67
Views
80
CrossRef citations to date
0
Altmetric
Research Article

Advances in Ethanol Production using Immobilized Cell Systems

, &
Pages 339-393 | Published online: 27 Sep 2008

References

  • Martin S. R. The production of fuel ethanol from carbohydrates. Chem. Eng. 50, February 1982
  • Villet R. Biotechnical research and development for biomass conversion to chemicals and fuels. Dev. Ind. Microbiol. 1981; 21: 97
  • Margaritis A., Vogrinetz J. Substrate availability and economics of ethanol fermentation. Abstr. 6th Int. Fermentation Symp., 1980, London, Ontario, Canada. 1980
  • Atkinson B., Black G. M., Pinches A. Process intensification using cell support systems. Process Biochem., 24 May, 1980
  • Maiorella B., Wilke C. R., Blanch H. W. Alcohol production and recovery. Adv. Biochem. Eng. 1981; 21: 43
  • Rose D. Yeast for molasses alcohol. Process Biochem. 1976; 11(3)10
  • Bullock J. D., Comberbach D. M. A practical system for high productivity ethanol fermentation,Abstr. Commun.: 2nd European Cong. Biotechnol. Eastbourne, England, 204. 1981
  • Dawson P. S. Continuous fermentations. Annual Reports on Fermentation Processes, D. Perlman. Academic Press, New York 1977; Vol. 1: 73
  • Hospodka J. Industrial applications of continuous fermentations. Theoretical and Methodological Basis of Continuous Culture of Microorganisms, I. Malek, Z. Fencl. Academic Press, New York 1966; 495
  • Rosen K. Continuous production of alcohol. Process Biochem. 1978; 13(5)25
  • Yarovenko V. L. Theory and practice of continuous cultivation of microorganisms in industrial alcoholic processes. Adv. Biochem. Eng. 1978; 9: 1
  • Hough J. S., Button A. H. Continuous brewing. Progress in Industrial Microbiology, D. J. D. Hockenhull. Churchill Livingstone, London 1972; Vol. 11: 89
  • Cysewski G. R., Wilke C. R. Utilization of cellulosic materials through enzymatic hydrolysis. I. Fermentation of hydrolyzate to ethanol and single cell protein. Biotechnol. Bioeng. 1976; 18: 1297
  • Cysewski G. R., Wilke C. R. Rapid ethanol fermentations using vacuum and cell recycle. Biotechnol. Bioeng. 1977; 19: 1125
  • Cysewski G. R., Wilke C. R. Process design and economic studies of alternative fermentation methods for the production of ethanol. Biotechnol. Bioeng. 1978; 20: 1421
  • Ghose T. K., Tyagi R. D. Rapid ethanol fermentation of cellulose hydrolyzate. II. Product and substrate inhibition and optimization of fermenter design. Biotechnol. Bioeng. 179; 21: 1401
  • Ramalingham A., Finn R. K. The vacuferm process: a new approach to fermentation alcohol. Biotechnol. Bioeng. 1977; 19: 583
  • Swings J., Deley J. The biology of. Zymomonas, Bacterial. Rev. 1977; 41: 1
  • Rogers P. L., Lee K. J., Tribe D. E. The kinetics of alcohol production byZymomonas mobilisat high sugar concentrations. Biotechnol. Lett. 1979; 1: 165
  • Rogers P. L., Lee K. J., Tribe D. E. High productivity ethanol fermentations with. Zymomonas mobilis, Process Biochem., August/September, 7 1980
  • Rogers P. L., Lee K. J., Skotnicki M. L., Tribe D. E. Ethanol fermentation by highly productive strains ofZymomonas mobilis. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 2: 189
  • Lee K. J., Tribe D. E., Rogers P. L. Ethanol production byZymomonas mobilisin continuous culture at high glucose concentrations. Biotechnol. Lett. 1979; 1: 421
  • Lee K. J., Skotnicki M. L., Tribe D. E., Rogers P. L. Kinetic studies on a highly productive strain of. Zymomonas mobilis, Biotechnol. Lett. 1980; 2: 339
  • Lee K. J., Lefebvre M., Tribe D. E., Rogers P. L. High productivity ethanol fermentations withZymomonas mobilisusing continuous cell recycle. Biotechnol. Lett. 1980; 2: 487
  • Lavers B. H., Pang P., Mackenzie C. R., Lawford G. R., Pik J. R., Lawford H. G. Industrial alcohol production by high performance bacterial fermentation. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 2: 195
  • Skotnicki M. L., Tribe D. E., Rogers P. L. R-Plasmid transfer in. Zymomonas mobilis, Appl. Environ. Microbiol. 1980; 40: 7
  • Skotnicki M. L., Warr R. G., Goodman A. E., Rogers P. L. Development of genetic techniques and strain improvement in Zymomonas mobilis. Abstr. – 4th Int. Symp. on Genetics of Industrial Microorganisms, June 6, Kyoto, Japan. 1982
  • Dally E. L., Stokes H. W., Eveleigh D. E. Use of recombinant DNA for enhancing ethanol production in the bacteriumZymomonas mobilis. paper presented at the 184th National Meeting of the American Chemical Society, Kansas City, September. 1982
  • Rogers P. L., Lee K. J., Skotnicki M. L., Tribe D. E. Ethanol production by. Zymomonas mobilis, Adv. Biochem. Eng. 1982; 23: 37
  • Abbott B. J. Immobilized cells. Annual Reports on Fermentation Processes, D. Perlman. Academic Press, New York 1977; Vol. 1: 205
  • Venkatsubramanian K., Veith W. R. Immobilized Microbial Cells. Progress in Industrial Microbiology, M. J. Bull. Elsevier Scientific Publishing, Amsterdam 1980; Vol. 15
  • Messing R. A. Immobilized microbes. Annual Reports on Fermentation Processes, D. Perlman, G. T. Tsao. Academic Press, New York 1980; Vol. 4
  • Chibata I. Development of enzyme engineering – application of immobilized cell system. Food Process Engineering, P. Linko, J. Larinkari. Applied Science Publishers, London 1979; Vol. 2: 1
  • Linko P. Immobilized biological systems for continuous fermentation. Food Process Engineering, P. Linko, J. Larinkari. Applied Science Publishers, London 1979; Vol. 2.: 27
  • Abbott B. J. Immobilized cells. Annual Reports on Fermentation Processes, D. Perlman. Academic Press, New York 1978; Vol. 2: 91
  • Cheetham P. S. J. Developments in the immobilization of microbial cells and their applications. Topics in Enzyme and Fermentation Biotechnology, A. Wiseman. Ellis Horwood Ltd., ChichesterEngland 1979; Vol. 4: 189
  • Jack T. R., Zajic J. E. The Immobilization of Whole Cells, Adv. Biochem. Eng. 1977; 5: 125
  • Kolot F. B. Immobilized microbial systems: present state of development. Dev. Ind. Microbiol. 1980; 21: 295
  • Durand G., Navarro J. M. Immobilized microbial cells. Process Biochem. 14, September 1978
  • Messing R. A. Support-bound microbial cells. Appl. Biochem. BioiechnoL 1981; 6: 167
  • Koshcheenko K. A. Living immobilized cells as Biocatalysis of Transformation and Biosynthesis of Organic Compounds. Appl. Biochem. Microbiol. 1981; 17: 351
  • Krouwel P. G. Production of ethanol by immobilized yeasts. Antonie van Leeuwanhoek 1979; 45: 687
  • Leduy A., Marsan A. A., Coupal B. A study of the rheological properties of a non-newtonian fermentation broth. Biotechnol. Bioeng. 1974; 16: 61
  • Martin J. P., Filip Z., Haider K. Effect of montmorillonite and humate on growth and metabolic activity of some actinomycetes. Soil. Biol. Biochem. 1976; 8: 409
  • Engelbart W., Engelbart F. Apparatus and Method for Optimizing Chemical Reactions and Biological Fermentations. U.S. Patent. 1975; 3: 880–716
  • Engelbart W., Pose H., Dellweg H. Mass Transfer in Adhesive Fermentation. Absir. – 5th Int. Fermentation Symp. Berlin 1976; 60
  • Delbruck M. Schnellgärung und das Arbeiten mit gefesselfor Hefe. Wochenschr. Brau. 1892; 9: 645
  • Barbet E. French Patent. 1899
  • Portno A. D. Theoretical and practical aspects of continuous fermentation. Wallerstein Lab. Commun. 1970; 33: 149
  • Prince I. G., McCann D. J. The continuous fermentation of starches and sugars to ethyl alcohol. Alcohol Fuels Symp., Sydney, 9–11 August 1978
  • Berdelle-Hilge Ph. Continuous treatment of liquids in fermentative processes with enzymes by passing them through enzyme retaining porous structures. German patent 1966; 1: 517–814
  • Berdelle-Hilge Ph. Fesselgärung-Ein Beltrag zur Vorgeschichte des Bio-Reaktors. Brauwelt 1972; 112(3)24
  • Berdelle-Hilge Ph. Wort under hydraulic pressure passed through a layer of yeast. U.S. Patent 3; 737(323)1973
  • Narziss L., Hellich P. A study on considerably accelerated fermentation and conditioning of beer. Brauwelt 1971; 111: 1491
  • Narziss L., Hellich P. Rapid fermentation and maturing of beer by means of the bio-reactor. Brewers Digest Sept., 1972; 106
  • Baker D. A., Kirsop B. H. Rapid beer production and conditioning using a plug fermenter. J. Inst. Brewing 1973; 79: 487
  • Grinbergs M., Hildebrand R. P., Clarke B. J. Continuous fermentations of glucose solutions. J. Inst. Brewing 1977; 83: 25
  • Gerhardt P., Gallup D. M. Dialysis flask for concentrated culture of microorganisms. J. Bacterial. 1963; 86: 919
  • Schultz J. S., Gerhardt P. Dialysis culture of microorganisms: design, theory and results. Bacterial. Rev. 1969; 33: 1
  • Kirsop B. H. Oxygen in brewery fermentations. J. Inst. Brewing 1973; 80: 252
  • Kirsop B. H. Aeration in fermentation for ethanol production. Enzyme Microb. Technol. 1981; 3: 375
  • Nagodawithana T. W. Factors Influencing Rates of Fermentation and Retention of Viability of Cells of Saccharomyces cerevisiae in Rapid Fermentations. Ph.D. thesis, Cornell University, February. 1974
  • Nagodawithana T. W., Castellano C., Steinkraus K. H. Effect of dissolved oxygen, temperature, initial cell count, and sugar concentration on the viability ofSaccharomyces cerevisiaein rapid fermentations. Appl. Microbiol. 1974; 28: 383
  • Nagodawithana T. W., Steinkraus K. H. Influence of the rate of ethanol production and accumulation on the viability ofSaccharomyces cerevisiaein “Rapid Fermentation”. Appl. Environ. Microbiol. 1976; 31: 158
  • Sortland L. D., Wilke C. R. Growth ofStreptococcus faecalisin dense culture. Biotechnol. Bioeng. 1969; 11: 805
  • Margaritis A. A Study of the Rotorfermenter and the Kinetics of Ethanol Fermentatipn, Ph.D. thesis. University of California, Berkeley, July, 1975 Also as The Lawrence Berkeley Lab Report, LBL-3278. 1975
  • Margaritis A., Wilke C. R. Engineering Analysis of the Rotorfermenter. Dev. Ind. Microbiol. 1972; 13: 159
  • Margaritis A., Wilke C. R. The rotorfermenter. I. description of the apparatus, power requirements, and mass transfer characteristics. Biotechnol. Bioeng. 1978; 20: 709
  • Margaritis A., Wilke C. R. The rotorfermenter. II. application to ethanol fermentation. Biotechnol. Bioeng. 1978; 20: 727
  • Haraldson A., Rosen C. G. Studies on continuous ethanol fermentation of sugar cane molasses. I. A solution for continuous fermentation. Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 216
  • Haraldson A., Rosen C. G. Studies on continuous ethanol fermentation of sugarcane molasses. II. Continuous alcohol fermentation and product removal in a laboratory scale plant. Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 220
  • Wilke C. R., Maiorella B. High productivity anaerobic fermentation with dense cell culture. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 1: 539
  • Dostalek M., Haggstrom M. A filter fermenter-apparatus and control equipment. Biotechnol. Bioeng. 1982; 24: 2077
  • Atkinson B. The role of microbial films in fermentation. Microbial Engineering, Z. Sterbacek. Butterworths, London 1973; 279
  • Daniels S. L. The adsorption of microorganisms onto solid surfaces: a review. Dev. Ind. Microbiol. 1972; 13: 211
  • Nordin J. S., Tsuchiya H. M., Fredrickson A. G. Interfacial phenomena governing adhesion ofChlorellato glass surfaces. Biotechnol. Bioeng. 1967; 9: 545
  • Kolot F. B. New trends in yeast technology – immobilized cells. Process Biochem. Oct./Nov., 1980; 2
  • Kolot F. B. Microbial carriers – strategy for selection, – Part 1. Process Biochem. Aug./Sept., 1981; 2
  • Kolot F. B. Microbial carriers – strategy for selection, – Part 2. Process Biochem. Oct./Nov., 1981; 30
  • Marcipar A., Cochet N., Brackenridge L., Lebeault J. M. Immobilization of yeasts on ceramic supports. Biotechnol. Lett. 1979; 1: 65
  • Thonart Ph., Custinne M., Paquot M. Zeta Potential of yeast cells: application in cell immobilization. Enzyme Microb. Technol. 1982; 4: 191
  • Michaux M., Paquot M., Baijot B., Thonart Ph. Continuous fermentation: improvement of cell immobilization by Zeta potential measurement. Biotechnol. Bioeng. Symp. No. 12 1982; 475
  • Maignon C., Navarro J. M., Durand G. Activity mdtabolique de microorganismes retenus par des suports solides. Oecol. Plant. 1974; 9: 365
  • Moo-Young M., Lamptey J., Robinson C. W. Immobilization of yeast cells on various supports for ethanol production. Biotechnol. Lett. 1980; 2: 541
  • Gencer M. A., Mutharasan R. Ethanol fermentation in a yeast immobilized column fermenter. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. I.: 627
  • Kolpakchi A. P., Isaeva V. S., Zhvirblyanskaya A. Yu., Kazantsev E. N., Serova E. N., Rattel N. N. Binding of brewing yeasts to polymeric materials. Appl. Biochem., Microbiol. 1976; 12: 703
  • Rotman B. Use of ion exchange resins in microbiology. Bacteriol. Rev. 1960; 24: 251
  • Messing R. A., Oppermann R. A. Pore dimensions for accumulating biomass. I. Microbes that reproduce by fission or by budding. Biotechnol. Bioeng. 1979; 21: 49
  • Messing R. A., Oppermann R. A., Kolot F. B. Pore dimensions for accumulating biomass. Immobilized Microbial Celts, K. Venkatsubramanian. ACS Symposium Series No. 106. 1979; 13
  • Corrieu G., Blachere H., Ramirez A., Navarro J. M., Durand G., Duteutre B., Moll M. An immoblized yeast fermentation pilot plant used for production of beer. Abstr.: 5th Int. Fermentation Symp. Berlin. 1976
  • Navarro J. M., Durand G., Duteutre B., Moll M., Corrieu G. Demonstration of a continuous procedure for the preparation of fermented beverages. Ind. Aliment. Agric. 1976; 93: 695
  • Moll M. Continuous brewing of beer. U.S. Patent No. 4 1977; 009: 286
  • Robinson C. W., Moo-Young M., Lamptey J. Ethanol production by immobilized yeasts cells in a packed tower. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 2: 105
  • Lamptey J., Robinson C. W., Moo-Young M. Kinetics of Fuel-Grade Ethanol Production in an Immobilized Yeast Packed-Bed Bioreactor. Proc. 2nd World Cong, of Chem. Eng., 4–10 October,1981 Montreal, Canada. 1981
  • Aiba S., Shoada M., Nagatani M. Kinetics of product-inhibition in alcohol fermentation. Biotechnol. Bioeng. 1968; 10: 845
  • Ryu V. W., Navarro J. M., Durand G. Comparative study of ethanol production by an immobilized yeast in a tubular reactor and in a multistage reactor. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 1
  • Daugulis A. J., Brown N. M., Cluett W. R., Dunlop D. B. Production of ethanol by adsorbed yeast cells. Biotechnol. Lett. 1981; 3: 651
  • Ghose T. K., Bandyopadhyay K. K. Rapid ethanol fermentation in immobilized yeast cell reactor. Biotechnol. Bioeng. 1980; 22: 1489
  • Ghose T. K., Bandyopadhyay K. K. Rapid ethanol fermentation by immobilized whole cells. Proc. 2nd World Cong, of Chem. Eng., 4–10 October, 1981 Montreal, Canada. 1981
  • Ghose T. K., Bandyopadhyay K. K. Studies on immobilizedSaccharomyces cerevisiae.II. Effect of temperature distribution on continuous rapid ethanol formation in molasses fermentation. Biotechnol. Bioeng. 1982; 24: 797
  • Tyagi R. D., Chose T. K. Studies on immobilizedSaccharomyces cerevisiae.1. Analysis of continuous rapid ethanol fermentation in immobilized cell reactor. Biotechnol. Bioeng. 1982; 24: 781
  • Hernandez-Mena R., Ribaud J. A., Humphrey A. E. Demonstration of Process Feasibility for Continuous Extraction of Alcohols from Fermenting Systems. Abstr. – 6th Int. Fermentation Symp., 20–25 July. 1980, London, Ontario, Canada. 1980
  • Hartline F. F. Lowering the cost of ethanol. Science October 5, 1979; 41: 206
  • Minier M., Goma G. Production of ethanol by coupling fermentation and solvent extraction. Biotechnol. Lett. 1981; 3: 405
  • Minier M., Goma G. Ethanol production by extractive fermentation. Biotechnol. Bioeng. 1982; 24: 1565
  • Arcuri E. J., Worden R. M., Shumate S. E. Ethanol production by immobilized cells of. Zymomonas mobilis, Biotechnol. Lett. 1980; 2: 499
  • Arcuri E. J. Continuous ethanol production and ceil growth in an immobilized – cell bioreactor employing. Zymomonas mobilis, Biotechnol. Bioeng. 1982; 24: 595
  • Clyde R. Horizontal fibre fermenter. Trends in the Biology of Fermentations for Fuels and Chemicals, A. Hoilaender. Plenum Press, New York 1981; 547
  • Scott C. D., Hancher C. W., Arcuri E. J. Tapered fluidized bed bioreactors for environmental control and fuel production. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; 651
  • Bland R. R., Chen H. C., Jewell W. J., Bellamy W. D., Zall R. R. Continuous high rate production of ethanol byZymomonas mobilisin an attached film expanded bed fermenter. Biotechnol. Lett. 1982; 4: 323
  • Chen H. C., Zall R. R. Continuous fermentation of whey into alcohol using an attached film expanded bed reactor. Process Biochem Jan/Feb., 1982; 20
  • Griffith W. L., Compere A. L. New Fixed-Film Process for the Production of High Levels of Ethanol. Presented at theConf. on Energy Prod, from Organic Wastes and Its Utilization19–21 September, 1974, Madison, Wisconsin. 1974
  • Griffith W. L., Compere A. L. A new method for coating fermentation tower packing so as to facilitate microorganism attachment. Dev. Ind. Microbiol. 1976; 17: 241
  • Sitton O. C., Gaddy J. L. Ethanol production in an immobilized cell reactor. Biotechnol. Bioeng. 1980; 22: 1735
  • Sitton O. C., Magruder G. C., Book N. L., Gaddy J. L. Comparison of immobilized cell reactor and CSTR for ethanol production. Biotechnol. Bioeng., Symp. No. 10 1980; 213
  • Sitton O. C., Magruder G. C., Gaddy J. L. Production of ethanol with immobilized. Saccharomyces cerevisiae, inAdvances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 2: 231
  • Gainer J. L., Kirwan D. J., Foster J. A., Seyhan E. Use of adsorbed and covalently bound microbes in reactors. Biotechnol. Bioeng. Symp. No. 10 1980; 43
  • Navarro J. M., Durand G. Modification of yeast metabolism by immobilization onto porous glass. Eur. J. Appl. Microbiol. 1977; 4: 243
  • Bandyopadhyay K. K., Ghose T. K. Studies on immobilizedSaccharomyces cerevisiae.III. Physiology of growth and metabolism on various supports. Biotechnol. Bioeng. 1982; 24: 805
  • Vijayalakshmi M., Marcipar A., Segard E., Broun G. B. Matrix-bound transition metal for continuous fermentation tower packing. Annals, of the New York Academy of Sciences 1979; 326: 249
  • Kennedy J. F., Barker S. A., Humprhey J. D. Microbial cells living immobilized on metal hydroxides. Nature May, 1976; 261: 20–242
  • Kennedy J. F. Facile Methods for the Immobilization of microbial cells without disruption of their life processes. Immobilized Microbial Cells, K. Venkatsubramanian. ACS Symposium Series, No. 106. 1979; 119
  • Dias S. M. M., Novais J. M., Cabral J. M. S. Immobilization of yeasts on titanium activated inorganic supports. Biotechnol. Lett. 1982; 4: 203
  • Jirku V., Turkova J., Krumphanzl V. Immobilization of yeast cells with retention of cell division and extracellular production of macromolecules. Biotechnol. Lett. 1980; 2: 509
  • Rouxhet P. G., Van Haecht J. L., Didelez J., Gerard P., Briquet M. Immobilization of yeast cells by entrapment and adhesion using siliceous materials. Enzyme Microb. Technol. 1981; 3: 49
  • Mosbach K., Mosbach R. Entrapment of enzymes and microorganisms in synthetic cross-linked polymers and their applications in column techniques. Acta. Chem. Scand. 1966; 20: 2807
  • Updike S. J., Harris D. R., Shrago E. Microorganisms, alive and imprisoned in a polymer cage. Nature December, 1969; 224: 1122
  • Mosbach K., Larson P. O. Preparation and Application of polymer entrapped enzymes and microorganisms in microbial transformation processes, with special reference to steroid 11-β-Hydroxylation and Δ-Dehydrogenation. Biotechnol. Bioeng. 1970; 12: 19
  • Takata I., Tosa T., Chibata I. Screening of matrix suitable for immobilization of microbial cells. J. Solid Phase Biochem. 1977; 2: 225
  • Mosbach K. Use of immobilized cells with special emphasis on the formation of products formed by multistep enzyme systems and coenzymes. J. Chem. Tech. Biotechnol. 1982; 32: 179
  • Klein I., Wagner F. Immobilized whole cells. Dechema Monographic 1978; 82: 142
  • Wagner F, Klein I. Some aspects of immobilization and reactivation of whole cells. Antonie Van Leeuwanhoek 1979; 45: 645
  • Vorlop K. D., Klein I. Formation of spherical chitosan biocatalysts by ionotropic gelation. Biotechnol. Lett. 1981; 3: 9
  • Haug A., Larsen B., Smidsrod O. Uronic acid sequence in alginate from different sources. Carbohydrate Res. 1974; 32: 217
  • Baardseth E. (1968) Localization and structure of alginate gels. Proceedings of the 5th International Seaweed Symposium. 1968, E. G. Young, J. L. MacLachlan. Pergamon Press, London, 19
  • Hackel U., Klein J., Megnet R., Wagner F. Immobilization of microbial cells in polymeric matrices. Eur. J. Appl. Microbiol. 1975; 1: 291
  • Cheetham P. S. J. Physical studies on the mechanical stability of columns of calcium alginate gel pellets containing entrapped microbial cells. Enzyme Microb. Technol. 1979; 1: 183
  • Cheetham P. S. J., Blunt K. W., Bucke C. Physical studies on cell immobilization using calcium alginate gels. Biotechnol. Bioeng. 1979; 21: 2155
  • Kierstan M. The use of calcium alginate gels for “solids separation” and “diffusional chromatography” of biological materials. Biotechnol. Bioeng. 1981; 23: 707
  • Kierstan M., Reilly J. Studies on the characteristics of alginate gels in relation to their use in separation and immobilization applications. Biotechnol. Bioeng. 1982; 24: 1507
  • Paul F., Vignais P. M. Photophosphorylation in bacterial chromatophores entrapped in alginate gel: improvement of the physical and biochemical properties of gel beads with barium as the gel-inducing agent. Enzyme Microb. Teckoi 1980; 2: 281
  • White F. H., Portno A. D. Continuous fermentation by immobilized brewers yeast. J. Inst. Brewing 1978; 84: 228
  • Linko Y. Y., Linko P. Continuous ethanol production by immobilized yeast reactor. Biotechnol. Lett. 1981; 3: 21
  • Linko Y. Y., Linko P. Continuous ethanol production by immobilized yeast. Abstr. ofCommun., 2nd European Cong, of Biotechnol. 5–10 April, 1981, Eastbourne, England. 1981
  • Kierstan M., Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels. Biotechnol. Bioeng. 1977; 19: 387
  • Larson P. O., Mosbach K. Alcohol production by magnetic immobilized yeast. Biotechnol. Lett. 1979; 1: 501
  • Larson P. O., Birnbaum S., Mosbach K. Magnetic immobilized microrganisms. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 1: 717
  • Birnbaum S., Larson P. O. Application of magnetic immobilized microorganisms: ethanol production by. Saccharomyces cerevisiae, Appl. Biochem. Biotechnol. 1982; 7: 55
  • Linko P. Immobilized live cells. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. I: 711
  • Williams D., Munnecke D. M. The production of ethanol by immobilized yeast cells. Biotechnol. Bioeng. 1981; 23: 1813
  • Cho G. H., Choi C. Y., Choi Y. D., Han M. H. Ethanol production by immobilized yeast and its CO2gas effects in a packed bed reactor. J. Chem. Tech. Biotechnol. 1982; 32: 959
  • Hahn-Hagerdal B., Mattiasson B. Azide sterilization of fermentation medium: ethanol production from glucose using immobilized. Saccharomyces cerevisiae, Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 140
  • Anonymous. Japanese unveil scaled-up nonstop immobilized yeast prototype plant for ethanol. McGraw-Hill Biotechnol. Newswatch. 1982; 2: 1
  • Hahn-Hagerdal B., Mattiason B. Shift in metabolism towards ethanol production inSaccharomyces cerevisiaeby addition of metabolic inhibitors. Biotechnol. Bioeng., Symp. No. 12 1982; 193
  • Shiotani T., Yamane T. A horizontal packed bed bioreactor to reduce CO2holdup in the continuous production of ethanol by immobilized yeast cells. Eur. J. Appl. Microbiol. Biotechnol. 1981; 13: 96
  • Cho G. H., Choi C. V., Choi Y. D., Han M. H. Continuous ethanol production by immobilized yeast in a fluidized reactor. Biotechnol. Lett. 1981; 3: 667
  • Merchant F. J. A. The Characteristics ofSaccharomyces cerevisiaeImmobilized in Calcium Alginate Gel Performing Ethanol Production. M.Sc. thesis. Department of Chemical Engineering, University of Birmingham, England. September. 1981
  • Lee T. H., Ahn J. C., Ryu D. D. Y. Performance of an immobilized yeast reactor system for ethanol production. Enzyme Microb. Technol 1983; 5: 41
  • McGhee J. E., St Julian G., Detroy R. W., Bothast R. J. Ethanol production by immobilizedSaccharomyces cerevisiae, Saccharomyces uvarumand. Zymomonas mobilis. Biotechnol. Bioeng. 1982; 24: 1155
  • McGhee J. E., St Julian G., Detroy R. W. Continuous and static fermentation of glucose to ethanol by immobilizedSaccharomyces cerevisiaecells of different ages. Appl. Environ. Microbiol. 1982; 44: 19
  • Margaritis A., Bajpai P. K., Wallace J. B. High ethanol productivities using small calcium alginate beads of immobilized cells of. Zymomonas mobilis, Biotechnol. Lett- 1981; 3: 613
  • Rowe G. E. Assessment of immobilized cell systems for ethanol production usingZymomonas mobilisandSaccharomyces cerevisiae. M.E.Sc. thesis, University of Western Ontario, London, Ontario. 1981
  • Margaritis A., Rowe G. E. Ethanol production usingZymomonas mobilisimmobilized in different carrageenan gels. Dev. Ind. Microbiol. 1983; 24: 329
  • Margaritis A., Bajpai P. K., Wallace J. B. The effect of CaCl2concentration on ethanol production and growth of immobilized cells ofZymomonas mobilissubmitted to. Eur. J. Appl. Microb. Biotechnol.
  • Margaritis A., Wallace J. B. The use of immobilized cells ofZymomonas mobilisin a novel fluidized bioreactor to produce ethanol. Biotechnol. Bioeng.Symp. No. 12 1982; 147
  • Grote W., Lee K. J., Rogers P. L. Continuous ethanol production by immobilized cells of. Zymomonas mobilis, Biotechnol. Lett. 1980; 2: 481
  • Windholz M. Algin and alginic acid. The Merck Index. Merck and Co., New Jersey 1976; 34
  • Ramsay A. M., Douglas L. J. Effects of phosphate limitation of growth on the cell-wall and lipid composition of. Saccharomyces cerevisiae, J. Gen. Microbiol. 1979; 110: 185
  • Jones R. P., Pamment N., Greenfield P. F. Alcohol fermentation by yeasts – the effect of environmental and other variables. Process Biochem. April/May, 1981; 42
  • Veliky I. A., Williams R. E. The production of ethanol bySaccharomyces cerevisiaeimmobilized in polycation-stabilized calcium alginate gels. Biotechnol. Lett. 1981; 3: 275
  • Birnbaum S., Pendleton R., Larsson P. O., Mosbach K. Covalent stabilization of alginate gel for the entrapment of living whole cells. Biotechnol. Lett. 1981; 3: 393
  • Birnbaum S., Larsson P. O., Mosbach K. Stabilization of Calcium Alginate Gel. Abstr. of Commun. 2nd European Cong, for Biotechnol.5–10 April, 1981, Eastbourne. England. 1981
  • Haug A., Smidsred O. The effect of divalent metals on the properties of alginate solutions. II. comparison of different metal ions. Acta. Chem. Scand. 1965; 19: 341
  • Chibata I., Tosa T. Immobilized microbial cells and their applications. T.I.B.S. April, 1980; 88
  • Tosa T., Sato T., Mori T., Yamamoto K., Takata I., Nishida Y., Chibata I. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol. Bioeng. 1979; 21: 1697
  • Kuu W. Y., Polack J. A. Strengthening Immobilized Biocatalysts by Diffusion and Gel Phase Polymerization. Presented at the 75th Annual AIChE Meeting, 14–18 November 1982, Los Angeles, California. 1982
  • Wada M., Kato J., Chibata I. A new immobilization of microbial cells: immobilized growing cells using carrageenan gel and their properties. Eur. J. Appl. Microbiol. Biotechnol. 1979; 8: 241
  • Wada M., Kato J., Chibata I. Electron microscopic observation of immobilized growing yeast cells. J. Ferment. TechnoL 1980; 58: 327
  • Larreta V., Thomasset B., Barbotin J. N. Electron microscopic evidence of an immobilized living cell system. Enzyme Microb. Technol 1981; 3: 216
  • Wada M., Kato J., Chibata I. Continuous production of ethanol using immobilized growing yeast cells. Eur. J. Appl. Microbiol. Biotechnol. 1980; 10: 275
  • Wada M., Kato J., Chibata I. Continuous production of ethanol in high concentration using immobilized growing yeast cells. Eur. J. Appl. Microbiol. Biotechnol. 1981; 11: 67
  • Amin G., Verachtert H. Comparative study of ethanol production by immobilized cell systems usingZymomonas mobilisand. Saccharomyces bayanus, Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 59
  • Wang H. Y., Hettwer D.J. Cell immobilization in K-carrageenan with tricalcium phosphate. Biotechnol. Bioeng. 1982; 24: 1827
  • Wang H. Y., Lee S. S., Takachi Y., Cawthon L. Maximizing microbial cell loading in im-mobilized-cell systems. Biotechnol. Bioeng., Symp. No. 12 1982; 139
  • Lee S. S., Wang H. Y. Repeated fed-batch rapid fermentation using yeast cells and activated carbon extraction system. Biotechnol. Bioeng., Symp. No. 12 1982; 221
  • Koshcheenko K. A., Bychkova G. G., Gulevskaya S. A., Lusta K. A., Gulaya V. E., Ananchenko S. N. Physiological and biochemical properties and morphology ofSaccharomyces cerevisiueBKMU-488 cells incorporated into polyacrylamide gel. Izv. Akad. Nauk. SSSR. Ser. Biol. 1978; 6: 862
  • Koshcheenko K. A., Avramova T. G., Sukhodol'sk G. V. Influence of conditions of immobilization on enzymatic activity of immobilized cells. 12v. Akad. Nauk. SSSR., Ser. Biol. 1981; 2: 174
  • Siess M. H., Divies C. Behavior ofSaccharomyces cerevisiaeCells entrapped in a polyacrylamide gel and performing alcoholic fermentation. Eur. J. Appl. Microbiol. Biotechnoi 1981; 12: 10
  • Divies C. Use of polymer matrix-embedded micro-organisms in enzyme reactions. German Patent 1977; 2: 633–076
  • Sato T., Mori T., Tosa T., Chibata I., Kurui M., Yamashita K., Sumi A. Engineering analysis of continuous production of L-Aspartic acid by immobilizedEscherichia colicells in fixed beds. Biotechnol. Bioeng. 1975; 17: 1797
  • Pines G., Freeman A. Immobilization and characterization ofSaccharomyces cerevisiaein crosslinked, prepolymerized polyacrylamide-hydrazide. Eur. J. Appl. Microbiol. Biotechnol. 1982; 16: 75
  • Freeman A., Aharanowitz Y. Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels: antibiotic production by immobilizedStrepwmyces clavuligeruscells. Biotechnol. Bioeng. 1981; 23: 2747
  • Klein J., Eng H. Immobilization of microbial cells in epoxy carrier systems. Biotechnol. Lett. 1979; 1: 171
  • Klein J., Kressdorf B. Immobilization of living whole cells in an epoxy matrix. Biotechnol. Lett. 1982; 4: 375
  • Gianfreda L., Parascandola P., Scardi V. A new method of whole microbial cell immobilization. Eur. J. Appl. Microbiol. Biotechnol. 1980; 11: 6
  • Siva Raman H., Seetarama Rao B., Pundle A. V., Siva Raman C. Continuous ethanol production by yeast cells immobilized in open pore gelatin matrix. Biotechnol. Lett. 1982; 4: 359
  • Krouwel P. G., Harder A., Kossen N. W. F. Tensile stress-strain measurements of materials used for immobilization. Biotechnol. Lett. 1982; 4: 103
  • Krouwel P. G. Production of ethanol by immobilized yeasts. Antonie van Leeuwanhoek. J. Microbiol. Serol. 1979; 45: 687
  • Krouwel P. G., Kossen N. W. F. Gas production by immobilized micro-organisms: theoretical approach. Biotechnol. Bioeng. 1980; 22: 681
  • Krouwel P. G., Kossen N. W. F. Gas production by immobilized micro-organisms: calculation of theoretical maximum productivity. Biotechnol. Bioeng. 1981; 23: 651
  • Krouwel P. G., Kossen N. W. F. Theoretical and practical aspects of gas producing immobilized systems. Abstr. of Commun. :2nd European Congr. of Biotechnol. 5–10 April, 1981, Eastbourne, England. 1981
  • Chen S. L., Gutmanis F. Carbon dioxide inhibition of yeast growth in biomass production. Biotechnol. Bioeng. 1976; 18: 1455
  • Kunkee R. E., Ough C. S. Multiplication and fermentation ofSaccharomyces cerevisiaeunder carbon dioxide pressure in wine. Appl. Microbiol. 1966; 14: 643
  • Jones R. P., Greenfield P. F. Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microbiol. Technol. 1982; 4: 210
  • Atkinson B., Daoud I. S. Microbil floes and flocculation in fermentation process engineering. Adv. in Biochem. Eng. 1976; 4: 41
  • Smith E. L., Greenshields R. N. Tower fermentation systems: their application in continuous brewing. Biotechnol. Bioeng., Symp. No. 4 1973; 519
  • Greenshields R. N., Smith E. L. The tubular reactor in fermentation. Process Biochem. April, 1974; 11
  • Wick E., Popper K. Continuous fermentation in slant tubes. Biotechnol. Bioeng. 1977; 19: 235
  • Prince I. G., Barford J. P. Continuous tower fermentation for power ethanol production. Biotechnol. Lett. 1982; 4: 263
  • Prince I. G., Barford J. P. Tower fermentation usingZymomonas mobilisfor ethanol production. Biotechnol. Lett. 1982; 4: 525
  • Prince I. G., Barford J. P. Induced flocculation of yeasts for use in the tower fermenter. Biotechnol. Lett. 1982; 4: 621
  • Hsiao H. Y., Chiang L. C., Yang C. M., Chen L. F., Tsao G. T. Preparation and performance of immobilized yeast cells in columns containing no inert carrier. Biotechnol. Bioeng. 1983; 25: 363
  • Moebus O., Teuber M. Production of ethanol by solid particles ofSaccharomyces cerevisiaein a fluidized bed. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 194
  • Strandberg G. W., Donaldson T. L., Arcuri E. J. Continuous ethanol production by a flocculant strain of. Zymomonas mobilis, Biotechnol. Lett. 1982; 4: 347
  • Fein J. E., Lawford H. G., Lawford G. R., Zawadski B. C., Charley R. C. High productivity continuous ethanol fermentation with a flocculant mutant strain of. Zymomonas mobilis, Biotechnol. Lett. 1983; 5: 19
  • Lee J. H., Skotnicki M. L., Rogers P. L. Kinetic studies on a flocculam strain of. Zymomonas mobilis, Biotechnol. Lett. 1982; 4: 615
  • De Boks P. A., van Eybergen G. C. Continuous ethanol production using cell recycle with a settler. Biotechnol. Lett. 1981; 3: 577
  • Royston M. G. Tower fermentation of beer. Process Biochem. 1966; 1(4)
  • Ault R. G., Hampton A. N., Newton R., Roberts R. H. Biological and biochemical aspects of tower fermentation. J. Inst. Brewing. 1969; 75: 260
  • Greenshields R. N., Smith E. L. Tower fermentation systems and their applications. Chem. Eng. 1971; 249: 182
  • Jin C. K., Wang S. S. Continuous production of ethanol in a two-stage fermentation process using a protein-phospholipid complex as a protective agent. Enzyme Microbiol. Technol. 1982; 4: 256
  • Weeks M. G., Munro P. A., Spedding P. L. Semi-continuous ethanolic fermentation using a novel yeast settling and recycle technique. Biotechnol. Lett. 1982; 4: 85
  • Weeks M. G., Munro P. A., Spedding P. L. New concepts for rapid yeast settling. I. Flocculation with an inert powder. Biotechnol. Bioeng. 1983; 25: 687
  • Weeks M. G., Munro P. A., Spedding P. L. New concepts for rapid yeast settling. II. pH switching with an inert powder. Biotechnol. Bioeng. 1983; 25: 699
  • Linko Y., Jalanka H., Linko P. Ethanol production from whey with immobilized living yeast. Bioechnol. Lett. 1981; 3: 263
  • Dohan L. A., Baret J. L., Pain S., Delalande P. Lactose hydrolysis by immobilized lactase: semi-industrial experience. Food Process Engineering, P. Linko, J. Larinkari. Applied Science Publishers, London 1980; Vol. 2: 137
  • Compere A. L., Griffith W. L. Fermentation of waste materials to produce industrial intermediates. Dev. Ind. Microbiol. 1976; 17: 247
  • Gawel J., Kosikowski F. V. Improving alcohol fermentation in concentrated ultrafiltration permeates of cottage cheese whey. J. Food Sci. 1978; 43: 1717
  • O'Leary V. S., Sutton C., Bencivengo M., Sullivan B., Holsinger V. H. Influence of lactose hydrolysis and solids concentration in alcohol production by yeast in acid whey ultrafiltrate. Biotechnol. Bioeng. 1977; 19: 1689
  • Izaguirre M. E., Castello F. J. Selection of lactose-fermenting yeast for ethanol production from whey. Biotechnol. Lett. 1981; 3: 257
  • Moulin G., Galzy P. Alcohol production from whey. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto. 1981; Vol. 2: 181
  • Hahn-Hagerdal B. Enzymes co-immobilized with microorganisms for the microbial conversion of non-metabolizable substrates. Acta. Chem. Scand. 1980; 34: 611
  • Hahn-Hagerdal B. Enzymes coimmobilized with microorganisms: the bioconversion of whey permeate to ethanol with (3-galactosidase and. Succhuromyces cerevisiae, Appl. Biochem. Biotechnol. 1982; 7: 43
  • Hayes R. D. Energy crops – what little we know. Proc. 3rd Bioenergy R and D Semin., 24–25 March, 1981, Ottawa. Canada. 1981
  • Bacon J. S. D., Edelman J. The carbohydrates of the Jerusalem Artichoke and other compositae. Biochem. J. 1951; 48: 114
  • Kierstan M. Production of fructose syrups from inulin. Process Biochem. May, 1980; 2
  • Chubey B. B., Dorrell D. G. Jerusalem Artichoke, a potential fructose crop for the prairies. Can. Inst. Food Sci. Technol. J. 1974; 7: 98
  • Dorrell D. G., Chubey B. B. Irrigation, fertilizer, harvest dates and storage effects on the reducing sugar and fructose concentration of Jerusalem Artichoke tubers. Can. J. Plant. Sci. 1977; 57: 591
  • Fleming S. A., Grootwassink J. W. D. Preparation of high-fructose syrup from the tubers of the Jerusalem artichoke. (Helianthus tuberosus L.). CRC Critical Reviews Food Sci. Nutr. 1979; 12: 1
  • Brachvogel J. K. Industrial Alcohol. Munn and Co., New York 1907
  • Underkofler L. A., McPherson W. K., Fulmer E. I. Alcoholic fermentation of Jerusalem Artichokes. Ind. Chem. Eng. 1937; 29: 1160
  • Boinot F. The Jerusalem Artichoke in alcohol manufacture. Bull. Assoc. Chim. 1942; 9: 792
  • Margaritis A., Bajpai P., Cannell E. Optimization studies for the bioconversion of Jerusalem Artichoke tubers to ethanol and microbial biomass. Biotechnol. Lett. 1981; 3: 595
  • Margaritis A., Bajpai P., Bajpai P. K. Fuel ethanol production from Jerusalem Artichoke stalks using different yeast. Dev. Ind. Microbiol. 1983; 24: 321
  • Margaritis A., Bajpai P. Ethanol production from Jerusalem Artichoke tubers(Heliamhus tuberosus)usingKluyveromyces marxianusand. Saccharomyces rosei, Biotechnol. Bioeng. 1981; 24: 941
  • Duvnjak Z., Kosaric N., Hayes R. D. Kinetics of ethanol production from Jerusalem Artichoke juice with some. Kluyveromyces species, Biotechnol. Lett. 1981; 3: 589
  • Duvnjak Z., Kosaric N., Kliza S., Hayes R. D. Production of Ethanol from Jerusalem Artichokes by Yeasts. paper presented at the 28th IUPAC Congr., 16–22 August 1981 Vancouver, Canada. 1981
  • Guiraud J. P., Galzy P. Alcohol Production by Fermentation of Jerusalem Artichoke Extract. paper presented at the 28th IUPAC Congr., 16–22 August, 1981, Vancouver. Canada. 1981
  • Guiraud J. P., Daurelles J., Galzy P. Alcohol production from Jerusalem Artichoke using yeasts with inulinase activity. Biotechnol. Bioeng. 1981; 23: 1461
  • Guiraud J. P., Deville-Duc T., Galzy P. Selection of yeast strains for ethanol production from inulin. Folia Microbiol. 1981; 26: 147
  • Guiraud J. P., Caillaud J. M., Galzy P. Optimization of alcohol production from Jerusalem Artichokes. Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 81
  • Williams L. A., Ziobro G. Processing and fermentation of Jerusalem Artichoke for ethanol production. Biotechnol. Lett. 1982; 4: 45
  • Margaritis A., Bajpai P. Repeated batch production of ethanol from Jerusalem Artichoke tubers using recycled immobilized cells of. Kluyveromyces fragilis, Biotechnol. Lett. 1981; 3: 679
  • Margaritis A., Bajpai P., Lachance A. The Use of Free and Immobilized Cells ofDebaromyces polymorphusto Produce Ethanol From Jerusalem Artichoke Tubers. J. Ferment. Technol. 1983; 61: 533
  • Margaritis A., Bajpai P. Continuous ethanol production from Jerusalem Artichoke Tubers. I. Use of free cells of. Kluyveromyces marxianus, Biotechnol. Bioeng. 1982; 24: 1473
  • Margaritis A., Bajpai P. Continuous ethanol production from Jerusalem Artichoke tubers. II. Use of immobilized cells of. Kluyveromyces marxianus, Biotechnol. Bioeng. 1982; 24: 1483
  • Margaritis A., Bajpai P. Continuous Ethanol Production From Concentrated Jerusalem Artichoke Extract Using Immobilized Cells ofKluyveromyces marxianus. Paper presented at the 23rd Int. Congr. of Microbiol., 8–13 August, 1982, Boston, Massachusetts, U.S. 1982
  • Ghose T. K. Cellulase biosynthesis and hydrolysis of cellulosic substances. Adv. Biochem. Eng. 1977; 6: 39
  • Linko M. An evaluation of enzymatic hydrolysis of cellulosic materials. Adv. Biochem. Eng. 1977; 5: 25
  • Bisaria V. S., Ghose T. K. Biodegradation of cellulosic materials: substrates, microorganisms, enzymes and products. Enzyme Microb. Technol. 1981; 3: 90
  • Tangnu S. K. Process development for ethanol production based on enzymatic hydrolysis of cellulosic biomass. Process Biochem. May/June, 1982; 36
  • Wood T. M., McCrae S. I. The Cellulase Complex of Trichoderma koningii. Symp. on Enzymatic Hydrolysis of Cellulose, 12–14March, M. M. Bailey, T. M. Enari, M. Linko. Helsinki, Finland 1975; 231
  • Ferchak J. D., Hahn-Hagerdal B., Pye K. Saccharification of cellulose by the cellulolytic enzyme system ofThermonospora sp.II. Hydrolysis of cellulosic substrates. Biotechnol. Bioeng. 1980; 22
  • Halliwell G., Griffin M. The nature and mode of action of the cellulolytic component C. ofTrichoderma koningiion native cellulose. Biochem. J. 1973; 135: 587
  • Takagi M., Abe S., Suzuki S., Emert G. H., Yata N. A method for production of alcohol directly from cellulose using cellulase and yeast. Bioconversion of Cellulosic Substances in Energy, Chemicals and Microbial Protein, T. K. Ghose. IIT, Delhi 1977; 551
  • Savarese J. J., Young S. D. Combined enzyme hydrolysis of cellulose and yeast fermentation. Biotechnol. Bioeng. 1978; 20: 1291
  • Hahn-Hagerdal B., Mosbach K. The production of ethanol from cellobiose using baker's yeast co-immobilized with B-glucosidase. Food Process Engineering, P. Linko, J. Larinkari. Applied Science Publishers, London 1979; Vol. 2: 129
  • Hahn-Hagerdal B., Andersson E., Lopez-Leiva M., Mattiasson B. Membrane biotechnology, co-immobilization and aqueous two phase systems: alternatives in bioconversion of cellulose. Biotechnol. Bioeng., Symp. No. 11 1981; 651
  • Hartmeir W. Basic trials on the conversion of cellulosic material to ethanol using yeast co-immobilized with cellulolytic enzymes. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 3: 377
  • Kierstan M., McHale A., Coughlan M. P. The production of ethanol from cellobiose using immobilized β-glucosidase coentrapped with yeast in alginate gels. Biotechnol. Bioeng. 1982; 24: 1461
  • Hahn-Hagerdal B., Lopez-Leiva M., Mattiasson B. Membrane technology applied to bioconversion of macromolecular substrates and upgrading of products: a model study on ethanol production from cellulose. Desalination 1980; 35: 365
  • Lilly M. D. Two-liquid-phase biocatalytic reactions. J. Chem. Tech. Biotechnol. 1982; 32: 162
  • Hahn-Hagerdal B., Mattiasson B., Albertsson P. A. The Use of Aqueous Two Phase Systems for Enzymatic Saccharification and Fermentation of Cellulose. Abstr. of Commun.: 2nd European Congr. of Biotechnol., 5–10 April 1981, Eastbourne, England. 1981
  • Hahn-Hagerdal B., Matiasson B., Albertsson P. A. Extractive byconversion in aqueous two-phase systems. A model study on the conversion of cellulose to ethanol. Biotechnol. Lett. 1981; 3: 53
  • Hahn-Hagerdal B., Mattiasson B., AndersSon E., Albertsson P. A. Soluble temporarily immobilized biocatalysts. J. Chem. Tech. Biotechnol. 1982; 32: 157
  • Rosenberg S. L. Fermentation of pentose sugars to ethanol and other neutral products by micro-organisms. Enzyme Microb. Technol. 1980; 2: 185
  • Schneider H., Wang P. Y., Chan Y. K., Maleszka R. Conversion of D-xylose into ethanol by the yeast Pachysolen tannophilus. Biotechnol. Lett. 1981; 3: 89
  • Gong C. S., McCracken L. D., Tsao G. T. Direct fermentation of D-xylose to ethanol by a xylose fermenting yeast mutant. Candida sp. XF217. Biotechnol. Lett. 1981; 3: 245
  • Margaritis A., Bajpai P. Direct fermentation of D-Xylose to ethanol by. Kluyveromyces marxianus strains. Appl. Environ. Microbiol. 1982; 44: 1039
  • Maleszka R., Veliky I. A., Schneider H. Enhanced rate of ethanol production from D-xylose using recycled or immobilized cells of. Pachysolen tannophilus, Biotechnol. Lett. 1981; 3: 415
  • Slininger P. J., Bothast R. J., Black L. T., McGhee J. E. Continuous conversion of D-xylose to ethanol by immobilized. Pachysolen tannophilus, Biotechnol. Bioeng. 1982; 24: 2241
  • Chiang L. C., Hsiao H. Y., Flickinger M. C., Tsao G. T. Ethanol production from pentoses by immobilized microorganisms. Enzyme Microb. Technol. 1982; 4: 93
  • Hattori R., Hattori T., Furusaka C. Growth of bacteria on the surface of anion-exchange resin. I. Experiment with batch culture. J. Gen. Appl. Microbiol. 1972; 18: 271
  • Hattori R., Hattori T., Furusaka C. Growth of bacteria on the surface of anion-exchange resin. II. Electron microscopic observation of adsorbed cells growing on resin surface by carbon replica method. J. Gen. Appl. Microbiol 1972; 18: 285
  • Hattori R. Growth ofEcherichia colionthe surface of an anion-exchange resin in continuous flow system. J. Gen. Appl. Microbiol. 1972; 18: 319
  • Haider K., Filip Z., Martin J. P. Influence of montmorillonite on the formation of biomass and metabolic products by some microorganisms. Arch. Microbiol. 1970; 73: 201
  • Holcberg I. B., Margalith P. Alcoholic fermentation by immobilized yeast at high sugar concentrations. Eur. J. Appl. Microbiol. Biotechnol 1981; 13: 133
  • Mattiasson B., Hahn-Hagerdal B. Microenvironmental effects on metabolic behavior of immobilized cells: A hypothesis. Eur. J. Appl. Microbiol. Biotechnol 1982; 16: 52
  • Hahn-Hagerdal B., Larsson M., Mattiasson B. Shift in metabolism towards ethanol production inSaccharomyces cerevisiaeusing alterations of the physical-chemical microenvironment. Biotechnol. Bioeng. Symp. No. 12 1982; 199
  • Kazantsev E. N., Kolpakchi A. P., Ratter N. N. Effect of long continuous cultivation on the morphology and physiology of yeasts on a carrier. Microbiology 1979; 48: 236
  • Navarro J. M., Durand G. Modifications de la croissance deSaccharomyces uvarumpar immobilisation sur support solide. C.R. Acad. Sc. Paris Ser. D. 1980; 290: 453

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.