130
Views
129
CrossRef citations to date
0
Altmetric
Research Article

Microbial Surfactants

&
Pages 109-132 | Published online: 27 Sep 2008

References

  • Davies J. T., Rideal E. K. Interfacial Phenomena, 2nd ed. Academic Press, New York 1963; 1
  • Fendler J. H. Membrane Mimetic Chemistry. John Wiley & Sons, New York 1982; 25
  • Gerson D. F., Zajic J. E. The biophysics of cellular adhesion. Immobilized Microbial Cells, K. Venkatsubramanian, Washington, D.C. 1979, ACS Symp. Ser. 106
  • Hiemenz P. C. Principles of Colloid and Surface Chemistry. Marcel Dekker, New York 1977; Vol. 516: 155
  • Miller I. R., Bach D. Biopolymers at interfaces. Surface Colloid Sci. 1973; 6: 185
  • Tanford C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed. John Wiley & Sons, New York 1980; 233
  • Zajic J. E., Panchal C. J. Bioemulsifiers. CRC Crit. Rev. Microbiol. 1976; 5: 39
  • Zajic J. E., Seffens W. Biosurfactants. CRC Crit. Rev. Biotechnol. 1984; 1: 87
  • Cooper D. G., Zajic J. E. Surface active compounds from microorganisms. Adv. Appl. Microbiol. 1980; 26: 229
  • Zajic J. E., Mahomedy A. Y. Biosurfactants: intermediates in the biosynthesis of amphipathic molecules in microbes. Petroleum Microbiology, R. M. Atlas. Macmillan, New York 1984; 221
  • Singer M. E., Finnerty W. R. Microbial metabolism of straight-chain and branched alkanes. Petroleum Microbiology, R. M. Atlas. Macmillan, New York 1984; 1
  • Shaw N. Bacterial glycolipids. Bacterial. Rev. 1970; 34: 365
  • Welsh K., Shaw N., Baddiley J. The occurrence of acylated sugar derivatives in the lipids of bacteria. Biochem. J. 1968; 107: 313
  • Brennan P. J., Flynn M. P., Griffin P. F. S. Acylglucoses in Escherichia coli Saccharomyces cerevisiae and Agaricus bisporus. FEBS Lett. 1970; 8: 322
  • Smith P. F., Mayberry W. R. Identification of the major glycolipid from Mycoplasma sp. J as 3,4,6-triacyl β-D-glucopyranose. Biochemistry 1968; 7: 2706
  • Kawashima H., Nakahara T., Oogaki M., Tabuchi T. Extracellular production of a mannosyl-erythritol lipid of a mutant of Candida sp. from n-alkanes and triacylglycerols. J. Ferment. Technol. 1983; 61: 143
  • Suzuki T., Tanaka H., Itoh S. Sucrose lipids of Arthrobacteria, Corynebacteria and Nocardia grown on sucrose. Agric. Biol. Chem. 1974; 38: 557
  • Lang S., Gilbon A., Syldatk C., Wagner F. Comparison of interfacial active properties of glycolipids from microorganisms. Surfactants in Solution, K. L. Mittal, B. Lindman. Plenum Press, New York 1984; 1365
  • Itoh S., Suzuki T. Fructose lipids of Arthrobacteria, Corynebacteria, Nocardia and Mycobacteria grown on fructose. Agric. Biol. Chem. 1974; 38: 1443
  • Shaw N., Dinglinger F. The structure of an acylated inositol mannoside in the lipids of propionic acid bacteria. Biochem. J. 1969; 112: 769
  • Asselineau C., Asselineau J. Trehalose-containing glycolipids. Prog. Chem. Fats Lipids. 1978; 16: 59
  • Bloch H. Studies on the virulence of tubercle bacilli: isolation and biological properties of a constitutent of virulent organisms. J. Exp. Med. 1950; 91: 197
  • Retzinger G. S., Meredith S. C., Takayama K., Hunter R. L., Kezdy F. J. The role of surface in the biological activities of trehalose-6,6′-dimycolate. J. Biol. Chem. 1981; 256: 8208
  • Anderson R., Newman M. Chemistry of the lipids of tubercle bacilli. XXXIII. Isolation of trehalose from the acetone-soluble fat of the human tubercle bacillus. J. Biol. Chem. 1933; 101: 499
  • Barksdale L., Kim K. S. Mycobacterium. Bacteriol. Rev. 1977; 41: 217
  • Lederer E. Cord factor and related trehalose esters. Chem. Phys. Lipids 1976; 16: 91
  • Brady R. O., Trams E. G. The chemistry of lipids. Annu. Rev. Biochem. 1964; 33: 75
  • Wong M. Y. H., Steck P. A., Gray G. R. The major mycolic acids of Mycobacterium smegmatis. J. Biol. Chem. 1979; 254: 5734
  • Ioneda T., Lederer E., Rozonis J. Structure of trehalose diesters (cord factors) produced by Nocardia asteroides and Nocardia rhodochrous. Chem. Phys. Lipids 1970; 4: 375
  • Lancelle M. A., Asselineau J. Glycolipids of Brevibacterium vitarumen. Biochim. Biophys. Acta 1977; 486: 205
  • Goodfellow M., Minnikin D. G. Nocardioform bacteria. Annu. Rev. Microbiol. 1977; 31: 59
  • Suzuki T., Tanaka K., Matsubara J., Kimoshita S. Trehalose lipid and α-branched-β-hydroxy fatty acids formed by bacteria grown on n-alkanes. Agric. Biol. Chem. 1969; 33: 1619
  • Rapp P., Bock H., Wray V., Wagner F. Formation, isolation and characterization of trehalose dimycolates from Rhodococcus erythropolis grown on n-alkanes. J. Gen. Microbiol. 1979; 115: 491
  • Wagner F., Behrendt V., Bock H., Kretschmer A., Lang S., Syldatk C. Production and chemical characterization of surfactants from Rhodococcus erythropolis and Pseudomonas sp. MUB grown on hydrocarbons. Microbial Enhanced Oil Recovery, J. E. Zajic, et al. Penwell, Tulsa, Okla. 1983; 55
  • Kretschmer A., Bock H., Wagner F. Chemical and physical characterization of interfacial-active lipids from Rhodococcus erythropolis grown on n-alkanes. Appl. Environ. Microbiol. 1982; 44: 864
  • Cooper D. G., Zajic J. E., Gerson D. F. Production of surface active lipids by Corynebacterium lepus. Appl. Environ. Microbiol. 1979; 37: 4
  • Kretschmer A., Lang S., Marwede G., Ristau E., Wagner F. Formation of surface active glycolipids by n-alkane utilizing microorganisms. Adv. Biolechnol. 1981; 3: 475
  • Ristau E., Wagner F. Formation of novel anionic trehalose tetraesters from Rhodococcus erythropolis under growth limiting conditions. Biotechnol. Lett. 1983; 5: 95
  • Kretschmer A., Wagner F. Characterization of biosynthetic intermediates of trehalose dicoryno-mycolates from Rhodococcus erythropolis grown on n-alkanes. Biochim. Biophys. Acta 1983; 753: 306
  • Rapp P., Bock H., Urban E., Wagner F., Gebetsberger W., Schulz W. Use of trehalose lipids in enhanced oil recovery. DECHEMA Monogr. Biotechnol. 1977; 81: 177
  • Wagner F., Bock H., Kretschmer A. Gewinnung von tensiden mil n-alkan-oxidierenden mik-roorganismen. Fermentation, R. M. Lafferty. Springer Verlag, Vienna 1981; 181
  • Ito S., Inoue S. Sophorolipids from Torulopsis bombicola. Possible relation to alkane uptake. Appl. Environ. Microbiol. 1982; 43: 1278
  • Göbbert U., Lang S., Wagner F. Sophorose lipid formation by resting cells of Torulopsis bombicola. Biotechnol. Lett. 1984; 6: 225
  • Cooper D. G., Paddock D. A. Production of a biosurfactant from Torulopsis bombicola. Appl. Environ. Microbiol. 1984; 47: 173
  • Inoue S., Ito S. Sophorolipids from Torulopsis bombicola as microbial surfactants in alkane fermentation. Biotechnol. Lett. 1982; 4: 3
  • Cooper D. G., Paddock D. A. Torulopsis petrophilum and surface activity. Appl. Environ. Microbiol. 1983; 46: 1426
  • Ito S., Kinata M., Inoue S. Growth of yeasts on n-alkanes: inhibition by a lactonic sophorolipid produced by Torulopsis bombicola. Agric. Biol. Chem. 1980; 44: 2221
  • Hauser G., Karnovsky M. L. Studies of the production of glycolipid by Pseudomonas aeruginosa. J. Bacteriol. 1954; 68: 645
  • Edwards J. R., Hayashi J. A. Structure of a rhamnolipid from Pseudomonas aeruginosa. Arch. Biochem. Biophys. 1965; 111: 415
  • Jarvis F. G., Johnson M. J. A glycolipid produced by Pseudomonas aeurginosa. J. Am. Chem. Soc. 1949; 71: 4124
  • Hisatsuka K., Nakahara T., Sano N., Yamada K. Formation of rhamnolipid by Pseudomonas aeruginosa and its function in hydrocarbon fermentation. Agric. Biol. Chem. 1971; 35: 686
  • Itoh S., Suzuki T. Effect of rhamnolipids on growth of Pseudomonas aeruginosa mutant deficient in n-paraffin utilizing ability. Agric. Biol. Chem. 1972; 36: 2233
  • Hisatsuka K., Nakahara T., Minoda Y., Yamada K. Formation of protein-like activator for n-alkane oxidation and its properties. Agric. Biol. Chem. 1977; 41: 445
  • Rehn H. J., Reiff I. Mechanisms and occurrence of microbial oxidation of long-chain alkanes. Adv. Biochem. Eng. 1981; 19: 173
  • MacDonald C. R., Cooper D. G., Zajic J. E. Surface-active lipids form Nocardia erythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 1981; 41: 117
  • Cooper D. G., Zajic J. E., Denis C. Surface active properties of a biosurfactant from Corynebacterium lepus. J. Am. Oil. Chem. Soc 1981; 58: 77
  • Makula R. A., Lockwood P. V., Finnerty W. R. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J. Bacteriol. 1975; 121: 250
  • Makula R. A., Finnerty W. R. Microbial assimilation of hydrocarbons: cellular distribution of fatty acids. J. Bacteriol. 1972; 112: 398
  • Vachon V., McGarrity J. T., Breuil C., Armstrong J. B., Kushner D. J. Cellular and extracellular lipids of Acinetobacter Iwoffi during growth on hexadecane. Can. J. Microbiol. 1982; 28: 660
  • Hug H., Blanch W., Fiechter A. The functional role of lipids in hydrocarbon assimilation. Biotechnol. Bioeng. 1974; 16: 965
  • Thorpe R. F., Ratlege C. Fatty acid distribution in triglyceride of yeasts grown on glucose and n-alkanes. J. Gen. Microbiol. 1972; 72: 151
  • Mishina M., Isurgi M., Tanaka A., Fukui S. Lipids of Candida tropicalis and Candida lipolytica grown on n-alkanes and glucose. Agric. Biol. Chem. 1977; 41: 517
  • Käppeli O., Finnerty W. R. Partition of alkane by an extracellular vesicle derived from hexadecane-grown Acinetobacter. J. Bacteriol. 1979; 140: 707
  • Käppeli O., Finnerty W. R. Characteristics of hexadecane partition by the growth medium of Acinetobacter sp. Biotechnol. Bioeng. 1980; 22: 495
  • Shively J. M., Benson A. A. Phospholipids of Thiobacillus thiooxidans. J. Bacteriol. 1967; 94: 1679
  • Beeba J. L., Umbreit W. W. Extracellular lipid of Thiobacillus thiooxidans. J. Bacteriol. 1971; 108: 612
  • Katz E., Demain A. L. The peptide antibiotics of Bacillus: chemistry, biogenesis and possible functions. Bacteriol. Rev. 1977; 41: 449
  • Krauss E. M., Chan S. I. Complexation and phase transfer of nucleotides by gramacidin S. Biochemistry 1983; 22: 4280
  • Krauss E. M., Chan S. I. Complexation and phase transfer of nucleic acids by gramicidin S. Biochemistry 1984; 23: 73
  • Marahiel M., Danders W., Krause M., Kleinkauf H. Biological role of gramicidin S in spore functions. Studies on gramicidin S-negative mutants of Bacillus brevis 9999. Eur. J. Biochem. 1979; 99: 49
  • Rosenberg E., Brown D. R., Demain A. L. The influence of gramicidin S on hydrophobicity of germinating Bacillus brevis spores. Arch. Microbiol. 1985, (in press)
  • Piret J. M., Demain A. L. Germination initiation and outgrowth of spores of Bacillus brevis strain Nagano and its gramicidin S negative mutant. Arch. Microbiol. 1982; 133: 38
  • Rosenberg M., Rosenberg E. Role of adherence in growth of Acinetobacter calcoaceticus RAG-1 on hexadecane. J. Bacteriol. 1981; 148: 51
  • Danders W., Marahiel M. A., Krause M., Kosul N., Kato T., Izymiya N., Kleinkauf H. Antibacterial action of gramicidin S and tyrocidines in relation to active transport, in vitro transcription and spore outgrowth. Antimicrob. Agents Chemother. 1982; 22: 785
  • Pache W., Chapman D., Hillaby R. Interaction of antibiotics with membranes: polymyxin B and gramicidin S. Biochim. Biophys. Acta 1972; 255: 358
  • Scholtz K. F., Solovjena N. A., Kotelnikova A. V., Snezhkova L. G., Mirosnikova A. I. Effect of gramicidin S and its derivatives on the mitochondrial membrane. FEBS Lett. 1975; 58: 141
  • Iranov V. T. Solution structure of peptides. Peptides, M. Goodman, J. Meinhofer. John Wiley & Sons, New York 1977; 307
  • Paulus H. Polymyxins. Antibiotics, D. Gottlieb, P. D. Shaw. Springer Verlag, Berlin 1967; Vol. 2: 254
  • Suzuki T., Hayashi K., Fujikawa K., Tsukamoto K. The chemical structure of polymyxin E. J. Biochem. (Tokyo) 1965; 57: 226
  • Hayashi K., Suketa V., Tsukamoto K., Suzuki T. Chemical structure of polymyxin D. Experientia 1966; 22: 354
  • Sadoff H. Sporutation antibiotics of Bacillus species. Spores, H. Halvorsen, R. Hanson, L. L. Campbell. American Society for Microbiology, Washington, D. C. 1972; Vol. V: 157
  • Balakrishnan R., Kaur S., Goel A. K., Padmavathi S., Jayaraman K. Biosynthesis of Polymyxin by Bacillus polyma. Arch. Biochem. Biophys. 1980; 200: 45
  • Arima K., Kakinuma A., Tamura G. Surfactin, a crystalline peptide lipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 1968; 31: 488
  • Bernheimer A. W., Avigad L. S. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol. 1970; 61: 361
  • Kakinuma A., Sugino H., Isono M., Tamura G., Arima K. Determination of fatty acid in surfactin and elucidation of the total structure of surfactin. Agric. Biol. Chem. 1969; 33: 973
  • Cooper D. G., MacDonald C. R., Duff S. J. B., Kosaric N. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol. 1981; 42: 408
  • Rosenberg E., Vaks B., Zuckerberg A. Bactericidal action of an antibiotic produced by Myxococcus xanthus. Antimicrob. Agents Chemother. 1973; 4: 507
  • Rosenberg E., Fytlovitch S., Carmeli S., Kashman Y. Chemical properties of Myxococcus xanthus antibiotic TA. J. Antibiot. 1982; 35: 788
  • Zafriri D., Rosenberg E., Mirelman D. Mode of action of Myxococcus xanthus antibiotic TA. Antimicrob. Agents Chemother. 1981; 19: 349
  • Rosenberg E., Porter J. M., Nathan P. D., Manor A., Varon M. Antibiotic TA: an adherent antibiotic. Bio/Technology 1984; 2: 796
  • Reisfeld A., Rosenberg E., Gutnick D. Microbial degradation of crude oil: factors affecting the dispersion in seawater by mixed and pure cultures. Appl. Environ. Microbiol. 1972; 24: 363
  • Rosenberg E., Horowitz A., Englander E., Gutnick D. L. Bacterial emulsion of crude oil in seawater. Symposium on Impact of Microorganisms on the Aquatic Environment. 1974, U.S. Environmental Protection Agency, Publ. No. 157
  • Gutnick D. L., Rosenberg E. Oil tankers and pollution: a microbiological approach. Annu. Rev. Microbiol. 1977; 31: 379
  • Rosenberg E. A., Zuckerberg A., Rubinovitz C., Gutnick D. L. Emuslifier of Arthrobacter RAG-1: isolation and emulsifying properties. Appl. Environ. Microbiol. 1979; 37: 402
  • Zuckerberg A., Diver A., Peeri Z., Gutnick D. L., Rosenberg E. Emulsifier of Arthrobacter RAG-1: chemical and physical properties. Appl Environ. Microbiol. 1979; 37: 414
  • Pines O., Bayer E. A., Gutnick D. L. Localization of emulsan-like polymers associated with the cell surface of Acinetobacter calcoaceticus RAG-1. J. Bacterial. 1983; 154: 893
  • Goldman S., Shabtai Y., Rubinovitz C., Rosenberg E., Gutnick D. L. Emulsan in Acinetobacter calcoaceticus RAG-1: distribution of cell-free and cell-associated cross-reacting material. Appl. Environ. Microbiol. 1982; 44: 165
  • Rubinovitz C., Gutnick D. L., Rosenberg E. Emulsan production by Acinetobacter calcoaceticus RAG-92 in the presence of chloramphenicol. J. Bacteriol. 1982; 152: 126
  • Shabtai Y., Gutnick D. L. Exocellular esterase and emulsan release from the cell surface of Acinetobacter calcoaceticus RAG-1. J. Bacterial. 1985; 161: 1176
  • Zosim Z., Gutnick D. L., Rosenberg E. Uranium binding by emulsan and emulsanosols. Biotechnol. Bioeng. 1983; 25: 1725
  • Belsky I., Gutnick D. L., Rosenberg E. Emulsifier of Arthrobacter RAG-1: determination of emulsifier-bound fatty acids. FEBS Lett. 1979; 101: 175
  • Rosenberg E., Perry A., Gibson D. T., Gutnick D. L. Emulsifier of Arthrobacter RAG-1: specificity of hydrocarbon substrate. Appl. Environ. Microbiol. 1979; 37: 409
  • Zosim Z., Gutnick D., Rosenberg E. Properties of hydrocarbon-in-water emulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol. Bioeng. 1982; 24: 281
  • Basta N. Biopolymers challenge petrochemicals. High Technol. 1984; 67–70, Feb
  • Shoham Y., Rosenberg E. Enzymatic depolymerization of emulsan. J. Bacteriol. 1983; 156: 161
  • Pines O., Gutnick D. L. Specific binding of a bacteriophage at a hydrocarbon-water interface. J. Bacteriol. 1984; 157: 179
  • Shoham Y., Rosenberg M., Rosenberg E. Bacterial degradation of emulsan. Appl. Environ. Microbiol. 1983; 46: 573
  • Rosenberg E., Kaplan N., Pines O., Rosenberg M., Gutnick D. Capsular polysaccharides interfere with adherence of Acinetobacter calcoaceticus, to hydrocarbon. FEMS Lett. 1983; 17: 157
  • Rosenberg E., Gottlieb A., Rosenberg M. Inhibition of bacterial adherence to hydrocarbons and epithelial cells by emulsan. Infect. Immun. 1983; 39: 1025
  • Carruthers M. M., Anderson B. Inhibition by polyanions of adherence of Kangawa-positive Vibrio parahaemolyticus: a physiochemical effect. J. Infect. Dis. 1979; 140: 119
  • Taylor W. H., Juni E. Pathways for biosynthesis of a bacterial capsular polysaccharide. I. Characterization of the organism and polysaccharide. J. Bacteriol. 1961; 81: 688
  • Kaplan N. Ph.D. thesis. Tel Aviv University, Israel 1985
  • Kaplan N., Rosenberg E. Exopolysaccharide distribution of and bioemulsifier production by Aci-netobacter calcoaceticus BD4 and BD413. Appl. Environ. Microbiol. 1982; 44: 1335
  • Juni E., Janick A. Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). J. Bacteriol. 1969; 98: 281
  • Sar N., Rosenberg E. Emulsifier production by Acinetobacter calcoaceticus strains. Curr. Microbiol. 1983; 9: 309
  • Neufeld R. J., Zajic J. E., Gerson D. F. Cell surface measurements in hydrocarbon and carbohydrate fermentations. Appl. Environ. Microbiol. 1980; 39: 511
  • Neufeld R. J., Zajic J. E. The surface activity of Acinetobacter calcoaceticus sp. 2CA2. Biotechnol. Bioeng. 1984; 26: 1108
  • Käppeli O., Fiechter A. The mode of interaction between the substrate and cell surface of the hydrocarbon-utilizing yeast. Candida tropicalis Biotechnol. Bioeng. 1976; 28: 967
  • Käppeli O., Fiechter A. Properties of hexadecane uptake by Candida tropicalis. Curr. Microbiol. 1981; 6: 21
  • Käppeli O., Walther P., Mueller M., Fiechter A. Structure of the cell surface of the yeast Candida tropicalis and its relation to hydrocarbon transport. Arch. Microbiol. 1984; 138: 279
  • Käppeli O., Mueller M., Fiechter A. Chemical and structural alterations of the cell surface of Candida tropicalis, induced by hydrocarbon substrate. J. Bacteriol. 1978; 133: 952
  • Käppeli O., Fiechter A. Component from the cell surface of the hydrocarbon-utilizing yeast Candida tropicalis with possible relation to hydrocarbon transport. J. Bacteriol. 1977; 131: 917
  • Cirigliand M. C., Carmen G. B. Isolation of a bioemulsifier from Candida lipolytica. Appl. Environ. Microbiol. 1984; 48: 747
  • Reddy P. G., Singh H. D., Roy P. K., Baruah J. N. Predominant role of hydrocarbon solubilization in the microbial uptake of hydrocarbons. Biotechnol. Bioeng. 1982; 24: 1241
  • Cameotra S. S., Sing H. D., Baruah J. N. Demonstration of extracellular alkane solubilizing factor produced by (Endomycopsis lipolytica) YM. Biotechnol. Bioeng. 1984; 26: 554
  • Hisatsuka K., Nakahara T., Yamada K. Protein-like activator for n-alkane oxidation by Pseu-domonas aeruginosa S7B1. Agric. Biol. Chem. 1972; 36: 1361
  • Reddy P. G., Singh H. D., Roy P. K., Baruah J. N. Isolation and functional characterization of hydrocarbon emulsifying and solubilizing factors produced by a Pseudomonas species. Biotechnol. Bioeng. 1983; 25: 387
  • Fattom A., Shilo M. Phormidium J-1 bioflocculant: production and activity. Arch. Microbiol. 1984; 139: 421
  • Fattom A., Shilo M. Production of emulcyan by Phormidium J-1: its function and activity. FEMS Microbiol. Ecol. 1985; 1: 1
  • Fattom A., Shilo M. Hydrophobicity as an adhesion mechanism of benthic cyanobacteria. Appl. Environ. Microbiol. 1984; 47: 135
  • Bar-Or Y., Kessel M., Shilo M. Modulation of cell surface hydrophobicity in the benthic cyano-bacterium Phormidium J-1. Arch. Microbiol. 1985; 142: 21
  • Rosenberg M. Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol. Lett. 1984; 22: 289
  • Kjelleberg S., Stenstrom T. A. Lipid surface films: interaction of bacteria with free fatty acids and phospholipids at the air/water interface. J. Gen. Microbiol. 1980; 116: 417
  • Norkrans B. Surface microlayers in aquatic environments. Advances in Microbial Ecology, M. Alexander. Plenum Press, New York 1980; Vol. 4: 51
  • Smyth C. J., Jonsson P., Olsson E., Soderlind O., Rosengren J., Hjerten S., Watstrom T. Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect. Immun. 1978; 22: 462
  • Rosenberg M., Gutnick D., Rosenberg E. Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol. Lett. 1980; 9: 29
  • Lindahl M., Faris A., Wadstrom T., Hjerten S. A new test based on ‘salting out’ to measure relative surface hydrophobicity of bacterial cells. Biochim. Biophys. Acta 1981; 677: 471
  • Rosenberg M. Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity. Appl. Environ. Microbiol. 1981; 42: 375
  • Absolom D. R., Lamberti F. V., Policova Z., Zingg W., van Oss C. J., Neumann A. W. Surface thermodynamics of bacterial adhesion. Appl. Environ. Microbiol. 1983; 46: 90
  • Gerson D. F., Akit J. Cell surface energy, contact angles and phase partition. II. Bacterial cells in biphasic aqueous mixtures. Biochim. Biophys. Acta 1980; 602: 281
  • Kjelleberg S., Lagercrantz C., Larsson T. Quantitative analysis of bacterial hydrophobicity studied by the binding of dodecanoic acid. FEMS Microbiol. Lett. 1980; 7: 41
  • Fletcher M., Marshall K. C. Bubble contact angle method for evaluating substratum interfacial characteristics and its relevance to bacterial attachment. Appl. Environ. Microbiol. 1982; 44: 184
  • Busscher H. J., Weerkamp A. H., van der Mei H. C., van Pelt A. W. J., de Jong H. P., Arends J. Measurement of the surface free energy of bacterial cell surfaces and its relevance for adhesion. Appl. Environ. Microbiol. 1984; 48: 980
  • van Oss C. J. Phagocytosis as a surface phenomenon. Annu. Rev. Microbiol. 1978; 32: 19
  • Akit J., Cooper D. G., Manninen K. I., Zajic J. E. Investigation of potential biosurfactant production among phytopathogenic corynebacteria and related soil microbes. Curr. Microbiol. 1981; 6: 145
  • Cairns W. L., Cooper D. G., Zajic J. E., Wood J. M., Kosaric N. Characterization of Nocardia amarae as a potent biological coalescing agent of water-oil emulsions. Appl. Environ. Microbiol. 1982; 43: 362
  • Cooper D. G., Akit J., Kosaric N. Surface activity of the cells and extracellular lipids of Corynebacterium fascians. J. Ferment. Technol. 1982; 60: 19
  • Miorner H., Johansson G., Kronvall G. Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci. Infect. Immun. 1983; 39: 336
  • Ofek I., Whitnack E., Beachey E. H. Hydrophobic interactions of group A streptococci with hexadecane droplets. J. Bacterial. 1983; 154: 139
  • Jonsson P., Wadstrom T. High surface hydrophobicity of Staphylococcus aureus as revealed by hydrophobic interaction chromatography. Curr. Microbiol. 1983; 8: 347
  • Trust T. J., Kay W. W., Ishiguro E. E. Cell surface hydrophobicity and macrophage association of Aeromonas salmonicida. Curr. Microbiol. 1983; 9: 315
  • Blanchard D. C., Syzdek L. D. Seven problems in bubble and jet drop researches. Limnol. Oceanogr. 1978; 23: 389
  • Oakley D., Doyle R. J. 1985, personal communication
  • Rosenberg M., Bayer E. A., Delarea J., Rosenberg E. Role of thin fimbriae in adherence and growth of Acinetobacter calcoaceticus on hexadecane. Appl. Environ. Microbiol. 1982; 44: 929
  • Pines O., Gutnick D. L. Relationship between phage resistance and emulsan production, interaction of phages with the cell surface of Acinetobacter calcoaceticus RAG-1. Arch. Microbiol. 1981; 130: 129
  • Edebo L., Kihlstrom E., Magnusson K. E., Stendahl O. The hydrophobic effect and charge effects in the adhesion of enterobacteria to animal cell surfaces and the influences of antibodies of different immunoglobulin classes. Cell Adhesion and Motility, A. S. G. Curtis, J. D. Pitts. Cambridge University Press, CambridgeUK 1980; 65
  • Rosenberg M., Rosenberg E., Gutnick D. Bacterial adherence to hydrocarbons. Adsorption of Microorganisms to Surfaces, R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, B. Vincent. Ellis Horwood, Chichester 1980; 541
  • Rosenberg M., Rottem S., Rosenberg E. Cell surface hydrophobicity of smooth and rough Proteus mirabilis strains as determined by adherence to hydrocarbons. FEMS Microbiol. Lett. 1982; 13: 167
  • Pines O. Ph.D. thesis. Tel Aviv University, Israel 1983
  • Zamenhof S., Eichorn H. H. Study of microbial evolution through loss of biosynthetic functions: establishment of “defective” mutants of. Bacillus subtilis. Nature (London) 1967; 216: 456
  • Marshall K. C. Interfaces in Microbial Ecology. Harvard University Press, Cambridge, Mass. 1976
  • Erickson L. E., Nakahara T. Growth in cultures with two liquid phases: hydrocarbon uptake and transport. Process. Biochem. 1975; 10: 9
  • Rosenberg E., Keller K. H., Dworkin M. Cell density-dependent growth of Myxococcus xanthus on casein. J. Bacteriol. 1977; 129: 770
  • Shilo M. Photosynthetic microbial communities in aquatic ecosystems. Phil. Trans. B. Soc. Lond. B. 1982; 297: 565
  • Keller K. H., Grady M., Dworkin M. Surface tension gradients: feasible model for gliding motility in Myxococcus xanthus. J. Bacteriol. 1983; 155: 1358
  • Dworkin M., Keller K., Weisberg D. Experimental observations consistent with a surface tension model of gliding motility of Myxococcus xanthus. J. Bacteriol. 1983; 155: 1367
  • Hoyt J. W. Drag reduction in polysaccharide solutions. Trends Biotechnol. 1985; 3: 17
  • Kupfer D., Zusman D. R. Changes in cell-surface hydrophobicity of Myxococcus xanthus are correlated with sporulation-related events in the developmental program. J. Bacteriol. 1984; 159: 776
  • Zajic J. E., Guignard H., Gerson D. F. Properties and biodegradation of a bioemulsifier from Corynebacterium hydrocarboclastus. Biotechnol. Bioeng. 1977; 19: 1303
  • Gutnick D. L. Microbial surfactants in the oil industry. Proc. Biotechnol. 84. Washington, D.C. 1984, in press
  • Wagner F., et al, German patent DE-05 291106, 1979

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.