76
Views
71
CrossRef citations to date
0
Altmetric
Research Article

Industrial Applications of Immobilized Cells

, &
Pages 289-338 | Published online: 27 Sep 2008

References

  • Bitton C., Marshall K. C. Adsorption of Microorganisms to Surfaces. John Wiley & Sons, New York 1980
  • Michaelis L., Ehrenreich M. Die Absorptionsanaly.se der Fermente. Biochem. Z. 1908; 10: 283
  • Dunnill P. Immobilized cell and enzyme technology. Phil. Trans. R. Sot: Land. 1980; B290: 409
  • Linko Y.-Y., Pohjola L., Linko P. Entrapped glucose isomerase for high fructose syrup production. Process Biochem. 1977; 12(6)14
  • Hattori T., Furusaka C. Chemical activities ofEschericia coliadsorbed on a resin, Dowex-l. Nature 1959; 184(suppl 20)
  • Hattori T., Furusaka C. Chemical activitiesof Eschericia coliadsorbed on a resin. Biochim. Biophys. Acta 1959; 31: 581
  • Takasaki Y., Tanabe O. Enzyme Method for Converting Glucose in Glucose Syrups to Fructose. U.S. Patent 3; 616(221)1971
  • Takasaki Y., Kanbayashi A. Method of Convening Glucose into Fructose. U.S. Patent 3; 753(853)1973
  • Lilly M. D. Immobilized enzyme reactors. Biotechnology. DECHEMA Monographs,Verlag Chemie, Frankfurt/Main 1978; Vol. 82: 165
  • Chihata I. Development of enzyme engineering. Application of immobilized cell system. Food Process Engineering Enzyme Engineering in Food Processing, P. Linko, J. Larinkari. Applied Science Publishers, London 1980; Vol. 2: 1
  • Shimizu J., Kaga T. Apparatus for Continuous Hydrolysis of Raffmose. U.S. Patent 3; 664(927)1972
  • Suzuki H., Yoshida H., Ozawa Y., Kamibayashi A., Sato M., Mori S., Endo M. Increasing Yield of Sucrose. U.S. Patent 1973; 767: 526
  • Mosbach K., Mosbach R. Entrapment of enzymes and microorganisms in synthetic cross-linked polymers and their application in column techniques. Acta Chem. Scand. 1966; 20: 2807
  • Brodelius P. Industrial applications of immobilized biocatalysts. in Adv. Biochem. Eng, T. K. Ghose, A. Fiechter, N. Blakebrough. Springer-Verlag, Berlin 1978; Vol. 10: 75
  • Klein J., Wagner F. Immobilized whole cells. Biotechnology, DECHEMA Monographs. Verlag Chemie, Frankfurt/Main. 1978; Vol. 82: 142
  • Chibata I. Immobilized Enzymes. Research and Development. Kodansha, Tokyo 1978
  • Chibata I., Tosa T., Sato T. Use of immobilized cell systems to prepare Tine chemicals. Microbial Technology, H. J. Peppier, D. Perlman. Academic Press, New York 1979; Vol. 2: 433
  • Kolot. New trends in yeast technology. Immobilized cells. Process Biochem. 1980; 15(7)2
  • Cheetham P. S. J. Developments in the immobilisation of microbial cells and their applications. Topics in Enzyme and Fermentation Technology, A. Wiseman. Ellis Horwood, Ltd., Chichester 1989; Vol. 4: 189
  • Berger R. Immobilisierung mikrobieller Zellen und deren Nutzung zur Substratwandlung, Eine Literaturüberschichte. Acta Biotechnol. 1981; 1: 73
  • Linko P., Linko Y. Y. Applications of immobilized microbial cells. Applied Biochem. Bioeng, I. Chibata, L. B. Wingard, Jr. Academic Press, New York 1983
  • Bucholz K. Reaction engineering parameters for immobilized biocatalysts. Adv. Biochem. Bioeng, A. Fiechter. Springer-Verlag, Berlin 1982; Vol. 24: 39
  • Anon. Coca-Cola adds fructose to formulation. Food Eng. Inl. 1980; 5(4)11
  • Spaeth R. W. The Uniled States corn wet-milling industries in the 1980s. F. 0. Licht's Int'l. Sweetener Report. 1980; 3: 37
  • Carbonnell R. J. “In-house” commercialization by a major corporation, paper presented at the. Conference of Biotechnology. New Brunswick, N.J. Dec. 1 to 3, 1982
  • Anon. Japan: isoglucose production. F. O. Licht's Int'l. Sweetener Report. 1980; 3: 53
  • Barker S. A. High fructose syrups. New sweeteners in the food industry. Process Biochem. 1975; 10(10)39
  • Bucke C. Industrial glucose isomerase. Topics in Enzyme and Fermentation Biotechnology, A. Wiseman. Elli, Horwood. Chichester 1977; Vol. 1: 147
  • Casey J. P. High fructose com syrup, A case history of innovation. StärketStarch. 1977; 29: 196
  • Antrim R. L., Colilla W., Schmyder B. J. Glucose isomerase production of high-fructose syrups. Applied Biochem. Bioeng, L. B. Wingard, Jr, E. Katchalski-Katzir, L. Goldstein. Academi Press., New York 1979; Vol 2: 98
  • Hemmingsen S. H. Development of an immobilized glucose isomerase for industrial application. Applied Biochem. Bioeng, L. B. Wingard, Jr, E. Katchalski-Katzir, L. Goldstein. Academic Press, New York 1979; Vol. 2: 157
  • Chen W. P. Glucose isomerase (a review). Process Biochem. 1980; 15(6)36
  • Marshall R. O. Enzymatic Process. U.S. Patent 2; 950(228)1960
  • Yoshimura S., Danno G., Natake M. Studies on D-glucose isomerising activity of D-xylose grown cells fromBacillus coagulansstrain HN-68, Part 1. Description of the strain and conditions for the formation of the activity. Agric. Biol. Chem. 1966; 30: 1015
  • Tsumura N., Hagi M., Sato T. Propagation ofStreptomyces phaechromogenesin the presence of Co2+. Agric. Biol. Chem. 1967; 31: 902
  • Takasaki Y., Kosugi Y., Kanbayashi A. Streptomycesglucose isomerase. Fermentation Advances, D. Perlman. Academic Press, New York 1969; 561
  • Lewis L. T., Lloyd N. E., Logan R. M., Patel D. N. Process for Isomerizing Glucose to Fructose. U.S. Patent 3; 694(314)1972
  • Lewis L., Lloyd N., Logan R., Patel N. Process for Isomerizing Glucose to Fructose. U.S. Patent 1974; 3: 817–832
  • Thompson K. N., Johnson R. A., Lloyd N. E. Process for Isomerizing Glucose to Fructose. U.S. Patent 3; 788(945)1974
  • Lee C., Long M. Enzymatic Process using Immobilied Microbial Cells. U.S. Patent 3; 821(086)1974
  • Long M. E. Enzymatic Process using Immobilized Microbial Cells. U.S. Patent 3; 935(069)1976
  • Long M. E. Glucose Isomerization Process. U.S. Patent 4; 060(456)1977
  • Van Velzen A. Water-Insoluble Enzyme Composition. U.S. Patent. 3; 838(007)1974
  • Amotz S., Nielsen T. K., Thiessen N. O. Immobilization of Glucose Isomerase. U.S. Patent 3; 980(521)1976
  • Takasaki Y. Method of Immobilizing Enzymes to Microbial Cells. U.S. Patent. 1976; 3: 950–222
  • Snell R. L. Process for Conditioning Bacterial Cells Containing Glucose Isomerase activity. U.S. Patent. 1976; 3: 974–036
  • Ishimatsu Y., Shigesada S., Kimura S. Immobilization of Microbial Cells having Glucose Isomerase. Japan Kokai. 1976; 76: 44–688
  • Tsumura N., Kasumi T. Immobilization of glucose isomerase in microbial cell. Abstracts of Papers. 5th lnt'l. Ferment Symp., June 28 to July 3.1976 Dellweg. H. 291. July 3, 1976
  • Tsumura N., Kasumi T. Method of Isomerizing Glucose with Enzyme immobilized within Microbial Cell. U.S. Patent. 1977; 4: 001–008
  • Tsumura N., Kasumi T., Ishikawa M. Immobilization of glucose isomerase in microbial cells. Stärke/Starch. 1978; 30: 420
  • Kasumi T., Tsumura N., Kobayashu T. Immobilization of glucose isomerase in microbial cells. Stärke/Starch. 1979; 31: 25
  • Littlejohn J. H., Dworschack R. G. Treatment of Cellular Material Containing Glucose Isomerase;. U.S. Patent. 1975; 3: 909–355
  • Moskowitz G. I. Immobilized Glucose Isomerase. U.S. Patent. 1974; 3: 843–442
  • Lartique D. J., Weetall H. H. Method of making Fructose. U.S. Patent., 3: 939–041
  • Vieth W. R., Wang S. S., Saini R. Preparation of Protein Membranes containing Microbial Cells. U.S. Patent. 1976; 3: 972–776
  • Zittan L., Poulsen P. B., Hemmingsen S. H. Sweetzyme. A new immobilized glucose isomerase. Stärke/Starch 1975; 27: 236
  • Poulsen P. B., Zittan L. Continuous production of high-fructose syrup by cross-linked cell ho-mogenates containing glucose isomerase. Methods ofEnzymology, K. Mosbach. Academic Press, New York 1976; Vol. 44: 809
  • Oestergaard J., Knudsen S. I. Use of sweetzyme in industrial continuous isomerization. Various process alternatives and corresponding product types. Stärke/Starch 1976; 28: 350
  • Norsker O., Gibson K., Zittan L. Experience with empirical method for evaluating pressure drop properties of immobilized glucose isomerase. Stärke/Starch 1979; 51: 13
  • Hupkes J. V. Practical process conditions for the use of immobilized glucose isomerase. Stärke/Starch 1978; 30: 24
  • Hupkes J. V., Tilbury R. van, Production and properties of an immobilized glucose isomerase. StarkelStarch. 1976; 28: 356
  • Ji X.-S., Li H.-X., Zheng Y.-S., Bai P.-F., Gu G.-Z., Wang L.-M., Xu S.-S. Immobilization ofStreptomycescells possessing glucose isomerase activity. Acta Biochim. Biophys. Sinica 1982; 14: 85
  • Chibata I., Tosa T., Satq T. Preparation of D-Fructose. U.S. Patent 4; 081(327)1978
  • Tosa T., Sato T., Mori T., Yamamoto K., Takata I., Nishida Y., Chibata I. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol. Bioeng. 1979; 21: 169
  • Linko Y.-Y., Viskari R., Pohjola L., Linko P. Preparation and performance of celllose bead entrapped whole cell glucose isomerase. J. Solid Phase Biochem. 1977; 2: 203
  • Linko Y.-Y., Viskari R., Pohjola L., Linko P. Cellulose bead entrapped whole cell glucose isomerase in fructose syrup production. Enzyme Engineering, G. B. Broun, G. Manecke, L. B. Wingard, Jr. Plenum Press, New York 1978; 345
  • Linko P., Poutanen K., Weckström L., Linko Y.-Y. Preparation and kinetic behavior of immobilized whole cell biocatalysts. Biochimie 1980; 62: 387
  • Linko P., Poutanen K., Linko Y.-Y. Reactor performance in glucose isomeriztation by cellulose bead immobilizedActinoplanescells. J. Mol. Catalysis 1981; 13: 263
  • Pansolli P., Giovenco S., Dinelli D., Morisi F. Kinetics of fiber entrapped glucose isomerase. Analysis and Control of Immobilized Enzyme Systems, D. Thomas, J. P. Kemevez. North Holland Publishing, Amsterdam 1976; 237
  • Hamilton B. K., Cotton C. K., Cooney C. L. Glucose isomerase: A case study of enzyme-catalyzed process technology. Immobilized Enzymes in Food and Microbial Processes, A. C. Olson, C. L. Cooney. Plenum Press, New York 1974; 85
  • Hamilton B. K., Gardner C. R., Colton C. K. Basic concepts in the effects of mass transfer of immobilized enzyme kinetics. Immobilized Enzymes in Food and Microbial Processes, A. L. Olson, C. L. Cooney. Plenum Press, New York 1974; 205
  • Lee Y.-Y., Wun F., Tsao G. T. Kinetics and mass transfer characteristics of glucose isomerase immobilized on porous glass. Immobilized Enzyme Technology, H. H. Weetall, S. Suzuki. Plenum Press, New York. 1975; 129
  • Engasser J. M., Horwath C. Diffusion and kinetics with immobilized enzymes. Applied Biochemistry Bioengineering, L. B. Wingard, Jr, E. Kalchalski-Katzir, L. Goldstein. Academic Press., New York. 1976; 127
  • Pitcher W. R., Jr. Design and operation of immobilized enzyme reactors. Advances in Biochemical Engineering, T. K. Ghose, A. Fiechter, N. Blakebrough. Springer-Verlag, Berlin 1977; Vol. 10: 1
  • Ghose T. K., Chand S. Kinetics and mass transfer studies on the isomerization of cellulose hydrolysate using immobilizedStreptomycescells. J. Ferment. Technol. 1978; 18: 53
  • Roels J. A., Tilbury R. Van, Temperature dependence of stability and activity of an immobilized glucose isomerase in a packed bed. Stärke/Starch 1979; 31: 17
  • Van Keulen M. A., Vellenga K., Joosten G. E. H. Kinetics of the isomerization of D-glucose into D-fructose catalyzed by glucose isomerase containingArthrobactercells in immobilized and nonim-mobilized form. Biotechnol. Bioeng. 1981; 23: 1437
  • Karonen R., Poutanen K., Linko Y.-Y., Linko P. Isomerized syrups of increased fructose content. Food Process Engineering. Enzyme Engineering in Food Processing, P. Linko, J. Larinkari. Applied Science Publishers, London 1980; Vol. 2: 123
  • Crocco S. A close look at the high fructose syrups. Food Eng. Int'l. 1977; 2(2)41
  • Anon. United States: further rapid gains in HFCS capacity. F. O. Licht's Int'l. Sweetener Report 1980; 3: 45
  • Poutanen K., Linko Y.-Y., Linko P. Treatment of hydrolyzed lactose syrup with immobilized glucose isomerase. Milchwissenschaft 1978; 33(7)435
  • Poutanen K., Linko Y.-Y., Linko P. Enzymatic isomerization of glucose in hydrolyzed whey lactose syrup. North Eur. Dairy J. 1975; 44(4)90
  • Lindroos A., Linko Y.-Y., Linko P. Barley starch conversion by immobilized glucoamylase and glucose isomerase. Food Process EngineeringEnzyme Engineering in Food Processing, P. Linko, J. Larinkari. Applied Science Publishers, London, Vol. 2: 92–180
  • De Whalley H. C. S. Refining agents for the treatment of sugar liquids, etc. British Patent No. 1944; 564: 270
  • Wiseman A. New and modified invertase and their applications. Topics in Enzyme and Fermentation Technology, A. Wiseman. Ellis Horwood, Chichester 1979; Vol. 3: 267
  • Linko Y.-Y., Weckström L., Linko P. Sucrose inversion by immobilizedSaccharomyces cerevisiaeyeast cells. Food Process Engineering. Enzyme Engineering in Food Processing, P. Linko, J. Larinkari. Applied Science Publishers, London 1980; Vol. 2: 81
  • D'Souza S. F., Nadkarni G. B. Continuous inversion of sucrose by gel-entrapped yeast cells. Enzyme Microb. Technol. 1980; 2: 217
  • D'Souza S. F., Nadkarni G. B. Continuous conversion of sucrose to fructose and gluconic acid by immobilized yeast cell multienzyme complex. Biotechnol. Bioeng. 1980; 22: 2179
  • Johnson D. E., Ciegler A. Substrate conversion by fungal spores entrapped in solid matrices. Archiv. Biochem. Biophys. 1969; 130: 384
  • Toda K., Shoda M. Sucrose inversion by immobilized yeast cells in complete mixing reactor. Biotechnol. Bioeng. 1975; 17: 481
  • Parascandola P., Scardi V. Gelatin-entrapped whole-cell invertase. Bioechnol. Lett. 1981; 3: 369
  • Parascandola P., Salvadore S., Scardi V. Tuff as a convenient material for supporting immobilized invertase-active whole cells of. Saccharomyces cerevisiae. J. Ferment. Technol. 1982; 60: 477
  • Goldstein H., Barry P. W., Rizzuto A. B., Venkatasubramanian L., Vieth W. R. Continuous enzymatic production of invert sugar. J. Ferment. Technol. 1977; 55: 516
  • Kierstan M., Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng. 1977; 19: 387
  • Toda K. Interparticle mass transfer study with a packed column of immobilized microbes. Biotechnol. Bioeng. 1975; 17: 1729
  • Meisner R., Merz G., Klefentz H. Immobilization of Enzymatically Active Preparation. Ger. Offen. 1980; 2: 912–827
  • D'Souza S. F., Nadkarni G. B. Immobilized catalase-containing yeast cells: preparation and enzyme properties. Biotechnol. Bioeng. 1980; 22: 2191
  • Sicard P. J. Hydrogenated glucose syrups, sorbitol, mannitol, and xylitol. Nutritive Sweeteners, G. G. Birch, K. J. Parker. Applied Science Publishers, London 1982; 145
  • Linko P. Lactose and lactitol. Nutritive Sweeteners, Birch, K. J. Parker. Applied Science Publishers, London 1982; 109
  • Tate, Lyle. Foodstuffs, etc. containing Isomaltulose. British Patent Appl. 1979; 2: 066–639A
  • Tate, Lyle. Tablets Containing Isomaltulose as Diluent. British Patent Appl. 1980; 2: 066–640A
  • Cheetham P. S. J., Imber C. E., Isherwood J. The formation of isomaltulose by immobilized. Erwinia rhapontici. Nature 1982; 299: 628
  • Tate, Lyle. Isomaltulose Production from Sucrose. British Patent Appl. 1979; 2: 063–268A
  • Suzuki H., Ozawa Y., Oota H., Koshida H. Decomposition of raffinose by a-galactosidase of mold, (I) α-Galactosidase formation and hydrolysis of raffinose by the enzyme preparation. Agric. Biol. Chem. 1969; 33: 506
  • Obara J., Hashimoto S. Enzyme applications in the sucrose industry. Sugar Technol. Rev. 1977; 4: 200
  • Abbott B. J. Immobilized cells. Annual Reports of Fermentation Processes, D. Perlman. Academic Press, New York 1977; Vol. 1: 205
  • Chibata I., Tosa T., Sato T. Immobilized aspartase-containing microbial cells: preparation and enzyme properties. Appl. Microbiol. 1974; 27: 878
  • Saimaru H., Izumi C., Narita S., Yamada M. Fixation of ot-Galactosidase within the Cell of Microorganism Synthesizing this Enzyme. Cer. Offen. 1975; 2: 518–280
  • Linden J. C. Immobilized α-galactosidase in the sugar beet industry. Enzyme. Microb. Technol. 1982; 4: 130
  • Nishimaru H., Izumi C., Narita S., Yamada M. Fixation of α-Galactosidase inside microorganisms. Japan. Kokai. 1975; 75: 140–680
  • Sato K., Terashima M. Intracellular Melibiase Production. Japan. Kokai 1974; 74: 66–886
  • Suzuki H. Raffinose Decomposition by an Immobilized α-Galactosidase. Japan. Kokai 1973; 73: 52–989
  • Thananunkul D., Tanaka M., Chichester C. O., Lee T.-C. Degradation of raffinose and stachyose in soybean milk by α-galactosidase fromMortierelta vinaceae.Entrapment of α-galactosidase with polyacrylamide. J. Food Sci. 1976; 4: 173
  • Shukia T. P. Beta-galactosidase technology: a solution to the lactose problem. CRC Crit. Rev. Food Technol. 1975; 5: 325
  • Marconi W. Immobilized enzymes Biotechnology. DECHEMA Monographs, Vol. 82, Verlag Chemie, Frankfurt/Main. 1978, 78
  • Forsman E. S., Heikonen M., Kiviniemi L., Kreula M., Linko P. Kinetic investigations of the hydrolysis of milk lactose with solubleKluyveromyces fragilisβ-galactosidase. Michwissenschaft 1979; 34: 618
  • Harju M., Kreula M. Lactose hydrolysates. Carbohydrate Sweeteners in Foods and Nutrition, P. Koivistoinen, L. Hyvönen. Academic Press, New York 1980; 233
  • Dohan L. A., Baret J. L., Pain S., Delalande P. Lactose hydrolysis by immobilized lactase: semi-industrial experience. Food Process Engineering, Enzyme Engineering in Food Processing, P. Linko, L. Larinkari. Applied Science Publishers, London 1980; Vol. 2: 137
  • Dinelli D. Fiber-entrapped enzymes. Process Biochem. 1972; 7(8)9
  • Guillaume J., Plichon B. Enzymatically Active Polymer Production. French Demande 1975; 2: 277–097
  • Miyata N., Kikuchi T. Microbial fungus body fixing method. Japan Kokai. 1976; 76: 128–477
  • Jirku V., Turkova J., Veruović C., Kubánek V. Immobilization of yeast cells on polyphenylene oxide. Biotechnol. Lett. 1981; 2: 451
  • Griffith M. W., Muir D. D. Hydrolysis of lactose by a thermostable p-galactosidase immobilized on DEAE-cellulose. J. Sci. FoodAgric 1980; 31: 397
  • DeRosa M., Gambacorta A., Nicolaus B., Buonocore V. Immobilized bacterial cells containing a thermostable β-galactosidase. Biotechnol. Lett. 1980; 2: 29
  • DeRosa M., Cambacorta A., Lama L., Nicolaus B. Immobilization of thermophilic microbial cells in crude egg white. Biotechnol. Lett. 1981; 3: 183
  • D'Souza S. F., Kaul R., Nadkarni G. B. Immobilization of microbial cells in hen egg white. Biotechnol. Bioeng. 1982; 24: 1701
  • Weckström L., Linko Y.-Y., Linko P. Entrapment of whole cell yeast β-galactosidase in precipitated cellulose derivatives. Food Process Engineering. Enzyme Engineering in Food Processing, P. Linko, J. Larinkari. Applied Science Publishers, London 1980; Vol. 2: 148
  • Hirano K., Karube I., Suzuki S. Aminoacylase pellets. Biotechnol. Bioeng. 1977; 19: 311
  • Hirano K., Karube I., Matsunaga T., Suzuki S. Basic studies on packed-bed reactor using aminoacylase-pellets. J. Ferment. Technol. 1977; 55: 401
  • Suzuki S., Hirano K., Hiraga K., Takagi K. Pellet form fixed enzyme production. Japan. Kokai 1977; 77: 03–891
  • Makarova E. N., Melkonyan A. B., Markosyan L. S. L-Alanine acylase in encapsulated yeasts. Biol. Zh. Arm. 1979; 32: 860
  • Brodelius P., Hägerdal B., Mosbach K. Immobilized whole cells of the yeastTrigonopsis variabiliscontaining D-amino acid oxidase for the production of α-keto acids. Enzyme Engineering, H. H. Weetall, G. P. Royer. Plenum Press, New York 1980; Vol. 5: 373
  • Chibata I., Tosa I., Sano R. L-Amino Acids. Japan. Kokai 1973; 73: 72–391
  • Tosa T., Sato T., Mori T., Yushi M., Chibata I. continuous production of L-aspartic acid by immobilized aspartase. Biotechnol. Bioeng. 1973; 15: 69
  • Tosa T., Sato T., Mori T., Chibata I. Basic studies for continuous production of L-aspartic acid by immobilized. Eschericia coli, Appl. Microbiol. 1974; 27: 886
  • Sato T., Mori T., Tosa T., Chibata I., Furui M., Yamashita K., Sumi A. Engineering analysis of continuous production of L-aspartic acid by immobilizedEschericia colicells in fixed beds. Biotechnol. Bioeng. 1975; 17: 1797
  • Meng G.-Z., Yang L.-W., Kon X.-F., Zhang Y.-Y. The immobilized cells ofEschericia coliAS1.881 possessing high aspartase activity. Acta Microbiol. Sinica 1978; 18: 39
  • Yamada K. Bioengineering Report, Recent advances in industrial fermentation in Japan. Biotechnol. Bioeng. 1977; 19: 1563
  • Chibata I., Koto J., Wada M., Uchida Y., Murata K. Fixed Microorganisms Production. Japan. Kokai 1979; 79: 135–295
  • Sato T., Nishida Y., Tosa T., Chibata I. Immobilization ofEscherichia colicells containing aspartase activity with K-carrageenan. Biochim. Biophys. Acta. 1979; 179: 570
  • Nishida Y., Sato T., Tosa T., Chibata I. Immobilization ofEschericia colicells having aspartase activity with carrageenan and locust bean gum. Enzyme Microb. Technol. 1979; 1: 95
  • Nelson R. P. Immobilized Microbial Cells. U.S. Patent 3; 957(580)1976
  • Slowinski W., Charm S. E. Glutamic acid production with gel-entrapped. Corynebacterium glutamicum. Biotechnol. Bioeng. 1973; 15: 973
  • Venkatasubramanian K., Constantinides A., Vieth W. R. Synthesis of organic acids and modification of steroids by immobilized microbial cells. Enzyme Engineering, E. K. Pye, H. H. Weetall. Plenum Press, New York 1978; Vol. 3.: 29
  • Kim H. S., Ryu D. D. Y. Continuous glutamate production using immobilized whole-cell system. Bintechnol. Bioeng. 1982; 24: 2167
  • Yakovleva I. Synthesis of tyrosine, aspartic acid and glutamic acid by immobilized biocatalysts. Food Process Engineering, Vol. 2, Enzyme Engineering in Food Processing, P. Linko, J. Larinkari. Applied Science Publishers, London 1980; 159
  • Leuschner F. Embedded Enzymes for Use in Enzymic. Reactions. Ger. 1966; 1: 227–885
  • Chibata I., Tosa T., Sato T., Yamamoto K. l-Alanine and d-Aspartic Acid by an Immobilized Microbe. Japan. Kokai. 1974; 74: 75–782
  • Chibata I., Tosa T., Sato T., Yamamoto K. l-Alanine and d-Aspanic Acid Production from dl-Aspartic acid. Japan. Kokai. 1974; 75: 100–289
  • Chibata I., Tosa T., Sato T., Yamamoto K. Process for Preparing l-Alanine. U.S. Patent. 1975; 3: 898–128
  • Yamamoto K., Tosa T., Chibata I. Continuous production of l-alanine usingPseudomonas dacunhueimmobilized with carrageenan. Biolechol. Bioeng. 1980; 22: 2045
  • Takamatsu S., Yamamoto K., Tosa T., Chibata I. Stabilization of l-aspartate β-decarboxylase activity ofPseudomonas dacunhaeimmobilized with carrageenan. J. Ferment. Technol. 1981; 59: 489
  • Sato T., Takamatsu S., Yamamoto K., Uemura I., Tosa T., Chibata I. Production of L-alanine from ammonium fumarate using two types of immobilized microorganisms. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 147
  • Yamamoto K., Sato T., Tosa T., Chibata I. Continuous production of L-citrulline by immobilizedPseudomonasputidacells. Biotechnol. Bioeng. 1974; 16: 1589
  • Decottignies-LeMaréchal P., Calderón R., Vandecaatele J. P., Azerad R. Synthesis of L-tryptophan by immobilizedEschericia colicells. Eur. J. Appl. Microbiol. Biotechnol. 1979; 7: 33
  • Wagner F., Lang S., Bang W.-G., Vorlop K. D., Klein J. Production of L-tryptophan with immobilized cells. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 251
  • Kanamitsu O. Production of L-Lysine with Entrapped Microbes. Japan. Kokai 1975; 75: 132–181
  • Yamada H., Yamada K., Kumagai H., Hino T., Okamura S. Immobilization of β-tyrosinase cells with collagen. Enzyme Engineering, E. K. Pye, H. H. Weetall. Plenu Press. 1978; Vol. 3: 57
  • Wada M., Kato J., Chibata I. Electron microscopic observations on immobilized growing yeast cells. J. Ferment. Technol. 1980; 58: 327
  • Getränke-Technik A. G. Continuous Treatment of Liquids with Enzyme Carriers. Ger. Offen. 1971; 1: 517–814, 1969., 2,000.297
  • Berdell H. P. Continuous Treatment of Liquids in Fermentative Processes by Passing through Enzyme Containing Porous Structures. Swiss Patent. 1970; 489: 601
  • Berdell H. P. Process and Apparatus for the Continuous Treatment of Liquids with Enzyme Carriers. U.S. Patent 3; 769(175)1973
  • Baker D. A., Kirsop B. H. Rapid beer production and conditioning using a plug fermentor. J. Inst. Brew. 1973; 79: 487
  • Baker D. A., Kirsop B. H. A rapid procedure for reducing the diacetyl content of beer. J. Inst. Brew. 1973; 79: 43
  • Moll M., Blachere H., Durand G. Continuous Brewing of Beer. Ger. Offen. 1975; 2: 429–574
  • Moll M., Durand G., Blachere H. Continuous Production of Fermented Liquids. U.S. Patent 4; 009(286)1977
  • Chiou C. J. Studies on the principles and application of immobilized yeast cells. Chung-kuo Yeh Hua Hsueh Hai Chih 1979; 17(3 to 4)138
  • Tolls T., Showrys J., Sandine W., Elliker F. Enzymic removal of diacetyl from beer, (II) Further studies on the use of diacetyl reductase. Appl. Microbiol. 1970; 19: 649
  • Linko P., Linko Y.-Y. Continuous ethanol production by immobilized yeast reactor. Biotechnol. Lett. 1981; 3: 21
  • Linko P., Sorvari M., Linko Y.-Y. Ethanol production with immobilized cell reactors. Ann. New York Acad. Sci. 1983, (in press)
  • Hartmeier W. Coimmobilisates from Fermentable Yeasts with Coupled Enzymes as well as Their Production and Use. United Kingdom Patent Appl. 1981; 2: 077–291A
  • Hough J. S., Lyons T. P. Couplings of enzymes onto microorganisms. Nature 1972; 235: 389
  • Wiesenberg A. Wine making goes continuous. Food Eng. Int'l. 1978; 3(2)26
  • Wick E., Popper K. Continuous fermentation in slant tubes. Biotechnol. Bioeng. 1977; 19: 235
  • Divies C. Use of Polymer Matrix Embedded Microorganisms in Enzymic Reactions. Ger. Offen., 2,633,076; French Demande 2,320,349. 1977
  • Gestrelius S. Potential application of immobilized viable cells in the food industry: malolactic fermentation of wine. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 245
  • Middlehouven J., Bakker M. Degradation of caffeine by immobilized cells ofPseudomonas putidastrain C 304. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 214
  • Kaufman W., Bauer K. 6-Aminopenicillanic Acid. German Patent 1961; 1: 111–778
  • Poulsen P. B. European and American trends in the industrial application of immobilized biocatalysts. Enzyme Microb. Technol. 1981; 3: 271
  • Laeerlöf E., Nathorst-Westfelt L., Ekström B., Sjöberg B. Production of 6-aminopenicillanic acid with immobilizedEscherichia coliacylase. Methods of Enzymology, K. Mosbach. Academi press, New York 1976; Vol. 44: 759
  • Balasingham K., Warburton D., Dunnill P., Lilly M. D. The isolation and kinetics of penicillin amidase form. E. coli, Biochim. Biophys. Acta 1972; 276: 250
  • Chibata I., Osaka S, Tosa T., Sato T., Tadashi T. Manufacture of 6-aminopenicillanic acid by immobilized penicillin amidase-containing microorganisms. German Patent 1974; 2: 414–128
  • Sato T., Tosa T., Chibata I. Continuous production of amino-penicillanic acid from penicillin by immobilized microbial cells. Eur. Appl. Microbiol. Biotechnol. 1976; 2: 153
  • Sun W.-R., Wang Z.-S., Zhang Y.-Y., Zhang Q.-X., Wang X.-Q. Immobilization of penicillin acylase-producingEscherichia coliAS 1.76. Acta Microbiol. Sinica 1980; 20: 407
  • Wang Q.-C, Ye X-L., Zhao F.-X., Liu G.-R., Liu G.-Y., Ou G.-Q., Shen C.-Q., Xu J.-D. Production of 6-aminopenicillanic acid from benzylpenicillin by immobilizedE. colicells. Acta Biochim. Biophys. Sinica. 1980; 12: 305
  • Klein J., Wagner F. Immobilization of whole microbial cells for the production of 6-aminopenicillanic acids. Enzyme Engineering, H. H. Weetall, G. P. Royer. Plenum Press, New York 1980; Vol. 5: 335
  • Mayer H, Collins J., Wagner F. Cloning of the penicillin G acylase gene ofEscherichia coliATCC 11105 on multicopy plasmids. Plasmids of Medical, Environmental and Commercial Importance, K. N. Timmis, A. Pühler. Elsevier/Nort Holland Biomedical Press., Amsterdam 1979; 459
  • Meyer H., Jaakkola P., Schömer U., Segner A., Temmer T., Wagner F. Enzymatic hydrolysis of some penicillins and cephalosporins by clonedEscherichia coliacylase. Advances in Biotechnology, M. Moo-Young, C. W. Robinson, C. Vezina. Pergamon Press, Toronto 1981; Vol. I.: 83
  • Klein J., Wagner F. Estimation of catalytic efficiency of immobilized cell biocatalysts. Abstracts of Communications, 2nd Eur. Congr. Biotechnol., April 5 to 10. 1981. Society of Chemical Industry, LondonEngland 1981; 118
  • Gestrelius S. M. Immobilized Enzyme Products. British Patent 1979; 2: 019–410
  • Vojtiset V., Zeman R., Barta M., Culik K. Bonded Cells with Penicillin Acylase Activity. Ger. Offen. 1980; 2: 950–985
  • Kluge M., Klein J., Wagner F. Production of 6-aminopenicillanic acid by immobilized. Pleurotus ostreatus. Biotechnol. Lett. 1982; 4: 293
  • Marconi W., Bartoli F., Cecere F., Galli G., Morisi F. Synthesis of penicillin and cephalosporin by penicillin acylase entrapped in fibers. Agric. Biol. Chem. 1975; 39: 277
  • Suzuki S., Karube I. Production of antibiotics and enzymes by immobilized whole cells. Immobilized Microbial Cells, K. Venkatasubramanian. ACS Symp. Ser. 1979; 106–59
  • Kurzatkowski W., Kurylowicz W., Paszkiewicz A. Penicillin G production by immobilized fungal vesicles. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 211
  • Fleming I. D., Turner M. K., Napier E. J. Deacylation of 3-methyl-7β-(phenoxyacetamido)-3-cephem-4-carboxylic acid. German Patent 2; 422(374)1974
  • Fukushima M., Fuji T., Matsumoto L., Morishita ML. 7-Amino-cephem Compounds. Japan. Kokai 76; 70(884)1976
  • Yamanouchi Pharmaceutical Co., Ltd. Fixing D-Amino Acid Oxidase in Yeast Body. Japan. Kokai 79; 154(592)1979
  • Wang Z. X., Yeu H. A., Wang M. Z., Jiao Q. H., Han W. Z., Sun W. R., Zhang Q. X. Production of 7-aminoacetoxycephalo-sporanic acid by immobilizedE. colicells. Acta Microbiol. Sinica 1981; 21: 477
  • Wang Z. X., Han W. Z., Yue H. A., Zhang Q. X. Enzymatic synthesis of cephalexin by immobilizedE. coliAS-1.76 cells. Acta Microbiol. Sinica (in press).
  • Suzuki S., Karube I., Morikawa Y. Production of Antibiotics. Japan Kokai 79; 138(194)1979
  • Venkatasubramanian K., Vieth W. R. Immobilized microbial cells. Progress in Industrial Microbiology, M. J. Bull. Elsevier, Amsterdam 1979; Vol. 15.: 61
  • Veelken M., Pape H. Production of tylosin and nikkomycin by immobilizedStreptomycescells. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 206
  • Vandamme E. J. Use of microbial enzyme and cell preparations to synthesize oligopeptide antibiotics. J. Chem. Tech. Biotechnol. 1981; 31: 637
  • Kieslich K. Steroid conversions. Economic Microbiology, Microbial Enzymes and Byconversions, A. H. Rose. Academic Press, New York 1980; Vol. 5: 369
  • Mosbach K., Larsson P. O. Preparation and application of polymer entrapped enzymes and microorganisms in microbial transformation processes with special reference to steroid 11 -β-hydroxylation and Δ1-dehydrogenation. Biotechnol. Bioeng. 1970; 12: 19
  • Larsson P. O., Mosbach K. Immobilization of steroid-transforming microorganisms in polyacry-lamide. Methods ofEnzymology, K. Mosbach. Academic Press, New York 1976; Vol. 44: 183
  • Larsson P. O., Ohlson S., Mosbach K. Steroid conversion using immobilized living microorganisms. Enzyme Engineering, G. Broun, G. Manecke, L. B. Wingard, Jr. Plenum Press, New York 1978; Vol. 4: 317
  • Ohlson S., Larsson P. O., Mosbach K. Steroid transformation by living cells immobilized in calcium alginate. Eur. J. Appl. Microbiol. Biotechnol. 1979; 7: 103
  • Ohlson S., Flygare S., Larsson P. O., Mosbach K. Steroid hydroxylation using immobilized spores ofCurvularia lunatagerminated. in situ, Eur. J. Appl. Microbiol. Biotechnol. 1980; 10: 1
  • Omata T., Tanaka A., Yamane T., Fukui S. Transformation of steroids by gel-entrappedNocurdia rhodochrouscells in organic solvent. Eur. J. Appl. Microbiol. Biotechnol. 1979; 8: 143
  • Sonomoto K., Tanaka A., Omata T., Yamane T., Fukui S. Application of photo-crosslinkable resin prepolymers to entrap microbial cells. Effects of increased cell-entrapping gel hydrophobicity on the hydrocortisone Δ1-dehydrogenation. Eur. J. Appl. Microbiol. Biotechnol. 1979; 6: 325
  • Tanaka A., Jin I. N., Kawamoto S., Fukui S. Entrapment of microbial cells and organelles with hydrophilic urethane prepolymers. Eur. J. Appl. Microbiol. Biotechnol. 1979; 7: 351
  • Fukui S., Ahmed A., Omata T., Tanaka A. Bioconversion of lipophilic compounds in nonaqueous solvent, effect of gel hydrophobicity on diverse conversions of testosterone by gel-entrappedNocurdia rhodochrouscells, Eur. J. Appl. Microbiol. Biotechnol. 1980; 10: 289
  • Fukui S., Soda E., Tanaka A., Yamane T., Komata T. Conversion of steroid materials to useful compounds. Japan Kokai 80; 15(760)1980
  • Tanaka A., Sonomoto K., Hoq M. M., Usui N., Nomure K., Fukui S. Hydroxylation of steroids by immobilized microbial cells. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York. 1982; Vol. 6: 131
  • Omata T., Iida T., Tanaka A., Fukui S. Immobilization of microbial cells and enzymes with hydrophobic photocross-linkable resin prepolymers. Eur. J. Appl. Microbiol. Biotechnol 1979; 6: 207
  • Constantinides A. Steroid transformation at high substrate concentration using immobilizedCorynebac-teriumsimplexcells. Biotechnol. Bioeng. 1980; 22: 119
  • Kondo E., Matsuo E. Pseudo crystallofermentation of steroids: a new process for preparing prednisolone by a microrganism. J. Gen. Appl. Microbiol. 1960; 7: 113
  • Kondo E. Steroid-I -dehydrogenation by a crude enzyme preparation from. Arthrobacler simplex., Agric. Biol. Chem. 1962; 27: 69
  • Bhasin D. P., Cryte C. C., Studebaker J. F. A silicon polymer as a steroid reservoir for enzyme catalyzed steroid reactions. Biotechnol. Bioeng. 1976; 18: 1777
  • Yang L. W., Zhong L. C. Preparation and the enzymatic properties of immobilizedArthrobacler simplexBy-2–13 cells possessing 3-keto-steroid-Δ1-dehydrogenase activity. Acta. Microbiol. Sinica 1983; 22(3), (in press)
  • Yang L. W., Zhong L.-C. Transformation of hydrocortisone by immobilizedArthrobacter simplexBy-2–13 cells. Acta Biochim. Biophys. Sinica, (in press).
  • Maddox I. S., Dunnill P., Lilly M. D. Use of immobilized cells ofRhizopus nigricansfor the 11α-hydroxylation of progesterone. Biotechnol. Bioeng. 1981; 23: 345
  • Duarte J. M. C., Lilly M. D. The use of free and immobilized cells in the presence of organic solvents: the oxidation of cholesterol by Nocardia rhodochrous. Enzyme Engineering, H. H. Weetall, G. P. Royer. Plenum Press, New York 1980; Vol. 5: 363
  • Glomon C., Germain P., Miclo A., Engasser J. M. Steroid conversion by immobilized cells. Enzvme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6.: 125
  • Atrat P., Hüller E., Hörhold C. Steroid transformation with immobilized microorganisms. (V) Continuous side chain cleavage of a cholesterol derivative with immobilizedMycobacterium phleicells. Eur. J. Appl. Microbiol. Biotechnol 1981; 12: 157
  • Larsson P. O., Ohlson S., Mosbach K. New approach to steroid conversion using activated immobilized microorganisms. Nature 1976; 263: 796
  • Miall L. M. Organic acids. Economic Microbiology, Primary Products of Metabolism, A. H. Rose. Academic Press, New York 1978; Vol. 2: 48
  • Greenshield R. N. Acetic acid: vinegar. Economic Microbiology.Primary Products of Metabolism, A. H. Rose. Academic Press, New York 1980; Vol. 2: 121
  • Barker S. A., Kay I. M., Kennedy J. F. Water Insoluble Nitrogen-Containing Biologically Active Organic Substances. U. S. Patent 1975; 3: 912–593
  • Kennedy J. F., Barker S. A., Humphreys J. D. Microbial living cells immobilized on metal hydroxides. Nature 1976; 262: 242
  • Kennedy J. F., Humphreys J. D., Barker S. A., Greenshield R. N. Application of living immobilized cells to the acceleration of the continuous conversion of ethanol (wort) to acetic acid (vinegar) hydrous titanium (IV) oxide-immobilizedAcetobacterspecies. Enzyme Microb. Technol. 1980; 2: 209
  • Ghommidh C., Navarro J. M., Durand G. Acetic acid production by immobilizedAcetobactercells. Biotechnol. Lett. 1981; 3: 93
  • Ghommidh C., Navarro J. M., Durand G. A study of acetic acid production by immobilizedAcetobactercells: oxygen transfer. Biotechnol. Bioeng. 1982; 24: 605
  • Ghommidh C., Navarro J. M., Messing R. A. A study of acetic acid production by immobilizedAcetobactercells: product inhibition effects. Biotechnol. Bioeng. 1982; 24
  • Chibata I., Tosa T., Sato T., Yamamoto K. Process for Preparing L-Malic Acid. U.S. Patent 3; 922(195)1975
  • Takata I., Yamamoto K., Tosa T., Chibata I. Screening of microorganisms having high fumarase activity and their immobilization with carrageenan. Eur. J. Appl. Microbiol. Biotechnol. 1979; 7: 161
  • Takata T., Yamamoto K., Tosa T., Chibata I. Immobilization ofBrevibacterium flavumwith carrageenan and its application for continuous production of L-malic acid. Enzyme Microb. Technol. 1980; 2: 30
  • Takata I., Kayashima K., Tosa T., Chibata I. Improvement of stability of fumarase activity ofBrevibacterium flavumby immobilization with k-carrageenan and polyethyleneimine. J. Ferment. Technol. 1982; 60: 431
  • Yang L. W., Zhong L. C. The immobilized cells ofCandida rugosapossessing fumarase activity. Acta Microbiol. Sinica 1980; 20: 296
  • Zhang S. Z. Industrial applications of immobilized biomaterials in China. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 265
  • Ado Y., Kawamoto T., Masunaga I., Takayama K., Takasawa S., Kimura K. Production of L-malic acid with immobilized thermophilic bacterium. Thermus rubens Nov. sp., in Enzyme Engineering. Plenum Press, New York 1982; Vol. 6: 303
  • Chibata I., Tosa T., Sato T., Yamamoto K. Process for Preparing Urocanic Acid. U.S. Patent., 3: 898–127
  • Shibtanai T., Nishimua N., Nabe K., Kakimoto T., Chibata I. Enzymatic production of urocanic acid by. Achromobacler liquidum, Appl. Microbiol. 1974; 27: 688
  • Jack T. R., Zajic J. R. The enzymatic conversion of L-histidine to urocanic acid by whole cells ofMicococcus luteusimmobilized on carbodimide activated carboxymethylcellulose. Biotechnol Bioeng. 1977; 19: 631
  • Lock wood L. B. Production of organic acids by fermentation. Microbial Technology, H. J. Peppier, D. Perlman. Academic Press, New York 1979; 355
  • Briffaud J., Engasser J. M. Citric acid production by free and immobilized yeasts, kinetic effects of oxygen diffusional limitations. Preprints, Part 2, 1st Eur. Congr. Biotechnol., Interlaken, Switzerland, Sept., 25–29, 1978. DECHEMA, Frankfurt/Main 1978; 133
  • Stottmeister U. Kontinuerliche Citronensauresynthese mit in Polyacrylamide immobilisierten. Candida lipolytica-Zellen, Z. Allg. Mikrobiol. 1979; 763: 19
  • Berger V., Langhammer G. Immobilisierung vonCandida lipolytica-Zellen in polyacrylamidgel zwecks Gewinnung von Citronensäure, Z. Allg. Mikrobiol. 1980; 20: 69
  • Vieth W. R., Venkatasubramanian K. Immobilized cell systems. Enzyme Engineering, G. Broun, G. Manecke, L. B. Wingar, Jr. Plenum Press, New York 1978; Vol. 4: 307
  • Vieth W. R., Venkatasubramanian K. Immobilized microbial cells in complex biocatalysis. Immobilized Microbial Cells, K. Venkatasubramanian. ACS Symp. Ser., ACS, Washington, DC 1979; Vol 6: I
  • Linko P. Immobilized live cells. Advances in Biotechnology, M. Moo-Young, C. W. Robinson, C. Vezina. Pergamon Press, Toronto 1981; 711
  • Vaija J., Linko Y. Y., Linko P. Citric acid production with alginate bead entrapped. Aspergillus niger, Appl. Biochem. Biotechnol. 1982; 7: 51
  • Heinrich M., Rehm H. J. Formation of gluconic acid at low pH-values by free and immobilizedAspergillus nigercells during citric acid fermentation. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 88
  • Vaija J., Linko P. Mass transfer restrictions in immobilized cell systems: citric acid production with immobilized. Aspergillus niger, KemialKemi 1981; 8(12)802
  • Griffith W. L., Compere A. L. A new method for coating fermentation tower packing so as to facilitate microorganism attachment. Dev. Ind. Microbiol. 1975; 17: 241
  • Compere A. L., Griffith W. L. Fermentation of waste materials to produce industrial intermediates. Dev. Ind. Microbiol. 1975; 17: 247
  • Compere A. L., Griffith W. L. Microorganism Immobilization. U.S. Patent 4; 287(305)1981
  • Griffith W. L., Compere A. L. Continuous lactic acid production using a fixed-film system. Dev. Ind. Microbiol 1977; 18: 723
  • Linko P. Immobilized biological systems for continuous fermentation. Food Process Enginering Enzyme Engineering in Food Processing, P. Linko, J. Larinkari. Applied Science Publishers, London 1980; Vol. 2.: 27
  • Linko P., Linko Y.-Y. Immobilized microbial cells for ethanol and other applications, paper 69a. presented at the 74th Annual AIChE Meeting, New Orleans, LA, USA. Nov. 8–12, 1981
  • Stenroos S. L., Linko Y. Y., Linko P. Production of L-lactic acid with immobilized. Lactobacillus delbrueckii. BiotechnoL Lett. 1982; 4: 159
  • Stenroos S. L., Linko Y.-Y., Linko P., Harju M., Heikonen M. Lactic acid fermentation with immobilized Lactobacillus. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 299
  • Linko P., Stenroos S.-L., Koistinen T., Harju M., Heikonen M. Applications of immobilized lactic acid bacteria. Enzyme Engineering. in press. 1984; Vol. 7
  • Karube I., Hirano K., Suzuki S. Glucose oxidase pellets. BiotechnoL Bioeng. 1977; 9: 1233
  • D'Souza S. F., Nadkarni G. B. Immobilized catalase-containing cells: preparation and enzymic properties. BiotechnoL Bioeng. 1980; 22: 2191
  • Brodelius P., Mosbach K. Immobilized Microbial Enzyme/Cell Systems and Their use in Preparing α-Keto Acids from the Corresponding Amino Acids. European Patent Appl. 1980; 18: 333
  • Brodelius P., Nilsson K., Mosbach K. Production of α-keto acids. (I) Immobilized cells ofTrigonopsis variabiliscontaining D-amino acid oxidase. Appl. Biochem. BiotechnoL. 1981; 6: 293
  • Szwajcer E., Brodelius P., Mosbach K. Production of α-keto acids. (2) Immobilized whole cells ofProvidenciasp. PCM 1298 containing L-amino acid oxidase. Enzyme Microb. TechnoL 1982; 4: 409
  • Wikström P., Szwajcer E., Brodelius P., Nilsson K., Mosbach K. Formation of α-keto acids from amino acids using immobilized bacteria and algae. BiotechnoL Lett. 1982; 4: 153
  • Makover S., Pruess D. L. Method for Producing 2-Keto-L-Gulonic Acid. U.S. Patent 3; 907(639)1975
  • Martin C. K. A., Perlman D. Conversion of L-sorbose to L-sorbosone by immobilized cells ofGluconobacter melanogenusIFO 3293. Biotechnol Bioeng. 1976; 18: 217
  • Martin C. K. A., Perlman D. Conversion of L-sorbose to 2-keto-L-gulonic acid by mixtures of immobilized cells ofGluconobater melanogenusandPseudomonasspecies, in Abstracts of Papers. 5th lnt'l Fermentation Symp., Berlin. June 28 to July 3, 1976 Verlag Versuchs Lehranstalt für Spiritusfabrikation. Berlin. 1976, 297
  • Kato E. Studies of erythorbic acid fermentation. Immobilized microbial cells by polyacrylamide. Meiji Daigaku Kagaku Kijutsu Kenkyoyusho Nempo 1974; 16: 26, (Japan.)
  • Aunstrup K. Industrial approach to enzyme production. Biotechnological Applications of Proteins and Enzymes, Z. Bohak, N. Sharon. Academic Press, New York 1977; 39
  • Diers I. Glucose isomerase. Bacillus coaguhms. Continuous Culture, A. C. R. Dean, D. C. E. Wood, C. G. T. Evans, J. Melling. Ellis Horwood., Chichester. 1976; 208
  • Kokubu T., Karube I., Suzuki S. α-Amylase production by immobilized whole cells of Bacillus subtilis. Eur. J. Appl. Microbiol. Biotechnol. 1978; 5: 233
  • Suzuki S., Karube I. Continuous or Batchwise Production of Enzymes. Japan. Kokai 79; 132(294)1979
  • Shinmyo A., Kimura H., Okada H. Physiology of a-amylase production by immobilized. Bacillus amyloliquefaciens, Eur. J. Appl. Microbiol. Biotechnol 1982; 14: 7
  • Kokubu T., Suzuki S. Protease production by immobilized mycelia of. Streptomyces fradiae, Biotechnol Bioeng. 1981; 23: 29
  • Frein E. M., Montenecourt B. S., Eveleigh D. E. Cellulase production byTrichoderma reeseiimmobilized on K-carrageenan. Biotechnol Lett. 1982; 4: 287
  • Chibata I., Kakimoto T., Nishimura N., Nabe K. CoA production by immobilized bacterial cells. Japan. Kokai 75; 126(884)1975
  • Shimizu S., Morioka H., Tani Y., Ogata K. Synthesis of coenzyme A by immobilized microbial cells, J. Ferment. Technol. 1975; 53: 77
  • Asada M., Nakanishi K., Matsuno R., Kamikubo T. Continuous CoA production with immobilizedBrevibacterium ammoniagenescells. Agric. Biol. Chem. 1982; 46: 1687
  • Samejima H., Kimura K., Ado Y., Suzuki Y., Tadokoro T. Regeneration of ATP by immobilized cells and its utilization for the synthesis of nucleotides. Enzyme Engineering, G. Broun, G. Manecke, L. B. Wingard, Jr. Plenu Press, New York 1978; Vol. 4: 237
  • Yamada H., Shimizu S., Tani Y. Synthesis of coenzymes by immobilized cell system. Enzyme Engineering, H. H. Weetall, G. P. Royer. Plenum Press, New York 1980; Vol. 5: 405
  • Kawabata Y., Demain A. L. Enzymatic synthesis of pantothenic acid byEscherichia colicells. Immobilized Microbial Cells, K. Venkutasubramanian. ACS Symp. Series, ACD, Washington. D.C 1979; Vol. 106: 133
  • Yamada H., Shimizu S., Shimada H., Tani Y., Takahashi S., Ohashi T. Production of D-phenylglycine-related amino acids by immobilized microbial cells. Biochimie 1980; 62: 395
  • Chibata I., Kato J., Murata K. Glutathione. Japan. Kokai. 1979; 79: 138–190
  • Murata K., Tani K., Kato J., Chibata I. Continuous production of glutathione using immobilized microbial cells containing ATP-generating system. Biochimie 1980; 62: 347
  • Murata K., Tani K., Kato J., Chibata I. Glutathione production coupled with ATP regeneration system. Eur. J. Appl. Microbiol. Biotechnol. 1980; 10: 11
  • Murata K., Tani K., Kato J., Chibata I. Glutathione production by immobilizedSaccharomyces cerevisiaecells, containing an ATP regeneration system. Eur. J. Appl. Microbiol. Biotechnol. 1981; 11: 72
  • Ado Y., Suzuki Y., Tadokoro T., Kimura K., Samejima H. Regeneration of ATP by immobilized microbial cells and its utilization for the synthesis of ATP and CDP-choline. Appl. Biochem. Bioiechnol 1979; 4: 43
  • Kimura K., Tatsuyomi Y., Mizushima N., Tanaka A., Matsuno R., Fukuda H. Immobilization of glycolysis system of yeast and production of cytidine diphosphate cholin. Eur. J. Appl. Microbiol. Biotechnol. 1978; 5: 13
  • Kimura K., Tatsutomi Y., Matsuno R., Tanaka A., Fukuda H. Some properties of immobilized glycolysis system of yeast in fermentative phosphorylation of nucleotides. Eur. J. Appl. Microbiol. Biotechnol. 1981; 11: 78
  • Uchida T., Watanabe T., Kato T., Chibata I. Continuous production of NADP by immobilizedAchromobacter aceriscells. Biotechnol. Bioeng. 1978; 20: 255
  • Ado T., Kimura K., Samejima H. Production of useful nucleotides with immobilized microbial cells. Enzyme Engineering, H. H. Weetall, P. Royer. Plenum Press, New York 1980; Vol. 5: 295
  • Tanaka Y., Hayashi T., Kawashima K. Production of NADP by immobilized cells with NAD-kinase. Biotechnol Bioeng. 1982; 24: 857
  • Nabe K., Izuo N., Yamada S., Chibata I. Conversion of glycerol to dihydroxyacetone by immobilized whole cells of. Acetobacler xylinum, Appl. Environmental Microbiol 1979; 38: 1056
  • Holst O., Enfors S. O., Mattiasson B. Oxygenation of immobilized cells using hydrogen peroxide; a model study ofGluconobacter oxydansconvening glycerol to dihydroxyacetone. Eur. J. Appl. Microbiol. Biotechnol 1982; 14: 64
  • Adlercreutz P., Hoist O., Mattiasson B. Oxygen supply to immobilized cells, (2) Studies on a coimmobilized algae-bacteria preparation within situoxygen generation. Enzyme Microb. Technol 1982; 4: 395
  • Schnarr G. R. W., Szarel W. A., Jones J. K. N. Preparation and activity of immobilizedAcetobacler suboxydanscells. Appl. Environmenia. Microbiol 1977; 33: 732
  • Vogelmann H., Ghahremani B., Wagner F. Preparation of porphobilinogen and uroporphyrin 111 from 5-aminolaevulinic acid by pretreated cells of. Chromatium vinosum, Eur. J. Appl Microbiol. Biotechnol 1975; 2: 19
  • Heinrich M., Rehm H. J. Growth ofFusarium moniliformeon n-alkanes: comparison of an immobilization method with conventional processes. Eur. J. Appl. Microbiol Biotechnol. 1981; 11: 139
  • Kominek L. Dialysis Process and Apparatus. U.S. Patent 3; 915(802)1975
  • Couderc R., Baratti J. Immobilized yeast cells with methanol oxidase activity: preparation and enzymatic properties. Biotechnol. Bioeng. 1980; 22: 1155
  • Bui K., Arnaud A., Galzy P. A new method to prepare amides by bioconversion of corresponding nitriles. Enzyme Microb. Technol. 1982; 4: 195
  • Kosaric N., Ng D. C. M., Russell I., Stewart G. S. Ethanol production by fermentation: an alternative liquid fuel. Advances in Applied Microbiology, D. Perlman. Academic Press, New York 1980; 147
  • Rhigelato R. C. Anaerobic fermentation: alcohol production. Phil. Trans. R. Soc. London. 1980; B290: 303
  • Bu'Lock J. D., Comberbach D. M. A practical system for high-productivity ethanol fermentation, paper presented at the 2nd Eur. Congr. Biotechnol., April 5 to 10. 1981. Eastbourne. England. Abstracts of Papers. 1981, 204
  • Griffith W. L., Compere A. L. Biomass Growth Restriction in a Packed-Bed Reactor. U.S. Patent 4; 127(447)1978
  • Hino T., Yamada H., Okamura S. Immobilization of Microorganisms in a Hydrophilic Complex Gel. U.S. Patent 4; 148(689)1979
  • Ghose T. K., Bandyopadhyay K. K. Continuous rapid ethanol fermentation with immobilized yeast cell. Proc. 1st Nat'l. Seminar on Immobilized Enzyme Eng, R. N. Mukherjea. Jahpur. Univ., Calcutta 1979; 135
  • Moo-Young M., Lamptey J., Robinson C. W. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 1980; 2: 541
  • Wada M., Kato J., Chibata I. Continuous production of ethanol using immobilized growing yeast cells. Eur. J. Appl. Microbiol. Biotechnol. 1980; 10: 275
  • Wada M., Kato J., Chibata I. Continuous production of ethanol in high concentration using immobilized growing yeast cells. Eur. J. Appl. Microbiol. Biotechnol. 1981; 11: 67
  • Holcberg I. P., Margalith P. Alcohol fermentation by immobilized yeast at high sugar concentrations. Eur. J. Appl. Microbiol. Biotechnol. 1981; 13: 133
  • Wang H. Y., Hettwer D. J. Cell immobilization in k-carrageenan with tricalcium phosphate. Biotechnol. Bioeng. 1982; 24: 1827
  • Linko Y. Y., Jalanka H., Linko P. Ethanol production from whey with immobilized living yeast. Biotechnol. Lett. 1981; 3: 263
  • Larsson P. O., Mosbach K. Alcohol production by magnetically immobilized yeast. Biotechnol. Lett. 1979; 1: 501
  • Margaritis A., Bajpai P. K., Wallace J. B. High ethanol productivities using small Ca-alginate beads of immobilized cells of. Zymomonas mobilis. Biotechnol. Lett. 1981; 3: 613
  • Linko P., Linko Y. Y. Continuous ethanol fermentation by immobilized biocatalysts. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 335
  • Day D. F., Sarkar D. An immobilized yeast cell column for the fermentation of molasses. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 343
  • Fukushima S., Hanai S. Pilot operation for continuous alcohol fermentation of molasses in an immobilized bioreactor. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 347
  • Nagashima M. Technology developments on biomass alcohol production in Japan. Continuous alcohol production with immobilized microbial cells, paper presented at the 3rd Biochemical Engineering Conference, Santa Barbara, Calif. Sept., 19 to 24, 1982
  • Anon. Japanese consortium checks out streamlined fermentation process. Biomass Digest 1982; 4(7)1
  • Grote W., Lee K. J., Rogers P. L. Continuous ethanol production by immobilized cells of. Zymomonas mobilis, Biotechnol. Lett. 1980; 2: 481
  • Arcuri E. J., Worden R. M., Shumate S. E. II, Ethanol production of immobilized cells of. Zymomonas mobilis, Biotechnol. Lett. 1980; 2: 499
  • Arcuri E. J. Continuous ethanol production and cell growth in an immobilized-cell bioreactor employing. Zymomonas mobilis, Biotechnol. Bioeng. 1982; 24: 595
  • Amin G., Verachtert H. Comparative study of ethanol production by immobilized-cell systems usingZymomonas mobilisor. Saccharomyces bayanus, Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 59
  • Prince I. G., Barford J. P. Tower fermentation usingZymomonas mobilisfor ethanol production. Biotechnol. Lett. 1982; 4: 525
  • Anon. AustralianZymomonasprocess moves closer to commercial market. Biomass Digest. 1982; 4(7)5
  • Margaritis A., Bajpai P. Continuous ethanol production from Jerusalem artichoke tubers (II) Use of immobilized cells of. Kluyveromyces marxianus, Biotechnol. Bioeng. 1982; 24: 1483
  • Chiang L. C., Hsiao H. Y., Flickinger M. C., Chen L. F., Tsao G. T. Ethanol production from pentoses by immobilized microorganisms. Enzyme Microb. Technol. 1982; 4: 93
  • Slininger P. J., Bothast R. J., Black L. T., McGhee J. E. Continuous conversion of D-xylose to ethanol by immobilized. Pachysoten tannophilus, Biotechnol. Bioeng. 1982; 24: 2241
  • Krouwel P. G., van der Laan W. F. M., Kossen N. W. F. Continuous production ofn-butanol and isopropanol by immobilized, growingClostridium butylicumcells. Biotechnol. Lett. 1980; 2: 253
  • Noon R. There's more than one way to ferment biomass to fuel. Powergrade butanol. Chemiech 1982; 12(11)681
  • Häggstróm L., Molin N. Calcium alginate immobilized cells ofClostridium aceiobutylicumfor solvent production. Bioteehnol. Lett. 1980; 2: 241
  • Häggström L. Immobilized cells ofClostridium acetobutylicumfor butanol production. Advances in Biotechnology, M. Moo-Young, C. W. Robinson. Pergamon Press., Toronto 1981; Vol. 2: 79
  • Mattiasson B., Suominen M., Andersson E., Häggström L., Albertsson P. A., Hahn-Hägerdal B. Solvent production byClostridium aceiobutylicumin aqueous two-phase systems. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 153
  • Sankarnarayan V., Lee Yoon Y., Chambers R. P. Fermentative conversion of xylose into chemicals. Proc. Papermakers Conf.Atlanta, USA, April, 13 to 16, 1980, TAPPI. Atlanta 1980; 175
  • Chua J. W., Erarslan S., Kinoshita S., Taguchi H. 2,3-Butanediol production by immobilizedEnterobacter aerogenes1AMM 133 with K-carrageenan. J. Ferment. Technol. 1980; 58: 123
  • Kautola H., Linko Y. Y., Linko P. 2.3-Butanediol produciion by immobilized cells ofEnterobactersp. in Enzyme Engineering., 7, in press.
  • Bisping B., Rehm H. J. Glycerol production by immobilized cells of. Saccharomyces cerevisiae. Eur. J. Appl. Microbiol. Bioteehnol. 1982; 14: 136
  • van De Linden A. C. Epoxidation of a-olefins by heptane grownPseudomoiuiscells. Biochim. Biophys. Acta. 1963; 77: 157
  • Furuhashi K., Taoka A., Uchida S., Urawa S. Verfahren zur Herstellung von Epoxiden unter Verwendung von immobilisirten Mikroorganismen. Cer. Offen. 1980; 2: 931–148
  • Furuhashi K., Uchida S., Karube I., Suzuki S. Propyleneoxide production by immobilizedNocardia corallinaB-276. Enzyme Engineering, I. Chibata, S. Fukui, L. B. Wingard, Jr. Plenum Press, New York 1982; Vol. 6: 139
  • Cape R. E., Amon W. F., Jr, Neidleman S. L. The future of biotechnology and the role of genetic engineering. Bioteehnol. Lett. 1980; 2: 199
  • Neidleman S. L. The use of Enzymes as Catalysts for Alkene Oxide Production. Hydrocarbon Process. 1980; 59: 11–135
  • Neidleman S. L., Amon W. F., Jr, Geigert J. Epoxides and Glycols from Alkenes. U.S. Patent Appl. 1978; 914: 384, European Patent Appl., 7.176, 198.
  • Aon. Cetus reveals enzymic propylene oxide process with variations. European Chem. News. 1980; 35(943)22
  • De Bont J. A. M., Tramper J., Luyben K., Ch A. M. Production of propylene oxide by immobilizedMycobacteria.Abstracts of Communications. 2nd Eur. Congr. Bioteehnol. Eastbourne, England, April, 5 to 10. 1981. Soc. Chem. Ind., London. 1981; 158
  • Weetall H. H., Bennett M. A. Production of hydrogen using immobilizedRhodospirillum rubrum.in Abstracts of Papers. 5th Int'l Ferment. Symp. Berlin. June 28 to July 3. 1976 Verlag Versuchs Lehranstalt Spiritusfabrikation. Berlin. 1976, 299
  • Weetall H. H., Krampitz L. O. Production of hydrogen from water using biophotolytic methods. J. Solid-Phase Biochem. 1980; 5: 115
  • Suzuki S., Karube I., Matsunaga T., Kuriyama S., Suzuki N., Shirogami T., Takamura T. Biochemical enrgy conversion using immobilized whole cells of. Clostridium butyricum, Biochimie 1980; 62: 353
  • Karube I., Urano N., Matsunaga T., Suzuki S. Hydrogen production from glucose by immobilized growing cells of. Clostridium buryrium, Eur. J. Appl. Microbiol. Biotechnol. 1982; 16: 5
  • Egrer P., Simon H. Hydrogenation with entrappedClostridiumsp. LA 1 and observation of its stability. Biotechnol. Lett. 1982; 4: 501
  • Tischer W., Tiemeyer W., Simon H. Stereospecific hydrcgenations with immobilized microbial cells or enzymes. Biochimie 1980; 62: 331
  • Doinmergues Y. R., Diem H. G., Divies C. Polyacrylamide-entrappedRhizobiumas an inoculant for legumes. Appl. Environmental Microbiol. 1979; 37: 779
  • Venkatasubramanian K., Toda Y. Nitrogen fixation by immobilized NIF depressedKlebsiella pneumoniaecells. Bioteehnol. Bioeng. Symp., No 10: 237
  • Gainer J. L., Kirwan D. J., Foster J. A., Seyhan E. Use of adsorbed and covaiently bound microbes in reactors. Biotechnol. Bioeng. Symp., No. 10: 35
  • Musgrave S. C., Kerby N. W., Codd G. A., Stewart W. D. P. Sustained ammonia production by immobilized filaments of the nitrogen fixingCyanobacterium anabaena27893. Biotechnol. Lett. 1982; 4: 647
  • Karube I., Matsunaga T., Otomine Y., Suzuki S. Nitrogen fixation by immobilized. Azotobacter chroococcum, Enzyme Microh. Technol. 1981; 3: 309
  • Scott C. D., Haucher C. W., Arcuri E. J. Tapered fluidized bed bioreactors for environmental control and fuel production. Advances in Biotechnology, M. Moo-Young, C. W. Robinson, C. Vezina. Pergamon Press., Toronto 1981; Vol. 1.: 651
  • Klein J., Schara P. Entrapment of living microbial cells in covalent polymeric networks (II) A quantitative study on the kinetics of oxidative phenol degradation by entrappedCandida tropicaliscells. Appt. Biochem. Biotechnol. 1981; 6: 91
  • Takahashi S., Itoh M., Kaneko Y. Treatment of phenolic wastes byAureobasidium pullulansadhered to the fibrous supports. Eur. J. Appl. Microbiol. Biotechnol. 1981; 13: 175
  • Nilsson I., Ohlson S., Häggström L., Molin N., Mosbach K. Denitrification of water using immobilizedPseudomonas denitrifcanscells. Eur. J. Appl. Microbiol. Biotechnol. 1980; 10: 261
  • Nilsson I., Häggström I., Molin N. Denitrification of drinking water using immobilizedPseudomonas denitrificuns.in Abstracts. 6th Int'l. Ferment. Symp., London. Ontario. July. 20 to 25. 1980 Le Droite. Ottawa. 1980, 124
  • Mattiasson B., Ramstorp M., Nilsson I., Hahn-Hägerdal B. Comparison of the performance of a hollow-fiber microbe reactor with a reactor containing alginate entrapped cells. Biotechnol. Lett. 1981; 3: 561
  • Kokufuta E., Matsumoto W., Nakamura I. Immobilization ofNitrosomonas europeacells with polyelectrolyte complex. Biotechnol. Bioeng. 1982; 24: 1591
  • Nazly N., Knowles C. J. Cyanide degradation by immobilized fungi. Biotechnol. Lett. 1981; 3: 363
  • Livernoche L., Jurasek D., Desrochers M., Veliky I. A. Decolorization of a kraft mill effluent with fungalmycelium immobilized in calcium alginate gel. Biotechnol. Lett. 1981; 3: 701
  • Somerville H. J., Mason J. R., Ruffell R. N. Benzene degradation by bacterial cells immobilized in polyacrylamide gel. Eur. J. Appl. Microbiol. Biotechnol. 1977; 4: 75

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.