147
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Regulation of Sugar Metabolism in Saccharomyces-Type Yeast: Experimental and Conceptual Considerations

, &
Pages 299-325 | Published online: 27 Sep 2008

References

  • Lemoigne M., Aubert J.-P., Millet J. La production d'alcool et le rendement de croissance de la levure de boulangerie cultivée en aerobiose. Ann. Inst. Pasteur 1954; 87: 427
  • Beck Ch., von Meyenburg H. K. Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. J. Bacteriol. 1968; 96: 479
  • Petrik M., Käppeli O., Fiechter A. An expanded concept for the glucose effect in the yeast Saccharomyces uvarum: involvement of short- and long-term regulation. J. Gen. Microbiol. 1983; 129: 43
  • Hunter K., Rose A. H. Yeast lipids and membranes. The Yeast, A. H. Rose, J. S. Harrison. Academic Press, New York 1971; Vol. 2: 211
  • Fiechter A., Fuhrmann G. F., Käppeli O. Regulation of glucose metabolism in growing yeast cells. Adv. Microbiol. Physiol. 1981; 22: 123
  • Crabtree H. G. Observations on the carbohydrate metabolism of tumors. Biochem. J. 1929; 23: 536
  • De Deken R. H. The Crabtree effect: a regulatory system in yeast. J. Gen. Microbiol. 1966; 44: 149
  • Rieger M., Käppeli O., Fiechter A. The role of limited respiration in the incomplete oxidation of glucose by Saccharomyces cerevisiae. J. Gen. Microbiol 1983; 129: 653
  • Barford J. P., Hall R. J. An examination of the Crabtree effect in Saccharomyces cerevisiae: the role of respiratory adaptation. J. Gen. Microbiol. 1979; 114: 267
  • Käppeli O., Arreguin M., Rieger M. The respirative breakdown of glucose: an assessment of a physiological state. J. Gen. Microbiol. 1985; 131: 1411
  • Käppeli O., Gschwend-Petrik M., Fiechter A. Transient responses of Saccharomyces uvarum to a change of the growth-limiting nutrient in continuous culture. J. Gen. Microbiol. 1985; 131: 47
  • Warburg O. Ueber den Stoffwechsel der Tumoren. Springer-Verlag, Basel 1926
  • Burk D. A colloquial consideration of the Pasteur and neo-Pasteur effects. Cold Spring Harbor Symp. Quant. Biol. 1939; 7: 420
  • Pasteur L. Influence de l'oxygene sur le developpment de la levure et la fermentation alcoolique. Bul. Soc. Chim. Paris June 28, 1861; 79
  • Johnson M. J. The role of aerobic phosphorylation in the Pasteur effect. Science 1941; 94: 200
  • Lynen F. Ueber den aeroben Phosphatbedarf der Hefe. Ein Beitrag zur Kenntnis der Pasteur' schen Reaktion. J. Liebigs Ann. Chem. 1941; 546: 120
  • Lynen F., Hartmann G., Netter K. F., Schuegraf A. Phosphate turnover and Pasteur effect. Ciba Foundation Symposium on the Regulation of Cell Metabolism, C. E. W. Wolstenholme, C. M. O'Connor. J. A. Churchill, London 1959; 256
  • Lynen F., Koenigsberger R. Zum Mechanismus der Pasteurschen Reaktion: Der Phosphat-Kreislauf in der Hefe und seine Beeinflussung durch 2,4-Dinitrophenol. J. Liebigs Ann. Chem. 1951; 573: 60
  • Sols A., Gancedo C., Dela Fuente G. Energy-yielding metabolism in yeasts. The Yeasts, A. H. Rose, J. S. Harrison. Academic Press, New York 1971; Vol. 2: 271
  • Holzer H. Enzymic regulation of fermentation in yeast cells. Ciba Foundation Symposium on the Regulation of Cell Metabolism, C. E. W. Wolstenholme, C. M. O'Connor. J. A. Churchill, London 1959; 277
  • Polakis E. S., Bartley W., Meek G. A. Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem. J. 1965; 97: 298
  • Barnett J. A., Kronberg H. L. The utilization by yeast of acids of the glycarboxylic acid cycle. J. Gen. Microbiol. 1960; 23: 65
  • Gancedo C., Salas M. L., Giner A., Sols A. Reciprocal effects of carbon sources on the level of an AMP-sensitive fructose 1,6-bis-phosphatase and phosphophructokinase in yeast. Biochem. Biophys. Res. Commun. 1965; 20: 15
  • Witt J., Kronau R., Holzer H. Isoenzyme der Malatdehydrogenase und ihre Regulation in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1966; 128: 63
  • Gancedo C., Schwerzmann N. Inactivation by glucose of phosphoeolpyruvate carboxykinase from Saccharomyces cerevisiae. Arch. Microbiol. 1976; 109: 221
  • Wijk R., Ouwehand J., Bos T., van den Köningsberger V. V. Induction and catabolite repression of alpha-glucosidase synthesis in protoplasts of Saccharomyces carlsbergensis. Biochim. Biophys. Acta 1969; 186: 178
  • Gascon C., Neumann N. P., Lampen J. O. Comparative study of the properties of the purified internal and external invertases from yeast. J. Biol. Chem. 1968; 243: 1573
  • Magasanik B. Catabolite repression. Cold Spring Harbor Symp. Quant. Biol. 1961; 26: 249
  • de Crombrugghe B., Pastan I. Cyclic AMP, the cyclic AMP receptor protein and their dual control of the galactose operon. The Operon, J. H. Miller, W. S. Reznikoff. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. 1978; 303
  • Holzer H. Biochemistry of adaptation. Aspects of Yeast Metabolism, A. K. Mills. Blackwell Scientific, Oxford 1967; 155
  • Holzer H., Goedde H. W. Zwei Wege von Pyruvat zu Acetyl-Coenzym A in Hefe. Biochem. Z. 1957; 320: 175
  • Aiba S., Shoda M., Nagatani M. Kinetics of product inhibition in alcohol fermentation. Biotechnol. Bioeng. 1968; 10: 845
  • Käppeli O. Regulation of carbon metabolism in Saccharomyces and related yeasts. Adv. Microbiol. Physiol. 1986; 28: 181
  • Jones R. P., Greenfield P. F. Effect of carbon dioxide on yeast growth and fermentation. Enzyme Microbiol. Technol. 1982; 4: 210
  • Egli T., Käppeli O., Fiechter A. Regulatory flexibility of methylotrophic yeasts in chemostat cultures: simultaneous assimilation of glucose and methanol at a fixed dilution rate. Arch. Microbiol. 1982; 131: 1
  • Egli T., Käppeli O., Fiechter A. Mixed substrate growth of methylotrophic yeasts in chemostat culture: influence of the dilution rate on the utilization of a mixture of glucose and methanol. Arch. Microbiol. 1982; 131: 8
  • Dekkers J. G. J., de Kok H. E., Roels J. A. Energetics of Saccharomyces cerevisiae CBS 426: comparison of anaerobic and aerobic glucose limitation. Biotechnol. Bioeng. 1981; 23: 1023
  • Geurts T. G. E., de Kok H. E., Roels J. A. A quantitative description of the growth of Saccharomyces cerevisiae CBS 426 on a mixed substrate of glucose and ethanol. Biotechnol. Bioeng. 1980; 22: 2031
  • Wang H. Y., Cooney C. L., Wang D. I. C. Computer-aided baker's yeast fermentations. Biotechnol. Bioeng. 1977; 19: 69
  • Barford J. P., Hall R. J. Investigation of the significance of a carbon and redox balance to the measurement of the gaseous metabolism of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1979; 2: 609
  • Oura E. Reactions leading to the formation of yeast cell material from glucose and ethanol, in Alkon Keskuslaboratorio. Rep. No. 8078, Alko Oy, Helsinki, Finland 1972
  • Bijkerk A. H. E., Hall R. J. A mechanistic model of the aerobic growth of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1977; 19: 267
  • Barford J. P., Hall R. J. A mathematical model for the aerobic growth of Saccharomyces cerevisiae with a saturated respiratory capacity. Biotechnol. Bioeng. 1981; 23: 1735
  • Auling G., Bellgardt K. H., Diekmann H., Thoma M. Dynamics of growth in batch and continuous cultures of Saccharomyces cerevisiae during shifts from aerobiosis to anaerobiosis and reverse. Appl. Microbiol. Biotechnol. 1984; 19: 353
  • Bellgardt K. H., Meyer H. D., Kuhlmann W., Schügerl K., Thoma M. On line estimation of biomass and fermentation parameters by a Kalman-filter during a cultivation of Saccharomyces cerevisiae. Proc. 3rd Eur. Congr. Biotechnol. 1984; 2: 607
  • Hall R. J., Barford J. P. Simulation of the integration of the internal energy metabolism and the cell cycle of Saccharomyces cerevisiae. Biotechnol. Bioeng. 1981; 23: 1763
  • Furukawa K., Heinzle E., Dunn I. J. Influence of oxygen on the growth of Saccharomyces cerevisiae in continuous culture. Biotechnol. Bioeng. 1983; 25: 2293
  • Meyer C., Beyeler W. Control strategies for continuous bioprocesses based on biological activities. Biotechnol. Bioeng. 1984; 26: 916
  • Pirt S. J. The maintenance energy of bacteria in growing cultures. Proc. R. Soc. B 1965; 163B: 224
  • Herbert D. Stoichiometric aspects of microbial growth. Continuous Culture 6. Applications and New Fields, A. C. R. Dean, D. C. Ellwood, C. G. T. Evans, J. Melling. Ellis Horwood Ltd., Chichester 1976; 1
  • Peringer P., Blachere H., Corrieu G., Lane A. G. A generalized mathematical model for the growth kinetics of Saccharomyces cerevisiae with experimental determination of parameters. Biotechnol. Bioeng. 1974; 16: 431
  • Peringer P., Blachere H. T. Modeling and optimal control of bakers' yeast production in repeated fed-batch culture. Biotechnol. Bioeng. Symp. 1979; 9: 205
  • von Meyenburg K. H. Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch. Microbiol. 1969; 66: 289
  • Fiechter A., Schatzmann H. Glucose uptake rates of Saccharomyces cerevisiae in presence and absence of oxygen. 4th Int. Ferment. Symp., KyotoJapan, 1972
  • Cooney C. L., Wang H. Y., Wang D. I. C. Computer aided material balancing for prediction of fermentation parameters. Biotechnol. Bioeng. 1977; 19: 55
  • Barford J. P., Hall R. J. An evaluation of the approaches to the mathematical modelling of microbial growth. Proc. Biochem. 1978; 13: 122
  • Pamment N. B., Hall R. J., Barford J. P. Mathematical modelling of lag phases in microbial growth. Biotechnol. Bioeng. 1978; 20: 349
  • de Kok H. E., Roels J. A. Method for the statistical treatment of elemental and energy balances with application to steady-state continuous culture growth of Saccharomyces cerevisiae CBS 426 in the respiratory region. Biotechnol. Bioeng. 1980; 22: 1097
  • Bellgardt K. H., Kuhlmann W., Meyer H. D. Deterministic growth model of Saccharomyces cerevisiae, parameter identification and simulation. Modelling and Control of Biotechnical Processes, Proc. 1st IFAC Symp., A. Halme. Helsinki, Finland 1982; 67
  • von Meyenburg K. H. Katabolit-Repression und der Sprossungszyklus von Saccharomyces cerevisiae. Vierteljahresschr. Naturforsch. Ges. Zürich 1969; 114: 113
  • Barford J. P., Jeffery P. M., Hall R. J. The Crabtree effect in Saccharomyces cerevisiae – primary control or transient?. Advances in Biotechnology, M. Moo-Young, C. W. Robinson, C. Vezina. Pergamon Press, London 1980; Vol. 1: 255
  • Sonnleitner B., Käppeli O. Growth of Saccharomyces cerevisiae is controlled by its limited respiratory capacity: formulation and verification of a hypothesis. Biotechnol. Bioeng. 1986; 28: 927
  • Fiechter A., von Meyenburg K. H. Regulatory properties of growing cell populations of Saccharomyces cerevisiae in a continuous culture system. Proc. 2nd Int. Symp. Yeast Bratislava, A. Kockova-Kratochrilova. Slovenskej Akademie Vied, 1966; 387
  • Hoppe G. K., Hansford G. S. Ethanol inhibition of continuous anaerobic yeast growth. Biotechnol. Lett. 1982; 4: 39
  • Holzberg I., Finn R. K., Steinkraus K. H. A kinetic study of the alcoholic fermentation of grape juice. Biotechnol. Bioeng. 1967; 9: 413
  • Brown S. W., Oliver S. G., Harrison D. E. F., Righelato R. C. Ethanol inhibition of yeast growth and fermentation: differences in the magnitude and complexity of the effect. Eur. J. Appl. Microbiol. Biotechnol. 1981; 11: 151
  • Luong J. H. T. Kinetics of ethanol inhibition in alcohol fermentation. Biotechnol. Bioeng. 1985; 27: 280
  • Bertger F., Knorre W. A. Computer Simulation von Wachstum und Produktbildung bei Saccharomyces cerevisiae. Z. Allg. Mikrobiol. 1972; 12: 613
  • Pamment N. B., Hall R. J. Absence of external causes of lag in Saccharomyces cerevisiae. J. Gen. Microbiol. 1978; 105: 297
  • Esener A. A., Roels J. A., Kossen N. W. F. Theory and applications of unstructured growth models: kinetic and energetic aspects. Biotechnol. Bioeng. 1983; 25: 2803

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.