100–107.
  • Subramaniyan S, Prema P. 2002. Biotechnology of microbial xylanases: Enzymology, molecular biology, and application. Crit Rev Biotechnol 22: 33–64.
  • Suzuki T, Ibata K, Hatsu M, Takamizawa K, Kawai K. 1997. Cloning and expression of a 58-kDa xylanase VI gene (xynD) of Aeromonas caviae ME-1 in Escherichia coli which is not categorized as a family F or family G xylanase. J Ferment Bioeng 84: 86–89.
  • St John FJ, Rice JD, Preston JF. 2006. Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J Bacteriol 188: 8617–8626.
  • St John FJ, Godwin DK, Preston JF, Pozharski E, Hurlbert JC. 2009. Crystallization and crystallographic analysis of Bacillus subtilis xylanase C. Acta Crystallogr Sect F Struct Biol Cryst Commun 65: 499–503.
  • Tahir TA, Berrin JG, Flatman R, Roussel A, Roepstorff P, Williamson G, Juge N. 2002. Specific characterization of substrate and inhibitor binding sites of a glycosyl hydrolase family 11 xylanase from Aspergillus niger. J Biol Chem 277: 44035–44043.
  • Takami H, Nakasone K, Takaki Y, Maeno G, Sasaki R, Masui N, Fuji F, Hirama C, Nakamura Y, Ogasawara N, Kuhara S, Horikoshi K. 2000. Complete genome sequence of the alkaliphilic bacterium Bacillus halodurans and genomic sequence comparison with Bacillus subtilis. Nucleic Acids Res 28: 4317–4331.
  • Teleman A, Tenkanen M, Jacobs A, Dahlman O. 2002. Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr Res 337: 373–377.
  • Tenkanen M, Burgermeister M, Vrsanska M, Biely P, Saloheimo M, Siika-aho M. 2003. A novel xylanase XYN IV from Trichoderma reesei and its action on different xylans. In Courtin CM, Veraverbeke WS, Delcour JA, eds. Recent Advances in Enzymes in Grain Processing ( pp. 41–46). Leuven: Katholieke Universiteit Leuven.
  • Tomme P, Driver DP, Amandoron EA, Miller RC Jr, Antony R, Warren J, Kilburn DG. 1995. Comparison of a fungal (family I) and bacterial (family II) cellulose-binding domain. J Bacteriol 177: 4356–4363.
  • Törrönen A, Harkki A, Rouvinen J. 1994. Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: Two conformational states in the active site. EMBO J 13: 2493–2501.
  • Törrönen A, Rouvinen J. 1995. Structural comparison of two major endo-1,4-xylanases from Trichoderma reesei. Biochemistry 34: 847–856.
  • Törrönen A, Rouvinen J. 1997. Structural and functional properties of low molecular weight endo-1,4-beta-xylanases. J Biotechnol 57: 137–149.
  • Trogh I, Courtin CM, Andersson AAM, Aman P, Sørensen JF, Delcour JA. 2004. The combined use of hull-less barley flour and xylanase as a strategy for wheat/hull-less barley flour breads with increased arabinoxylan and (1 -> 3,1 -> 4)-β-D-glucan levels. J Cereal Sci 40: 257–267.
  • Trogh I, Croes E, Courtin CM, Delcour JA. 2005. Enzymatic degradability of hull-less barley flour alkali-solubilized arabinoxylan fractions by endoxylanases. J Agric Food Chem 53: 7243–7250.
  • Van Campenhout S, Pollet A, Bourgois TM, Rombouts S, Beaugrand J, Gebruers K, De Backer E, Courtin CM, Delcour JA, Volckaert G. 2007. Unprocessed barley aleurone endo-beta-1,4-xylanase X-I is an active enzyme. Biochem Biophys Res Commun 356: 799–804.
  • Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G, Van Beeumen J. 2003. The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site. J Biol Chem 278: 7531–7539.
  • Vandermarliere E, Bourgois TM, Rombouts S, Van Campenhout S, Volckaert G, Strelkov SV, Delcour JA, Rabijns A, Courtin CM. 2008. Crystallographic analysis shows substrate binding at the -3 to +1 active-site subsites and at the surface of glycoside hydrolase family 11 endo-1,4-beta-xylanases. Biochem J 410: 71–79.
  • Vardakou M, Katapodis P, Samiotaki M, Kekos D, Panayotou G, Christakopoulos P. 2003. Mode of action of family 10 and 11 endoxylanases on water-unextractable arabinoxylan. Int J Biol Macromol 33: 129–134.
  • Vardakou M, Flint J, Christakopoulos P, Lewis RJ, Gilbert HJ, Murray JW. 2005. A family 10 Thermoascus aurantiacus xylanase utilizes arabinose decorations of xylan as significant substrate specificity determinants. J Mol Biol 352: 1060–1067.
  • Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE. 2008. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. J Mol Biol 375: 1293–1305.
  • Vázquez MJ, Alonso JL, Domínguez H, Parajó JC. 2000. Xylooligosaccharides: Manufacture and applications. Trends Food Sci Technol 11: 387–393.
  • de Vries RP, Kester HC, Poulsen CH, Benen JA, Visser J. 2000. Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr Res 327: 401–410.
  • de Vries RP, Visser J. 2001. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65: 497–522, table of contents.
  • Vrsanská M, Kolenová K, Puchart V, Biely P. 2007. Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS J 274: 1666–1677.
  • Wakarchuk WW, Campbell RL, Sung WL, Davoodi J, Yaguchi M. 1994. Mutational and crystallographic analyses of the active site residues of the Bacillus circulans xylanase. Protein Sci 3: 467–475.
  • White A, Tull D, Johns K, Withers SG, Rose DR. 1996. Crystallographic observation of a covalent catalytic intermediate in a beta-glycosidase. Nat Struct Biol 3: 149–154.
  • Wouters J, Georis J, Engher D, Vandenhaute J, Dusart J, Frere JM, Depiereux E, Charlier P. 2001. Crystallographic analysis of family 11 endo-beta-1,4-xylanase Xyl1 from Streptomyces sp. S38. Acta Crystallogr D Biol Crystallogr 57: 1813–1819.
  • Yoon KH, Yun HN, Jung KH. 1998. Molecular cloning of a Bacillus sp. KK-1 xylanase gene and characterization of the gene product. Biochem Mol Biol Int 45: 337–347.
  • Zechel DL, Withers SG. 2001. Dissection of nucleophilic and acid-base catalysis in glycosidases. Curr Opin Chem Biol 5: 643–649.
  • Zolotnitsky G, Cogan U, Adir N, Solomon V, Shoham G, Shoham Y. 2004. Mapping glycoside hydrolase substrate subsites by isothermal titration calorimetry. Proc Natl Acad Sci USA 101: 11275–11280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.