239
Views
75
CrossRef citations to date
0
Altmetric
Research Article

Molecular Biology of Antibiotic Production in Bacillus

&
Pages 223-240 | Published online: 27 Sep 2008

References

  • Hopwood D. A. Towards an understanding of gene switching in Streptomyces, the basis of sporulation and antibiotic production. Proc. R. Soc. Lond 1988; B235: 121
  • Hopwood D. A. Understanding the genetic control of antibiotic biosynthesis and sporulation in Streptomyces. Biology of Actinomycetes '88, Y. Okami, T. Beppu, H. Ogawara. Japan Scientific Societies Press, Tokyo 1988; 3
  • Hopwood D. A. Antibiotics: opportunities for genetic manipulation. Philos. Trans. R. Soc. London 1989; B324: 549
  • Tomich P. K. Streptomyces cloning: useful recombinant DNA systems and a summation of cloned genes. Antimicrob. Agents Chemother 1988; 32: 1465
  • Tomich P. K. Streptomyces cloning: possible construction of novel compounds and regulation of antibiotic biosynthetic genes. Antimicrob. Agents Chemother 1988; 32: 1472
  • Hunter I. S., Baumberg S. Molecular genetics of antibiotic formation. Society for General Microbiology Symposium, S. Baumberg, I. Hunter, M. Rhodes. Cambridge University Press, Cambridge 1989; 121
  • Seno E. T., Baltz R. H. Structural organization and regulation of antibiotic biosynthesis and resistance genes in Actinomycetes. Regulation of Secondary Metabolism in Actinomycetes, S. Shapiro. CRC Press, Boca Raton, FL 1989; 1
  • Piggot P. J., Coote J. G. Genetic aspects of bacterial endospore formation. Bacteriol. Rev 1976; 40: 908
  • Losick R., Youngman P., Piggot P. J. Genetics of endospore formation in, Bacillus subtilis. Annu. Rev. Genet 1986; 20: 625
  • Youngman P. J., Perkins J. B., Losick R. Genetic transposition and insertional mutagenesis in Bacillus subtilis with Streptococcus faecalis transposon Tn 917. Proc. Natl. Acad. Sci. U.S.A 1983; 80: 2305
  • Youngman P., Zuber P., Perkins J. B., Sandman K., Igo M., Losick R. New ways to study developmental genes in spore-forming bacteria. Science 1985; 228: 285
  • Youngman P., Perkins J. B., Losick R. A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol. Gen. Genet 1984; 195: 424
  • Perkins J. B., Youngman P. J. Construction and properties of 7n917-lac, a transposon derivative that mediates transcriptional gene fusions in, Bacilus subtilis. Proc. Natl. Acad. Sci. U.S.A 1986; 83: 140
  • Zuber P., Losick R. Role of AbrB in SpoOA- and SpoOB-dependent utilization of a sporulation promoter in, Bacillus subtilis. J. Bacteriol 1987; 169: 2223
  • Lipmann F., Gevers W., Kieinkauf H., Roskoski R. Polypeptide synthesis on protein templates: the enzymatic synthesis of gramicidin S and tyrocidine. Adv. Enzymol 1971; 35: 1
  • Laland S. G., Zimmer T.-L. The protein thiotemplate mechanism of synthesis for the peptide antibiotics produced by, Bacillus brevis. Essays Biochem. 1973; 9: 31
  • Kurahashi K. Biosynthesis of small peptides. Annu. Rev. Biochem. 1974; 43: 445
  • Katz E., Demain A. L. The peptide antibiotics of Bacillus chemistry, biogenesis, and possible functions. Bacteriol. Rev 1977; 41: 449
  • Lipmann F. Bacterial production of antibiotic polypeptides by thiol-linked synthesis on protein templates. Adv. Microb. Physiol 1980; 21: 227
  • Kurahashi K., Nishio C. Two mechanisms of biosynthesis of antibiotic peptides. The Cell Membrane, E. Haber. Plenum Press, New York 1984; 55
  • Kieinkauf H., von Dohren H. Peptide antibiotics, chap. 10. Biotechnology, Vol. 4, Microbial Products II, H. Pape, H.-J. Rehm. VCH verlagsgesellshaft mbH, Weinheim 1984, D-6940
  • Kieinkauf H., von Dohren H. Biosynthesis of peptide antibiotics. Annu. Rev. Microbiol 1987; 41: 259
  • Kieinkauf H., von Döhren H. Peptide antibiotics, β-lactams, and related compounds. Crit. Rev. Biotechnol 1988; 8: 1
  • Gevers W., Kieinkauf H., Lipmann F. Peptidyl transfers in gramicidin S biosynthesis from enzyme-bound thioester intermediates. Proc. Natl. Acad. Sci. U.S.A 1969; 63: 1335
  • Takahashi H., Sato E., Kurahashi K. Racemization of phenylalanine by adenosine triphosphate-dependent phenylalanine recemase of Bacillus brevis Nagano. J. Biochem 1971; 69: 973
  • Hori K., Kanda M., Miura S., Yamada Y., Saito Y. Transfer of D-phenylalanine from gramicidin S synthetase 1 to gramicidin S synthetase 2 in gramicidin synthesis. J. Biochem 1983; 93: 177
  • Hori K., Kanda M., Kurotsu T., Miura S., Yamada Y., Saito Y. Absence of pantothenic acid in gramicidin S synthetase 2 obtained from some mutants of, Bacillus brevis. J. Biochem 1981; 90: 439
  • Stoll E., Frøyshov ø., Holm H., Zimmer T. L., Laland S. G. On the mechanism of gramicidin S formation from intermediate peptides. FEBS Lett 1970; 11: 348
  • Lee S. G., Roskoski R., Jr., Bauer K., Lipmann F. Purification of the polyenzymes responsible for tyrocidine synthesis and their dissociation into subunits. Biochemistry 1973; 12: 398
  • Fujikawa K., Sakamoto Y., Kurahashi K. Biosynthesis of tyrocidine by a cell-free enzyme system of Bacillus brevis ATCC8185 II further purification of components I and II and their functions in tyrocidine synthesis. J. Biochem 1971; 69: 869
  • Lee S. G., Lipmann F. Isolation of a peptidyl-pantetheine-protein from tyrocidine-synthesizing polyenzymes. Proc. Natl. Acad. Sci. U.S.A 1974; 71: 607
  • Ishihara H., Shimura K. Biosynthesis of bacitracin. III. Partial purification of a bacitracin-synthesizing enzyme system from, Bacillus licheniformis. Biochim. Biophys. Acta 1974; 338: 588
  • Frøshov Ø. Bacitracin biosynthesis by three complementary fractions from, Bacillus licheniformis. FEBS Lett 1974; 44: 75
  • Ishihara H., Shimura K. Further evidence for the presence of a thiazoline ring in the isoleucylcysteine dipeptide intermediate in bacitracin biosynthesis. FEBS Lett 1988; 226: 319
  • Ishihara H., Endo Y., Abe S., Shimura K. The presence of 4′-phosphopantetheine in the bacitracin synthetase. FEBS Lett 1975; 50: 43
  • Majumder S. K., Bose S. K. Mycobacillin, a new antifungal antibiotic produced by Bacillus subtilis. Nature 1958; 181: 134
  • Sengupta S., Bose S. K. Peptides from a mycobacillin-synthesizing cell-free system. Biochem. J 1972; 128: 47
  • Ghosh S. K., Majumder S., Mukhopadhyay N. K., Bose S. K. Functional characterization of constituent enzyme fractions of mycobacillin synthetase. Biochem. J 1985; 230: 785
  • Mukhopadhyay N. K., Majumder S., Ghosh S. K., Bose S. K. Characterization of three-fraction mycobacillin synthetase. Biochem. J 1986; 235: 639
  • Arima K., Kakinuma A., Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis isolation, characterization and its inhibition of fibrin clot formation. Biochem. Biophys. Res. Commun 1968; 31: 488
  • Cooper D. G., MacDonald C. R., Duff S. J. B., Kosaric N. Enchanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol 1981; 42: 408
  • Cooper D. G. Biosurfactants. Microbiol. Sci 1986; 3: 145
  • Hosono K., Suzuki H. Acylpeptides, the inhibitors of cyclic adenosine 3′,5′-monophosphate phosphodiesterase. I. Purification, physicochemical properties and structures of fatty acid residues. J. Antibiot 1983; 36: 667
  • Hosono K., Suzuki H. Acylpeptides, the inhibitors of cyclic adenosine 3′,5′-monophosphate phosphodiesterase. II. Amino acid sequence and location of lactone linkage. J. Antibiot 1983; 36: 674
  • Hosono K., Suzuki H. Acylpeptides, the inhibitors of cyclic adenosine 3′,5′-monophosphate phosphodiesterase. III. Inhibition of cyclic AMP phosphodiesterase. J. Antibiot 1983; 36: 679
  • Kluge B., Vater J., Salnikow J., Eckart K. Studies on the biosynthesis of surfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC21332. FEBS Lett 1988; 231: 107
  • Vater J. Lipopeptides, an interesting class of microbial secondary metabolites. Biologically Active Molecules, U. P. Schlunegger. Springer-Verlag, Berlin 1989; 27
  • Walker J. E., Abraham E. P. The structure of bacilysin and other products of Bacillus subtilis. Biochem. J 1970; 118: 563
  • Sakajob M., Solomon N. A., Demain A. L. Cell-free synthesis of the dipeptide antibiotic bacilysin. J. Ind. Microbiol 1987; 2: 201
  • Roscoe J., Abraham E. P. Experiments relating to the biosynthesis of bacilysin. Biochem. J 1966; 99: 793
  • Hilton M. D., Alaeddinoglu N. G., Demain A. L. Synthesis of bacilysin by Bacillus subtilis branches from prephenate of the aromatic amino acids pathway. J. Bacteriol 1988; 170: 482
  • San Millan J. L., Kolter R., Moreno F. Plasmid genes required for microcin B17 production. J. Bacteriol 1985; 163: 1016
  • Nishio C., Komura S., Kurahashi K. Peptide antibiotic sub-tilin is synthesized via precursor proteins. Biochem. Biophys. Res. Commun 1983; 116: 751
  • Iwaki M., Shimura K., Kanda M., Kaji E., Saito Y. Some mutants of Bacillus brevis deficient in gramicidin S formation. Biochem. Biophys. Res. Commun 1972; 48: 113
  • Shimura K., Iwaki M., Kanda M., Hori K., Kaji E., Hase-Gawa S., Saito Y. On the enzyme system obtained from some mutants of Bacillus brevis deficient in gramicidin S formation. Biochim. Biophys. Acta 1974; 338: 577
  • Kambe M., Imae Y., Kurahashi K. Biochemical studies on gramicidin S non-producing mutants of Bacillus brevis ATCC9999. J. Biochem 1974; 75: 481
  • Majumder S., Ghosh S. K., Mukhopadhyay N. K., Bose S. K. Accumulation of peptides by mycobacillin-negative mutants of Bacillus subtilis B. J. Gen. Microbiol 1985; 131: 119
  • Majumder S., Mukhopadhyay N. K., Ghosh S. K., Bose S. K. Genetic analysis of the mycobacillin biosynthetic pathway in Bacillus subtilis B. J. Gen. Microbiol 1988; 134: 1147
  • Majumdar S., Basu S., Das S. K., Bose S. K. Relationship between sporulation and synthesis of mycobacillin and dipicolinic acid under condition of catabolite repression in, Bacillus subtilis. Folia Microbiol 1986; 31: 196
  • Majumdar S., Bose S. K. Derepression of sporulation and synthesis of mycobacillin and dipicolinic acid by guanosine 3′:5′-cyclic monophosphate under conditions of glucose repression in Bacillus subtilis. J. Gen. Microbiol 1985; 131: 2783
  • SchaefFer P. Sporulation and the production of antibiotics, exoen-zymes, and exotoxins. Bacteriol. Rev 1969; 33: 48
  • Mukherjee P. K., Paulus H. Biological function of gramicidin: Studies on gramicidin-negative mutants. Proc. Natl. Acad. Sci. U.S.A 1977; 74: 780
  • Modest B., Marahiel M. A., Pschorn W., Ristow H. Peptide antibiotics and sporulation: Induction of sporulation in asporogenous and peptide-negative mutants of Bacillus subtilis. J. Gen Microbiol 1984; 130: 747
  • Marahiel M. A., Danders W., Krause M., Kleinkauf H. Biological role of gramicidin S in spore functions. Studies on gramicidin S-negative mutants of Bacillus brevis ATCC9999. Eur. J. Biochem 1979; 99: 49
  • Piret J. M., Demain A. L. Sporulation and spore properties of Bacillus brevis and its gramicidin S-negative mutant. J. Gen. Microbiol 1983; 129: 1309
  • Haavik H. I., Thomassen S. A bacitracin-negative mutant of Bacillus licheniformis which is able to sporulate. J. Gen. Microbiol 1973; 76: 451
  • Haavik H. I., Frøyshov Ø. Function of peptide antibiotics in producer organisms. Nature 1975; 254: 79
  • Podlesek Z., Grabnar M. Genetic mapping of the bacitracin synthetase gene(s) in Bacillus licheniformis. J. Gen. Microbiol 1987; 133: 3093
  • Grossman A. D., Losick R. Extracellular control of spore formation in Bacillus subtilis. Proc. Natl. Acad. Sci. U.S.A 1988; 85: 4369
  • Hilton M. D., Alaeddinoglu N. G., Demain A. L. Bacillus subtilis mutant deficient in the ability to produce the dipeptide antibiotic bacilysin: Isolation and mapping of the mutation. J. Bacteriol 1988; 170: 1018
  • Nakano M. M., Marahiel M. A., Zuber P. Identification of genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in, Bacillus subtilis. J. Bacteriol 1988; 170: 5662
  • Nakano M. M., Zuber P. Cloning and characterization of srfB, a regulatory gene involved in surfactin production and competence in, Bacillus subtilis. J. Bacteriol 1989; 171: 5347
  • Chater K. F., Bruton C. J. Resistance, regulatory and production genes for the antibiotic methylenomycin are clustered. EMBO J 1985; 4: 1893
  • Malpartida F., Hopwood D. A. Physical and genetic characterization of the gene cluster for the antibiotic actinorhodin in Streptomyces coelicolor A3(2). Mol, Gen. Genet 1986; 205: 66
  • Ohnuki T., Imanaka T., Aiba S. Self-cloning in Streptomyces griseus of an str gene cluster for streptomycin biosynthesis and streptomycin resistance. J. Bacteriol 1985; 164: 85
  • Distler J., Mansouri K., Piepersberg W. Streptomycin biosynthesis in Streptomyces griseus II. Adjacent genomic location of biosynthetic genes and one of two streptomycin resistance genes. FEMS Microbiol. Lett 1985; 30: 151
  • Murakami T., Anzai H., Imai S., Satoh A., Nagaoka K., Thompson C. J. The bialaphos biosynthetic genes of Streptomyces hygroscopicus: molecular cloning and characterization of the gene cluster. Mol. Gen. Genet 1986; 205: 42
  • Fishman S. E., Cox K., Larson J. L., Reynolds P. A., Seno E. T., Yeh W.-K., VanFrank R., Hershberger C. L. Cloning genes for the biosynthesis of a macrolide antibiotic. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 8248
  • Stanzak R., Matsushima P., Baltz R. H., Rao R. N. Cloning and expression in Streptomyces lividans of clustered erythromycin biosynthesis genes from, Streptomyces erythreus. Biotechnology 1986; 4: 229
  • Montamedi H., Hutchinson C. R. 1987, Cloning and heterologous expression of a gene cluster for the biosynthesis of tetracenomycin C., the anthracycline antitumor antibiotic of Streptomyces glaucescens. Proc. Natl. Acad. Sci. U.S.A 1987; 84: 4445
  • Krause M., Marahiel M. A., von Dohren H., Kleinkauf H. Molecular cloning of an ornithine-activating fragment of the gramicidin S synthetase 2 gene from Bacillus brevis and its expression in, Escherichia coli. J. Bacteriol 1985; 162: 1120
  • Krause M., Marahiel M. A. Organization of the biosynthesis genes for the peptide antibiotic gramicidin S. J. Bacteriol 1988; 170: 4669
  • Krätzschmar J., Krause M., Marahiel M. A. Gramicidin S biosynthesis operon containing the structural genes grsA and grsB has an open reading frame encoding a protein homologous to fatty acid thioesterases. J. Bacteriol 1989; 171: 5422
  • Randhawa Z. I., Smith S. Complete amino acid sequence of medium-chain S-acyl fatty acid synthetase thio ester hydrolase from rat mammary gland. Biochemistry 1987; 26: 1365
  • Poulose A. J., Rogers L., Cheesbrough T. M., Kolattukudy P. E. Cloning and sequencing of the cDNA for S-acyl fatty acid synthetase thioesterase from the uropygial gland of mallard duck. J. Biol. Chem 1985; 260: 15953
  • Hori K., Yamamoto Y., Minetoki T., Kurotsu T., Kanda M., Miura S., Okamura K., Furuyama J., Saito Y. Molecular cloning and nucleotide sequence of the gramicidin S synthetase 1 gene. J. Biochem 1989; 106: 639
  • Marahiel M. A., Krause M., Skarpeid H.-J. Cloning of the tyrocidine synthetase 1 gene from Bacillus brevis and its expression in, Escherichia coli. Mol. Gen. Genet 1985; 201: 231
  • Mittenhuber G., Weckermann R., Marahiel M. A. Gene cluster containing the genes for tyrocidine synthetase 1 and 2 from Bacillus brevis. Evidence for an operon. J. Bacteriol 1989; 171: 4881
  • Weckermann R., Fiirbalt R., Marahiel M. A. Complete nucleotide sequence of the tycA gene coding the tyrocidine synthetase 1 horn Bacillus brevis. Nucleic Acids Res 1988; 16: 11841
  • Marahiel M. A., Zuber P., Czekay G., Losick R. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis. J. Bacteriol 1987; 169: 2215
  • Brehm S. P., Staal S. P., Hoch J. A. Phenotypes of pleiotropic-negative sporulation mutants of Bacillus subtilis. J. Bacteriol 1973; 115: 1063
  • Guespin-Michel J. F. Phenotypic reversion in some early blocked sporulation mutants of Bacillus subtilis: isolation and phenotype identification of partial revertants. J. Bacteriol 1971; 108: 241
  • Trowsdale J., Chen S. M. H., Hoch J. A. Genetic analysis of a class of polymyxin resistant partial revertants of stage 0 sporulation mutants of Bacillus subtilis; map of the chromosome region near the origin of replication. Mol. Gen. Genet 1979; 173: 61
  • Perego M., Spiegelman G. B., Hoch J. A. Structure of the gene for the transition state regulator abrB: regulator synthesis is controlled by the SpoOA sporulation gene in, Bacillus subtilis. Mol. Microbiol 1988; 2: 689
  • Robertson J. F., Gocht M., Marahiel M. A., Zuber P. AbrB, a regulator of gene expression in Bacillus, interacts with the transcription initiation regions of a sporulation gene and an antibiotic biosynthesis gene. Proc. Natl. Acad. Sci. U.S.A 1989; 86: 8457
  • Strauch M. A., Spiegelman G. B., Perego M., Johnson W. C., Burbulys D., Hoch J. A. The transition state transcription regulator abrB of Bacillus subtilis is a DNA binding protein. EMBO J 1989; 8: 1615
  • FübaB R., Gocht M., Zuber P., Marahiel M. A., manuscript in preparation
  • Ferrari F. A., Trach K., LeCoq D., Spence J., Ferrari E., Hoch J. A. Characterization of the spoOA locus and its deduced product. Proc. Natl. Acad. Sci. U.S.A 1985; 82: 2647
  • Perego M., Cole S. P., Burbulys D., Trach K., Hoch J. A. Characterization of the gene for a protein kinase which phosphorylates the sporulation-regulatory proteins SpoOA and SpoOF of Bacillus subtilis. J. Bacteriol 1989; 171: 6187
  • Ronson C. W., Nixon B. T., Ausubel F. M. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 1987; 49: 579
  • Stock J. B., Ninfa A. J., Stock A. M. Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol. Rev 1989; 53: 450
  • Smith I. The initiation of sporulation. Regulation of Procaryotic Development: A Structural and Functonal Analysis of Bacterial Sporulation and Germination, I. Smith, R. A. Slepecky, P. Setlow. American Society for Microbiology, Washington, DC 1989; 185
  • Korsnes L., Gulliksen O.-M., Sundan A., Nerland A. Cloning of genes from Bacillus licheniformis involved in synthesis of the peptide antibiotic bacitracin. Bacillus Molecular Genetics and Biotechnology Applications, A. T. Ganesan, S. A. Hoch. Academic Press, Orlando, FL 1986; 283
  • Ishihara H., Hara N., Iwabuchi T. Molecular cloning and expression in Escherichia coli of the Bacillus licheniformis bacitracin synthetase 2 gene. J. Bacteriol 1989; 171: 1705
  • Ishihara H., personal communication
  • Bernheimer A. W., Avigad L. S. Nature and properties of a cytolytic agent produced by Bacillus subtilis. J. Gen. Microbiol 1970; 61: 361
  • Nakano M. M., Zuber P., unpublished results
  • Malpartida F., Hallam S. E., Kieser H. M., Motamedi H., Hutchinson C. R., Butler M. J., Sugden D. A., Warren M., McKillop C., Bailey C. R., Humphreys G. O., Hopwood D. A. Homology between Streptomyces genes coding for synthesis of different polyketides used to clone antibiotic biosynthetic genes. Nature 1987; 325: 818
  • Shiftman D., Mevarech M., Jensen S. E., Cohen G., Aharonowitz Y. Cloning and comparative sequence analysis of the gene coding for isopenicillin N synthetase in, Streptomyces. Mol. Gen. Genet 1988; 214: 562
  • Nakata K., Horinouchi S., Beppu T. Cloning and characterization of the carbapenem biosynthetic genes from Streptomyces fulvoviridis. FEMS Microbiol. Lett 1989; 57: 51
  • Jones G. H., Hopwood D. A. Molecular cloning and expression of the phenoxazinone synthetase gene from Streptomyces antibioticus. J. Biol. Chem 1984; 259: 14151
  • Jones G. H., Hopwood D. A. Activation of phenoxazinone synthetase expression in Streptomyces lividans by cloned DNA sequences from Streptomyces antibioticus. J. Biol. Chem 1984; 259: 14158
  • Horinouchi S., Beppu T. Production in large quantities of actinorhodin and undecylprodigiosin induced by, afsB in Streptomyces lividans. Agric. Biol. Chem 1984; 48: 2131
  • Horinouchi S., Malpartida F., Hopwood D. A., Beppu T. afsB stimulates transcription of the actinorhodin biosynthetic pathway in Streptomyces coelicolor A3(2) and, Streptomyces lividans. Mol. Gen. Genet 1989; 215: 355
  • Horinouchi S., Hara O., Beppu T. Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J. Bacteriol 1983; 155: 1238
  • Horinouchi S., Suzuki H., Beppu T. Nucleotide sequence of afsB, a pleiotropic gene involved in secondary metabolism in Streptomyces coelicolor A3(2) and, Streptomyces lividans. J. Bacteriol 1986; 168: 257
  • Hahn J., Albano M., Dubnau D. Isolation and characterization of Tn 917lac -generated competence mutants of, Bacillus subtilis. J. Bacteriol 1987; 169: 3104
  • Albano M., Hahn J., Dubnau D. Expression of competence genes in, Bacillus subtilis. J. Bacteriol 1987; 169: 3110
  • Guillen N., Weinrauch Y., Dubnau D. A. Cloning and characterization of the regulatory Bacillus subtilis competence genes, comA and, comB. J. Bacterial 1989; 171: 5354
  • Weinrauch Y., Guillen N., Dubnau D. A. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. J. Bacteriol 1989; 171: 5362
  • Dubnau D. The competence regulon of Bacillus subtilis. Regulation of Procaryotic Development: A Structural and Functional Analysis of Bacterial Sporulation and Germination, I. Smith, R. A. Slepecky, P. Setlow. American Society for Microbiology, Washington, DC 1989; 147
  • Dubnau D., personal communication
  • Hazelbauer G. L., Park C., Nowlin D. M. Adaptational “crosstalk” and the crucial role of methylation in chemotactic migration by, Escherichia coli. Proc. Natl. Acad. Sci. U.S.A 1989; 86: 1448
  • Kunst F., Debarbouille M., Msadek T., Young M., Maud C., Karamata D., Klier A., Rapoport G., Dedonder R. Deduced polypeptides encoded by the Bacillus subtilis sacU locus share homology with two-component sensor-regulator systems. J. Bacteriol 1988; 170: 5093
  • Henner D. J., Yang M., Ferrari E. Localization of Bacillus subtilis sacU (Hy) mutations to two linked genes with similarities to the conserved procaryotic family of two-component signalling systems. J. Bacteriol 1988; 170: 5102
  • Dubnau E., Ramakrishna N., Cabane K., Smith I. Cloning of an early sporulation gene in, Bacillus subtilis. J. Bacteriol 1981; 147: 622
  • Dubnau E., Weir J., Nair G., Carter L., III, Moran C., Jr., Smith I. Bacillus sproulation gene spoOH codes for σ30 (σH). J. Bacteriol 1988; 170: 1054
  • Gaur N. K., Dubnau E., Smith I. Characterization of a cloned Bacillus subtilis gene that inhibits sporulation in multiple copies. J. Bacteriol 1986; 168: 860
  • Gaur N. K., Cabane K., Smith I. Structure and expression of the Bacillus subtilis sin operon. J. Bacteriol 1988; 170: 1046
  • Hanson R. S., Cox D. P. Effect of different nutritional conditions on the synthesis of tricarboxylic acid cycle enzymes. J. Bacteriol 1967; 93: 1777
  • Rosenkrantz M. S., Dingman D. W., Sonenshein A. L. Bacillus subtilis citB gene is regulated synergistically by glucose and glutamine. J. Bacteriol 1985; 164: 155
  • Banerjee S., Hansen J. N. Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J. Biol. Chem 1988; 263: 9508
  • Schnell N., Entian K.-D., Schneider U., Gotz F., Zähner H., Kellner R., Jung G. Propeptide sequence of epidermin, a ribosomally-synthesized antibiotic with four sulphide-rings. Nature 1988; 333: 276
  • Buchman G. W., Banerjee S., Hansen J. N. Structure, expression, and evolution of a gene encoding the precursor of nisin, a small protein antibiotic. J. Biol. Chem 1988; 263: 16260
  • Hop wood D. A., Malpartida F., Chater K. F. Gene cloning to analyze the organization and expression of antibiotic biosynthesis genes in Streptomyces. Regulation of Secondary Metabolite Formation, H. Kleinkauf, H. von Döhren, H. Dornauer, G. Nesemann. VCH, Weinheim 1986; 23
  • Crameri R., Davies J. E. Increased production of aminoglycosides associated with amplified antibiotic resistance genes. J. Antibiot 1986; 39: 128
  • Hopwood D. A., Malpartida F., Kieser H. M., Ikeda H., Duncan J., Fujii I., Rudd B. A. M., Floss H. G., Omura S. Production of “hybrid” antibiotics by genetic engineering. Nature 1985; 314: 642
  • Omura S., Ikeda H., Malpartida F., Kieser H. M., Hop-Wood D. A. Production of new hybrid antibiotics, mederrhodins A and B by a genetically engineered strain. Antimicrob. Agents Chemother 1986; 29: 13

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.