203
Views
61
CrossRef citations to date
0
Altmetric
Research Article

Cellulose Degradation by Ruminal Microorganisms

Pages 189-223 | Published online: 27 Sep 2008

References

  • The Global Carbon Cycle SCOPE B, B. Bolin. John Wiley & Sons, New York 1979
  • National Research Council. The United States-Canadian Table of Feed Composition, 3rd rev. National Academy Press, Washington, DC 1982
  • Cherney J. H., Anliker K. S., Albrecht K. A., Wood K. V. Soluble phenolic monomers in forage crops. J. Agric. Food Chem. 1989; 37: 345
  • Van Soest P. J., Mertens D. R. Composition and nutritive characteristics of low-quality cellulosic waste. Fed. Proc 1974; 33: 1942
  • Agricultural Statistics 1990. U.S. Department of Agriculture, Washington, DC 1990
  • Church D. C. Digestive Physiology and Nutrition of Ruminants, 2nd ed. Oregon State University Bookstores, Corvallis 1975; Vol. 1
  • Dehority B. A. Cellulose digestion in ruminants. Biosynthesis and Biodegradation of Cellulose, C. H. Haigler, P. J. Weimer. Marcel Dekker, New York 1991; 327
  • Hungate R. E. The Rumen and Its Microbes. Academic Press, New York 1966
  • Russell J. B., Hino T. Regulation of lactate production in Streptococcus bovis: a spiraling effect that contributes to rumen acidosis. J. Dairy Sci. 1985; 68: 1712
  • Russell J. B., Stroebel H. J. Effect of ion-ophores on ruminal fermentation. Appl. Environ. Microbiol. 1989; 55: 1
  • Johnson V. W., Sutton J. D. Continuous recording of the pH in the bovine rumen. Br. J. Nutr. 1968; 22: 303
  • Clarke R. T. J. The gut and its microbes. Microbial Ecology of the Gut, R. T. J. Clarke, T. Bauchop. Academic Press, New York 1977; 77
  • Ellis J. E., Williams A. G., Lloyd D. Oxygen consumption by ruminal microorganisms: protozoal and bacterial contributions. Appl. Environ. Microbiol. 1989; 55: 2583
  • Hobson P. N. The Rumen Microbial Ecosystem. Elsevier, London 1988
  • Van Soest P. J. Nutritional Ecology of the Ruminant. O & B Books, Corvallis 1982
  • Akin D. E., Ljungdahl L. G., Wilson J. R., Harris P. J. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants. Elsevier, New York 1990
  • Baci C. A., Harris P. J., Stone B. A. Structure and function of plant cell walls. Biochemistry of Plants, J. Preiss. Academic Press, New York 1988; Vol. 14: 297
  • Gilbert I. G., Tsao G. T. Interaction between solid substrate and cellulase enzymes in cellulose hydrolysis. Annu. Rep. Ferm. Proc. 1983; 6: 323
  • Marchessault R. H., Sundararajan P. R. Cellulose. The Polysaccharides, G. O. Aspinall. Academic Press, New York 1983; Vol. 2: 11
  • Atalia R. H., Van der Hart D. L. Native cellulose: a composite of two distinct crystalline forms. Science 1984; 223: 283
  • Harris P. J. Plant cell wall structure and development. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 71
  • Marchessault R. H., Howsmon J. A. Experimental evaluation of the lateral order distribution in cellulose. Text. Res. J. 1959; 27: 30
  • Hearle J. W. S. A fringed fibrillar theory of structure in crystalline polymers. J. Polym. Sci. 1958; 28: 432
  • Fink H.-P., Phillipp B. Models of cellulose physical structure from the viewpoint of the cellulose I, II transition. J. Appl. Polym. Sci. 1985; 30: 3779
  • Gordon A. H., Hay A. J., Dinsdale D., Bacon J. S. D. Polysaccharides and associated components of mesophyll cell walls prepared from grasses. Carbohydr. Res. 1977; 57: 235
  • Elofson R. M., Ripmeester J. A., Cyr N., Milligan N. P., Mathison G. Nutritional evaluation of forages by high-resolution solid-state 13C-NMR. Can. J. Anim. Sci. 1984; 64: 93
  • Newman R. H., Hemmingson J. A. Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 1990; 44: 351
  • Fan L. T., Lee Y.-H., Beardmore D. R. Major chemical and physical features of cellulosic materials as substrates for enzymatic hydrolysis. Adv. Biochem. Eng. 1980; 14: 101
  • Young R. A. Structure, swelling, and bonding of cellulose fibers. Cellulose, Structure, Modification, and Hydrolysis, R. A. Young, R. M. Rowell. Interscience, New York 1986; 91
  • Hartley R. D. p-Coumaric and ferulic acid components of cell walls of ryegrass and their relationships with lignin and digestibility. J. Sci. Food Agric 1972; 23: 1347
  • Hartley R. D., Ford C. W. Phenolic constituents of plant cell walls and wall biodegradability. Plant Cell Wall Polymers: Biogenesis and Bio-degradation, N. G. Lewis, M. G. Paice. American Chemical Society, Washington, DC 1989; 137
  • Chesson A. Lignin-polysaccharide complexes of the plant cell wall and their effect on microbial degradation in the rumen. Anim. Feed Sci. Technol. 1988; 21: 219
  • Bacon J. S. D. Plant cell wall digestibility and chemical structure. Rep. Rowett Inst. 1979; 35: 99
  • Morrison I. M. Carbohydrate chemistry and rumen digestion. Proc. Nutr. Soc. 1979; 38: 269
  • Lam T. B. T., Iiyama K., Nakano J. Preparation of carboxymethylcellulose from refiner mechanical pulp. V. Physical and chemical associations among cellulose, hemicellulose, and lignin. Mokuzai Gakkashi 1985; 31: 475
  • Selvendran R. R. The chemistry of plant cell walls. Dietary Fibre, G. G. Birch, K. J. Parken. Applied Science Publishers, New York 1983; 95
  • Montgomery L., Flesher B. A., Stahl D. Transfer of Bacteroides succinogenes (Hungate) to Fibrobacter gen. nov. as Fibrobacter succinogenes comb. nov. and description of Fibrobacter intestinalis, sp. nov., to. J. Syst. Bacteriol. 1988; 38: 430
  • Bryant M. P., Small N. The anaerobic mon-otrichous butyric acid-producing curved rod-shaped bacteria of the rumen. J. Bacteriol. 1956; 72: 16
  • Bryant M. P. Normal flora — rumen bacteria. Am. J. Clin. Nutr. 1970; 23: 1440
  • Bryant M. P. Nutritional requirements of the predominant ruminal cellulolytic bacteria. Fed. Proc 1973; 32: 1809
  • Stewart C. S., Flint H. J. Bacteroides (Fibrobacter) succinogenes, a cellulolytic anaerobic bacterium from the gastrointestinal tract. Appl. Microbiol. Biotechnol 1989; 30: 433
  • Osborne J. M., Dehority B. A. Synergism in degradation and utilization of intact forage cellulose, hemicellulose, and pectin by three pure cultures of ruminal bacteria. Appl. Environ. Microbiol. 1989; 55: 2247
  • Scott H. W., Dehority B. A. Vitamin requirements of several cellulolytic rumen bacteria. J. Bacteriol. 1965; 89: 1169
  • Allison M. J., Bryant M. P., Katz I., Keeney M. Metabolic function of branch-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branch-chain fatty acids and aldehydes. J. Bacteriol. 1962; 83: 1084
  • Marounek M., Wallace R. J. Influence of culture Eh on the growth and metabolism of the rumen bacteria Selenomonas ruminantium, Bacteroides amylophilus, Bacteroides succinogenes, and Streptococcus bovis in batch culture. J. Gen. Microbiol. 1984; 130: 223
  • Veira D. M. The role of ciliate protozoa in nutrition of the ruminant. J. Anim. Sci. 1986; 63: 1547
  • Orpin C. G., Letcher A. J. Effect of absence of ciliate protozoa on rumen fluid volume, flow rate, and bacterial populations in sheep. Anim. Feed Sci. Technol. 1983; 10: 145, 84
  • Cheng K. J., Akin D. E., Costerton J. W. Rumen bacteria: interaction with particulate dietary components and response to dietary variation. Fed. Proc 1977; 36: 193
  • Dehority B. A., Scott H. W. Extent of cellulose and hemicellulose digestion in various forages by pure cultures of rumen bacteria. J. Dairy Sci. 1967; 50: 1136
  • Halliwell G., Bryant M. P. The cellulolytic activity of pure strains of bacteria from the rumen of cattle. J. Gen. Microbiol. 1963; 32: 441
  • Van Gylswyk N. O., Labuschagne J. P. L. Relative efficiency of pure cultures of different species of cellulolytic rumen bacteria in solubilizing cellulose in vitro. J. Gen. Microbiol. 1971; 66: 109
  • Kock S. G., Kistner A. Extent of solubilization of cellulose and hemicellulose of low-protein teff hay by pure cultures of cellulolytic rumen bacteria. J. Gen. Microbiol. 1969; 55: 459
  • Varel V. H., Dehority B. A. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets. Appl. Environ. Microbiol. 1989; 55: 148
  • Joyner A. E., Jr., Baldwin R. L. Enzymatic studies of pure cultures of rumen microorganisms. J. Bacteriol. 1966; 92: 1321
  • Hopgood M. F., Walker D. J. Succinic acid production by rumen bacteria. III. Enzymatic studies on the formation of succinate by Ruminococcus flavefaciens. Austr. J. Biol. Sci. 1969; 22: 1413
  • Miller T. L. The pathway of formation of acetate and succinate from pyruvate by Bacteroides succinogenes. Arch. Microbiol. 1978; 117: 145
  • Miller T. L., Wolin M. J. Formation of hydrogen and formate by Ruminococcus albus. J. Bacteriol. 1973; 116: 836
  • Hespell R. B. Efficiency of growth by ruminal bacteria. Fed. Proc 1979; 38: 2707
  • Hespell R. B., Bryant M. P. Efficiency of rumen microbial growth: influence of some theoretical and experimental factors on YATP. J. Anim. Sci. 1979; 49: 1640
  • Orpin C. G. The rumen flagellate Callimastixfrontalis: does sequestration occur?. J. Gen. Microbiol. 1974; 84: 395
  • Orpin C. G. Studies on the rumen flagellate Neocallimastix frontalis. J. Gen. Microbiol. 1975; 91: 249
  • Orpin C. G. The invasion of plant tissue in the rumen by the flagellate Neocallimastix frontalis. J. Gen. Microbiol. 1977; 98: 423
  • Orpin C. G. The rumen flagellate Piromonas communis: its life history and invasion of plant material in the rumen. J. Gen. Microbiol. 1977; 99: 107
  • Orpin C. G., Letcher A. Utilization of cellulose, starch, xylan and hemicelluloses for growth by the rumen phycomycete. Neocallimastix frontalis, Curr. Microbiol. 1979; 3: 121
  • Heath I. B., Bauchop T., Skipp R. A. Assignment of the rumen anaerobe Neocallimastix frontalis to the Spizellomycetales (Chytridiomycetes) on the basis of its polyflagellate zoospore ultrastructure. Can. J. Bot. 1983; 61: 295
  • Orpin C. G. Studies of the rumen flagellate Sphaeromonas communis. J. Gen. Microbiol. 1976; 94: 270
  • Orpin C. G., Munn N. A. Neocallimastix patriciarum, sp. no v., a new member of the Neo-callimasticaceae inhabiting the rumen of sheep. Trans. Br. Mycol. Soc 1986; 86: 178
  • Breton A., Bernalier A., Bonnemoy F., Fonty G., Gaillard B., Gouet B. Morphological and metabolic characterization of a new species of strictly anaerobic rumen fungus. Neocallimastix joyonii, FEMS Microbiol. Lett. 1989; 58: 309
  • Barr D. J. S., Kudo H., Jakoben K. D., Cheng K.-J. Morphological development of rumen fungi: Neocallimastix sp., Piromyces communis, and Orpinomyces bovis, gen. nov. Can. J. Bot. 1989; 67: 2815
  • Breton A., Bernalier A., Dusser M., Fonty G., Gaillard-Martinie B., Guillot J. Anaero-myces mucronatus nov. gen., nov. sp., a new strictly anaerobic rumen fungus with polycentric thallus. FEMS Microbiol. Lett. 1990; 70: 177
  • Ho Y. W., Bauchop T., Abdullah N., Jalaludin S. Ruminomyces elegans gen. et sp. nov., a polycentric anaerobic rumen fungus from cattle. Mycotaxon 1990; 38: 397
  • Warner A. C. I. Diurnal changes in the concentrations of micro-organisms in the rumen of sheep fed limited diets once daily. J. Gen. Microbiol. 1966; 45: 213
  • Mountfort D. O., Asher R. A. Production and regulation of cellulase by two strains of the rumen anaerobic fungus Neocallimastix frontalis. Appl. Environ. Microbiol. 1985; 49: 1314
  • Williams A. G., Orpin C. G. Polysaccharide-degrading enzymes present in the zoospore and vegetative growth stages of the rumen fungi Neocallimastix patriciarum, Piromonas communis, and an unidentified isolate, grown on a range of carbohydrate substrates. Can. J. Microbiol. 1987; 33: 427
  • Morrison M., Mackie R. I., Kistner A. Evidence that cellulolysis by an anaerobic ruminal fungus is catabolite regulated by glucose, cellobiose, and soluble starch. Appl. Environ. Microbiol. 1990; 56: 3227
  • Calza R. E. Regulation of protein and cellulase excretion in the ruminal fungus Neocallimastix frontalis. Curr. Microbiol. 1990; 21: 109
  • Borneman W. S., Akin D. E., Ljungdahl L. G. Fermentation products and plant cell wall degrading enzymes produced by monocentric and polycentric anaerobic ruminal fungi. Appl. Environ. Microbiol. 1989; 55: 1066
  • Orpin C. G. The role of ciliate protozoa and fungi in the rumen digestion of plant cell walls. Anim. Feed Sci. Technol. 1983; 10: 121, 84
  • Akin D. E., Lyon C. E., Windham W. R., Rigsby L. L. Physical degradation of lignified stem tissues by ruminal fungi. Appl. Environ. Microbiol. 1989; 55: 611
  • Joblin K. N. Isolation, enumeration, and maintenance of rumen anaerobic fungi in roll tubes. Appl. Environ. Microbiol. 1981; 42: 1119
  • Stewart C. S., Duncan S. H., Joblin K. N. The use of tritiated cellulose for the rapid enumeration of cellulolytic anaerobes. Lett. Appl. Microbiol. 1985; 1: 45
  • Baker S. K. Allometry and the implications of cell size in the ruminal microbial population. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 253
  • Wood T. M., Wilson C. A., McCrea S. I., Joblin K. N. A highly active extracellular cellulase from the rumen anaerobic fungus Neocallimastix frontalis. FEMS Microbiol. Lett. 1986; 43: 37
  • Ho Y. W., Abdullah N., Jalaludin S. Penetrating structures of anaerobic fungi in cattle and swamp buffalo. J. Gen. Microbiol. 1988; 134: 177
  • Borneman W. S., Akin D. E. Lignocellulose degradation by rumen fungi and bacteria: ultrastructure and cell wall degrading enzymes. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 325
  • Coleman G. S. The cellulase content of 15 species of entodinomorphid protozoa, mixed bacteria, and plant debris isolated from the ovine rumen. J. Agric. Sci. 1985; 104: 349
  • Bailey R. W., Clarke R. T. J. Carbohydrase activity of rumen Entinodinium sp. from sheep on a starch-free diet. Nature 1963; 198: 787
  • Gijzen H. J., Lubberding H. J., Gerhardus M. J. T., Vogels G. D. Contribution of rumen protozoa to fibre digestion and cellulase activity in vitro. FEMS Microbiol. Ecol. Rev. Lett. 1988; 53: 35
  • Delfosse-Debucher J., Thines-Sempous D., Van Bell M., Latteur B. Contribution of protozoa to the rumen cellulolytic activity. Ann. Rech. Vet. 1979; 10: 255
  • Bonhomme A., Fonty G., Foglietti M. J., Robi C. D., Weber M. Endo-1,4-β-glucanase and β-glucosidase of the ciliate Polyplastron multivesicu-latum free of cellulolytic bacteria. Can. J. Microbiol. 1986; 32: 219
  • Van Gylswyk N. O., van der Toon J. J. T.K. Enumeration of Bacteroides succinogenes in the rumen of sheep fed maize-straw diets. FEMS Microbiol. Ecol. 1986; 38: 205
  • Huang L., McGavin M., Forsberg C. W., Lam J. S., Cheng K. J. Antigenic nature of chloride-stimulated cellobiosidase and other cellulases of Fibrobacter succinogenes S85. Appl. Environ. Microbiol. 1990; 56: 122
  • Russell J. B., Strobel H. J., Chen G. The enrichment and isolation of a ruminal bacterium with a very high specific activity of ammonia production. Appl. Environ. Microbiol. 1988; 54: 872
  • Chen G., Russell J. B. More monensin-sen-sitive, ammonia producing bacteria from the rumen. Appl. Environ. Microbiol. 1989; 55: 1052
  • Cheng K.-J., Fay J. P., Howarth R. E., Costerton J. W. Sequence of events in the digestion of fresh legume leaves by rumen bacteria. Appl. Environ. Microbiol 1980; 40: 613
  • Akin D. E. Microscopic evaluation of forage digestion by rumen microorganisms — a review. J. Anim. Sci. 1979; 48: 701
  • Akin D. E. Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls. Appl. Environ. Microbiol. 1980; 38: 242
  • Akin D. E., Barton F. E. II, Rumen microbial attachment and degradation of plant cell walls. Fed. Proc 1983; 42: 114
  • Kudo H., Cheng K.-J., Costerton J. W. Electron microscopic study of the mefhylcellulose-mediated detachment of cellulolytic rumen bacteria from cellulose fibers. Can. J. Microbiol. 1987; 33: 267
  • Minato H., Suto T. Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder and elution of bacteria attached therefrom. J. Gen. Appl. Microbiol. 1978; 24: 1
  • Rasmussen M. A., White B. A., Hespell R. B. Improved assay for quantitating adherence of ruminal cellulolytic bacteria to cellulose. Appl. Environ. Microbiol. 1989; 55: 2089
  • Gong J., Forsberg C. W. Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose. Appl. Environ. Microbiol. 1989; 55: 3039
  • Roger V., Fonty G., Komisarczuk-Bony S., Gouet P. Effects of physicochemical factors on the adhesion to cellulose Avicel of the ruminal bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp succinogenes. Appl. Environ. Microbiol. 1990; 56: 3081
  • Morris E. J., Cole O. J. Relationship between cellulolytic activity and adhesion to cellulose in R. albus. J. Gen. Microbiol. 1987; 133: 1023
  • Costerton J. W., Daamgard H. N., Cheng K. J. Cell envelope morphology of rumen bacteria. J. Bacteriol. 1974; 118: 1132
  • Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 1978; 35: 156
  • Patterson H., Irvin R., Costerton J. W., Cheng K.-J. infrastructure and adhesion properties of Ruminococcus albus. J. Bacterioi. 1975; 122: 278
  • Escher A., Charackilis W. G. Modeling the initial events in biofilm accumulation. Biqfilms, W. G. Charackilis. Interscience, New York 1990; 445
  • Cheng K. J., Stewart C. S., Dinsdale D., Costerton J. W. Electron microscopy of bacteria involved in the digestion of plant cell walls. Anim. Feed Sci. Technol 1983/84; 10: 93
  • Akin D. E. Ultrastructure of rumen bacterial attachment to forage cell walls. Appl. Environ. Microbiol. 1976; 31: 562
  • Latham M. J., Brooker B. E., Pettipher G. L., Harris P. J. Adhesion of Bacteroides succinogenes in pure culture and in the presence of Ruminococcus flavefaciens to cell walls in leaves of perennial ryegrass (Lolium perenne). Appl. Environ. Microbiol. 1978; 35: 1166
  • Bauchop T. Rumen anaerobic fungi of cattle and sheep. Appl. Environ. Microbiol. 1979; 38: 148
  • Orpin C. G., Bountiff L. Zoospore chemo-taxis in the rumen phycomycete Neocallimastix frontalis. J. Gen. Microbiol. 1978; 104: 113
  • Amos H. E., Akin D. E. Rumen protozoal degradation of structurally intact forage tissues. Appl. Environ. Microbiol. 1978; 36: 513
  • Walseth C. S. The influence of the fine structure of cellulose on the action of cellulases. TAPPI 1952; 35: 233
  • Stone J. E., Scallan A. M., Donefer E., Ahlgren E. Digestibility as a simple function of a molecule of similar size to a cellulase enzyme. Adv. Chem. Ser. 1969; 95: 219
  • Weimer P. J., Weston W. M. Relationship between the fine structure of native cellulose and cellulose degradability by the cellulase complexes of Trichoderma reesei and Clostridium thermocellum. Biotechnol. Bioeng. 1985; 27: 1540
  • Bertran M. S., Dale B. E. Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose. Biotechnol. Bioeng. 1985; 27: 177
  • Oermoun Z., Belaich J. P. Microcalorimetric study of cellulose degradation by Cellulomonas uda ATCC 21399. Biotechnol. Bioeng. 1985; 27: 1005
  • Kim B. H., Wimpenny J. W. T. Growth and cellulolytic activity of Cellulomonas flavigena. Can. J. Microbiol. 1981; 27: 1260
  • de Coninck-Chosson J. Aerobic degradation of cellulose and adsorption properties of cellulases in Cellulomonas uda JC3: effects of crystallinity of substrate. Biotechnol. Bioeng. 1988; 31: 495
  • Weimer P. J., Lopez-Guisa J. M., French A. D. Effect of cellulose fine structure on the kinetics of its digestion by mixed rumen microflora in vitro. Appl. Environ. Microbiol. 1990; 56: 2421
  • Smith W. R., Yu I., Hungate R. E. Factors affecting cellulolysis by Ruminococcus albus. J. Bac-terioi 1973; 114: 729
  • Lin K. W., Ladisch M. R., Voloch M., Patterson J. A., Noller C. H. Effect of pre-treatments and fermentation on pore size in cellulosic materials. Biotechnol. Bioeng. 1985; 27: 1427
  • Dehority B. A. Effect of particle size on the digestion rate of purified cellulose by rumen cellulolytic bacteria in vitro. J. Dairy Sci. 1961; 44: 687
  • Dehority B. A., Johnson R. R. Effect of particle size upon the in vitro cellulose digestibility of forages by rumen bacteria. J. Dairy Sci. 1961; 44: 2242
  • Beveridge R. J., Richards G. N. Investigation of the digestion of cell-wall polysaccharides of spear grass and of cotton cellulose by viscometry and X-ray diffraction. Carbohydr. Res. 1975; 43: 163
  • Weimer P. J., French A. D., Calamari T. A. Jr., Differential fermentation of cellulose allomorphs by ruminal cellulolytic bacteria. Appl. Environ. Microbiol. 1991; 57: 3101
  • Halliwell G. Cellulolytic properties from microorganisms of the rumen and from Myrothecium ver-rucaria. J. Gen. Microbiol. 1957; 17: 166
  • Van Soest P. J. The uniformity and nutritive availability of cellulose. Fed. Proc 1973; 32: 1804
  • Woodman H. E., Stewart J. The mechanism of cellulose digestion in the ruminant organism. The action of cellulose-splitting bacteria on the fiber of certain typical feeding stuffs. J. Agric. Sci. 1932; 22: 527
  • Mowat D. N., Kwain M. L., Winch J. E. Lignification and in vitro cell wall digestibility of plant parts. Can. J. Plant Sci. 1969; 49: 499
  • Allinson D. W., Osborn D. F. The cellulose-lignin complex in forages and its relationship to forage nutrient value. J. Agric. Sci. 1970; 74: 23
  • Reeves J. B., III. Lignin composition and in vitro digestibility of feeds. J. Anim. Sci. 1985; 60: 316
  • Barton F. E., II, Akin D. E. Digestibility of delignified forage cell walls. J. Agric. Food Chem. 1977; 25: 1299
  • Belyea R. L., Foster M. B., Zinn G. M. Effect of delignification on in vitro digestion of alfalfa cellulose. J. Dairy Sci. 1983; 66: 1277
  • Ford C. W. Effect of partial delignification on the in vitro digestibility of cell wall polysaccharides in Digitaria decumbens (Pangola grass). Austr. J. Agric. Res. 1978; 29: 1157
  • Morrison I. M. The effect of physical and chemical treatments on the degradation of wheat and barley straws by rumen liquor-pepsin and pepsin-cellulase systems. J. Sci. Food Agric 1983; 34: 1323
  • Bunting L. D., Richardson C. R. and Tock, R. W., Digestibility of ozone-treated sorghum by ruminants. J. Agric. Sci. 1984; 102: 747
  • Jung H. J., Vogel K. P. Influence of lignin on digestibility of forage cell wall material. J. Anim. Sci. 1985; 62: 1703
  • Burroughs W., Gerlaugh P., Edgington B. H., Bethke R. M. Influence of corn starch upon roughage digestion in cattle. J. Anim. Sci. 1949; 8: 271
  • Kane E. A., Jacobson W. C., Dame wood P. M., Jr. Effect of corn starch on digestibility of alfalfa hay. J. Dairy Sci. 1959; 42: 849
  • McCullough M. E. Influence of hay or silage and ratio of flaked corn or beet pulp to forage on cellulose disappearance in vitro. J. Anim. Sci. 1968; 27: 780
  • Terry R. A., Tilley J. M. A., Outen G. E. Effect of pH on cellulose digestion under in vitro conditions. J. Sci. Food Agric 1969; 20: 317
  • Orskov E. R., Fraser C. The effects of processing of barley-based supplements on rumen pH, rate of digestion, and voluntary intake of dried grass in sheep. Br. J. Nutr. 1975; 34: 493
  • Stewart C. S. Factors affecting the cellulolytic activity of rumen contents. Appl. Environ. Microbiol. 1977; 33: 597
  • Mould F. L., Orskov E. R., Mann S. O. Associative effects of mixed feeds. I. Effects of type of supplementation and influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 1983/84; 10: 15
  • Russell J. B., Dombrowski D. B. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture. Appl. Environ. Microbiol. 1980; 39: 604
  • Russell J. B. Effect of extracellular pH on the growth and protonmotive force of Bacteroides succinogenes, a cellulolytic ruminal bacterium. Appl. Environ. Microbiol 1987; 53: 2379
  • Hobson P. N. Continuous culture of rumen bacteria: apparatus. J. Gen. Microbiol. 1965; 38: 161
  • Kistner A., Van Zyl J. G. Continuous culture of anaerobic rumen bacteria: modification and extension of the cyclone column culture system. Can. J. Microbiol. 1967; 13: 455
  • Kafkewicz D., Ianotti E. L., Wolin M. J., Bryant M. P. An anaerobic chemostat that permits the collection and measurement of fermentation gases. Appl. Microbiol 1973; 25: 612
  • Hoover W. H., Crooker B. A., Sniffen C. J. Effects of differential solid-liquid removal rates on protozoa numbers in continuous culture of rumen contents. J. Anim. Sci. 1976; 43: 528
  • Czerkawski J. W., Breckenridge G. Design and development of a long-term rumen simulation technique (RUSITEC). Br. J. Nutr. 1977; 38: 371
  • Hannah S. M., Stern M. D., Ehle F. R. Evaluation of a dual flow continuous culture system in estimating bacterial fermentation in vivo of mixed diets containing various soya bean products. Anim. Feed Sci. Technol 1986; 16: 51
  • Gijzen H. J., Zwart K. W., van Gelder P. T., Vogels G. D. Continuous cultivation of rumen organisms, a possible application to the anaerobic degradation of lignocellulosic waste materials. Appl. Microbiol. Biotechnol 1986; 25: 255
  • Kistner A., Kornelius J. H., Miller G. S. Kinetic measurement on bacterial cultures growing on fibres. S. Afr. J. Anim. Sci. 1983; 13: 217
  • Pavlostathis S. G., Miller T. L., Wolin M. J. Fermentation of insoluble cellulose by continuous cultures of Ruminococcus albus. Appl. Environ. Microbiol. 1988; 54: 2655
  • Pavlostathis S. G., Miller T. L., Wolin M. J. Kinetics of insoluble cellulose fermentation by continuous cultures of Ruminococcus albus. Appl. Environ. Microbiol. 1988; 54: 2660
  • Huang H., Forsberg C. W. Isolation of a cellodextrinase from Bacteroides succinogenes. Appl. Environ. Microbiol. 1987; 53: 1034
  • Kistner A., Kornelius J. A. A small-scale, three-vessel continuous culture system for quantitative studies of plant fibre degradation by anaerobic bacteria. J. Microbiol. Methods 1990; 12: 173
  • Weimer P. J., Shi Y., Odt C. L. A segmented gas/liquid delivery system for the continuous culture of microorganisms on insoluble substrates, and its use for growth of Ruminococcus flavefaciens on cellulose. Appl. Microbiol. Biotechnol. 1991; 36: 178
  • Hoover W. H., Kincaid C. R., Varga G. A., Thayne W. V., Junkins L. L., Jr. Effects of solid and liquid flow on fermentation in continuous cultures. IV. pH and dilution rate. J. Anim. Sci. 1984; 58: 692
  • Busch A. W. Aerobic Biological Treatment of Wastewaters. Gulf Publishing, Houston 1971
  • Charackilis W. G. Energetics and stoichiometry. Biofdms, W. G. Charackilis. Interscience. 1990; 161
  • Pavlostathis S. G., Miller T. L., Wolin M. J. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii. Appl. Microbiol. Biotechnol. 1990; 33: 109
  • Latham M. J., Wolin M. J. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl. Environ. Microbiol. 1977; 34: 297
  • Waldo D. R., Smith L. W., Cox E. L. Models of cellulose disappearance from the rumen. J. Dairy Sci. 1972; 55: 125
  • Van Soest P. J. Plant fiber and its role in herbivore nutrition. Cornell Vet. 1977; 67: 307
  • Beveridge R. J., Richards G. N. Digestion of polysaccharide constituents of tropical pasture herbage in the bovine rumen. III. Examination of the celluloses and hemicelluloses of spear grass (Heter-opogon contortus) which resist digestion. Carbohydr. Res. 1973; 28: 39
  • Morrison M., Mackie R. I., Kistner A. 3-Phenylpropanoic acid improves the affinity of Ruminococcus albus for cellulose in continuous culture. Appl. Environ. Microbiol. 1990; 56: 3220
  • Hungate R. E., Stack R. J. Phenylpropanoic acid: growth factor for Ruminococcus albus. Appl. Environ. Microbiol 1982; 44: 79
  • Stack R. J., Cotta M. A. Effect of 3-phenylpropanoic acid on growth and cellulose utilization by cellulolytic ruminal bacteria. Appl. Environ. Microbiol 1986; 52: 209
  • MacFadden D. L. Cellulose fermentation process. U.S. Patent 4,101,679, 1978
  • Rasmussen M. A., Hespell R. B., White B. A., Bothast R. J. Inhibitory effects of methy(cellulose on cellulose degradation by Ruminococcus flavefaciens. Appl. Environ. Microbiol 1988; 54: 890
  • Varel V. H., Jung H. G. Influence of forage phenolics on ruminal fibrolytic bacteria and in vitro fiber degradation. Appl. Environ. Microbiol. 1986; 52: 275
  • Akin D. E., Rigsby L. L., Theodorou M. K., Hartley R. D. Population changes of fibrolytic bacteria in the presence of phenolic acids and plant extracts. Anim. Feed Sci. Technol 1988; 16: 261
  • Jung H. G., Fahey G. C., Jr. Interactions among phenolic monomers and in vitro fermentation. J. Dairy Sci. 1983; 66: 1255
  • Jung H. G., Sahlu T. Depression of cellulose digestion by esterified cinnamic acids. J. Sci. Food Agric 1986; 37: 659
  • Martin S. A., Akin D. E. Effect of phenolic monomers on the growth and β-glucosidase activity of Bacteroides rumincola and on the carboxymethylcellulase, β-glucosidase, and xylanase activities of Bacteroides succinogenes. Appl. Environ. Microbiol 1988; 54: 3019
  • Williams D. K., Martin S. A. Xylose uptake by the ruminal bacterium Selenomonas ruminantium. Appl Environ. Microbiol 1990; 56: 1683
  • Sawai A., Kondo T., Ara S. Inhibitory effects of phenolic acid esters on degradability of forage fibers. J. Jpn. Grass. Soc 1983; 29: 175
  • Windham W. R., Petersen J. C., Terrill T. H. Tannins as anti-quality factors in forage. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 127
  • Joblin K. N. Bacterial and protozoal interactions with ruminal fungi. Microbial and Plant Opportunities to Improve Lignocellutose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 311
  • Bernalier A., Fonty G., Gouet P. Degradation et fermentation de la cellulose par Neocallimastix species seul ou associe a quelques especes bacteriennes du rumen. Reprod. Nutr. Dev. 1988; 28(Suppl. 1)75
  • Russell J. B. Fermentation of cellodextrins by cel-lulolytic and noncellulolytic rumen bacteria. Appl. Environ. Microbiol. 1985; 49: 572
  • Wolin M. J. Rumen fermentation; biochemical interactions between populations of the microbial community. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 237
  • Scheifinger C. C., Wolin M. J. Propionate formation from cellulose and soluble sugars by combined cultures of Bacteroides succinogenes and Selenomonas ruminantium. Appl. Microbiol. 1973; 26: 789
  • Stanton T. B., Canale-Paroia E. Treponema bryantii sp. nov., a rumen spirochete which interacts with cellulolytic bacteria. Arch. Microbiol. 1979; 127: 145
  • Kudo H., Cheng K.-J., Costerton J. W. Interaction between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 1987; 33: 244
  • Wood T. M. Fungal cellulases. Biosynthesis and Biode gradation of Cellulose, C. H. Haigler, P. J. Wei-Mer. Marcel Dekker, New York 1990; 491
  • Reese E. T., Siu R. G. H., Levinson H. S. The biological degradation of soluble cellulose derivatives and its relationship to the mechanism of cellulose hydrolysis. J. Bacteriol. 1950; 59: 485
  • Ong E., Greenwood J. M., Gilkes N. R., Kilburn D. G., Miller R. G., Jr., Warren R. A. J. The cellulose-binding domains of cellulases: tools for biotechnology. Trends Biotechnol. 1989; 7: 239
  • Boyer R. F., Redmond M. A. Effect of chemical modification of cellulose on the activity of a cellulase from Aspergillus niger. Biotechnol. Bioeng. 1983; 25: 1311
  • Forsberg C. W., Beveridge T. J., Hellstrom A. Cellulase and xylanase release in Bacteroides succinogenes and its importance in the rumen environment. Appl. Environ. Microbiol. 1981; 42: 886
  • Groleau D., Forsberg C. W. Cellulolytic activity of the rumen bacterium Bacteroides succinogenes. Can. J. Microbiol. 1981; 27: 517
  • McGavin M. J., Lam J., Forsberg C. W. Regulation and distribution of Fibrobacter succinogenes subsp. succinogenes S85 endoglucanases. Appl. Environ. Microbiol. 1990; 56: 1235
  • Teather R. M. Structure of β-glucanase genes from rumen bacteria. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 377
  • Gawthorne J. M. Extracellular carbohydrase complex from rumen contents. Ann. Rech. Vet. 1979; 10: 249
  • Lamed R., Setter E., Kenig R., Bayer E. A. The cellulosome — a discrete cell surface organelle which exhibits separate antigenic., cellulose-binding, and various cellulolytic activities. Biotechnol. Bioeng. Symp. Ser. 1983; 13: 163
  • Millet J., Petre D., Beguin P., Raynaud O., Aubert J.-P. Cloning often distinct fragments of Clostridium thermocellum DNA encoding for cellulases. FEMS Microbiol. Lett. 1985; 29: 149
  • Romanie C. M. P. M., Clarke N. G., Hazlewood G. P. Molecular cloning of Clostridium thermocellum DNA and the expression of further novel endo-β-1,4-glucanase genes in Escherichia coli. J. Gen. Microbiol. 1987; 133: 1297
  • Lamed R., Naimark J., Morgenstern E., Bayer E. A. Specialized cell surface structures in cellulolytic bacteria. J. Bacteriol. 1987; 169: 3792
  • Miron J., Yokoyama M. T., Lamed R. Bacterial cell surface structures involved in lucerne cell wall degradation by pure cultures of cellulolytic rumen bacteria. Appl. Microbiol. Biotechnol. 1989; 32: 218
  • Gaudet G., Gaillard B. Vesicle formation and cellulose degradation by Bacteroides succinogenes: ultrastructural aspects. Arch. Microbiol. 1987; 148: 150
  • Gardner R. M., Doerner K. C., White B. A. Purification and characterization of an exo-β-1,4-glucanase from Ruminococcus flavefaciens FD-1. J. Bacteriol. 1987; 169: 4581
  • Forsberg C. W., Cheng K.-J. Integration of rumen microorganisms and their hydrolytic enzymes during the digestion of lignocellulosic materials. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 411
  • Huang L., Forsberg C. W., Thomas D. Y. Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes S85. J. Bacteriol. 1988; 170: 2923
  • Pettipher G. L., Latham M. J. Production of enzymes degrading plant ceil walls and fermentation of cellobiose by Ruminoeoccus flavefaciens in batch and continuous culture. J. Gen. Microbiol. 1979; 110: 29
  • Huang L., Forsberg C. W. Purification and comparison of the periplasmic and extracellular forms of the cellodextrinase from Bacteroides succinogenes. Appl. Environ. Microbiol. 1988; 54: 1488
  • Hiltner P., Dehority B. A. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 1983; 46: 642
  • Lowe S. E., Theodorou M. K., Trinci A. P. J. Cellulases and xylanases of an anaerobic rumen fungus grown on wheat straw holocellulose, cellulose, and xylan. Appl. Environ. Microbiol. 1987; 53: 1216
  • Williams A. G., Orpin C. G. Glycoside hydrolases formed by three species of rumen fungi grown on a range of carbohydrate substrates. Can. J. Microbiol. 1987; 33: 418
  • Wood T. M., McCrae S. I., Wilson C. A., Bhat K. M., Gow L. A. Aerobic and anaerobic fungal cellulases, with special reference to their mode of attack on crystalline cellulose. Biochemistry and Genetics of Cellulose Degradation, J.-P. Aubert, P. Beguin, J. Millet. Academic Press, London 1988; 31
  • Barichievich E. B., Calza R. E. Supernatant protein and cellulase activities of anaerobic ruminal fungus Neocallimastix frontalis EB188. Appl. Environ. Microbiol. 1990; 56: 43
  • Calza R. E. Cellulases from Neocallimastix frontalis EB188 synthesized in the presence of protein glycosylation inhibitors: measurement of protein molecular weights and isoelectric focusing values. Appl. Microbiol. Biotechnol 1991; 35: 748
  • Li X., Calza R. E. Cellulases from Neocallimastix frontalis EB188 synthesized in the presence of glycosylation inhibitors: measurement of pH and temperature optima, protease and ion sensitivities. Appl. Microbiol. Biotechnol. 1991; 35: 741
  • Li X., Calza R. E. Purification and characterization of an extracellular β-glucosidase from the rumen fungus Neocallimastix frontalis EB188. Enzyme Microb. Techno/. 1991; 13: 1
  • Calza R. E. Nascent synthesis and secretion of cellobiase in Neocallimastix frontalis EB188. Curr. Microbiol 1991; 23: 175
  • Williams A. G., Ellis A. B., Coleman G. S. Subcellular distribution of polysaccharide depolymerase and glycoside hydrolase enzymes in rumen ciliate protozoa. Curr. Microbiol., 13: 139, 186
  • Russell J. B., Wilson D. B. Potential opportunities and problems for genetically altered rumen microorganisms. J. Nutr. 1987; 118: 271
  • Hespell R. B. Problems and progress with the genetics of ruminal bacteria. Dev. Ind. Microbiol. 1989; 30: 13
  • Gilkes N. R., Warren R. A. J., Miller R. C., Jr., Kilburn D. J. Precise excision of the cellulose binding domains from two Cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 1988; 263: 10401
  • McGavin M., Forsberg C. W. Catalytic and substrate binding domains of endoglucanase 2 from Bacteroides succinogenes. J. Bacterial. 1989; 171: 3310
  • Weimer P. J., Weston W. M., Chou Y.-C., Chase D. B. Effect of supercritical ammonia on the physical and chemical structure of ground wood. Biotechnol. Bioeng. Symp. Ser. 1986; 17: 5
  • Millet M. A., Baker A. J., Feist W. C., Mellenberger R. W., Satter L. D. Modifying wood to increase its in vitro digestibility. J. Anim. Sci. 1980; 31: 781
  • Jackson M. G. Review article: the alkali treatment of straws. Anim. Feed Sci. Technol. 1977; 2: 105
  • Itoh H., Terashima Y., Tohrai N. Evaluation of ammonia treatment for improving the utilization of fibrous materials in low-quality roughages. Jpn. J. Zootech. Sci. 1979; 50: 54
  • Graham H., Aman P. A comparison between degradation in vitro and in sacco of constituents of untreated and ammonia treated barley straw. Anim. Feed Sci. Technol. 1983; 10: 199, /84
  • Williams P. E. V. Digestibility studies on ammonia treated straw. Anim. Feed Sci. Technol. 1983/84; 10: 213
  • Morrison I. M., Brice R. E. The digestion of untreated and ammonia-treated barley straw in an artificial rumen. Anim. Feed Sci. Technol. 1983/84; 10: 229
  • Chou Y.-C. Supercritical ammonia pretreatment of lignocellulosic materials. Biotechnol. Bioeng. Symp. Ser. 1986; 17: 19
  • Weimer P. J., Chou Y.-C. T. Anaerobic fermentation of woody biomass pretreated with supercritical ammonia. Appl. Environ. Microbiol. 1986; 52: 733
  • Gould J. M. Alkaline hydrogen peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol. Bioeng. 1984; 26: 46
  • Kerley M. S., Fahey G. C., Jr., Berger L. L., Gould J. M., Baker F. L. Alkaline hydrogen peroxide treatment unlocks energy in agricultural byproducts. Science 1985; 230: 820
  • Gould J. M. Studies on the mechanism of alkaline hydrogen peroxide delignification of agricultural residues. Biotechnol. Bioeng. 1985; 27: 225
  • Kerley M. S., Garleb K. A., Fahey G. C., Jr., Berger L. L., Moore K. J., Phillips G. N., Gould J. M. Effects of alkaline hydrogen peroxide treatment of cotton and wheat straw on cellulose crystallinity and on composition and site and extent of disappearance of wheat straw cell wall phenolics and monosaccharides by sheep. J. Anim. Sci. 1988; 66: 3235
  • Cameron M. G., Cameron M. R., Fahey G. C., Jr., Clark J. H., Berger L. L., Merchen N. R. Effects of treating oat hulls with alkaline hydrogen peroxide on intake and digestion by mid-lactation dairy cows. J. Dairy Sci. 1991; 74: 177
  • O'Connor J. J. Ammonia explosion pulping: a new fiber separation process. TAPPI 1972; 55: 353
  • Puri V. P., Mamers H. Explosive pretreat-ment of lignocellulosic residues with high-pressure carbon dioxide for the production of fermentation substrates. Biotechnol. Bioeng. 1983; 25: 3149
  • David C., Fornasier R., Greindl-Fallon C., Vanlautem N. Enzymatic hydrolysis and bacterian hydrolysis — fermentation of eucalyptus wood pre-treated with sodium hypochlorite. Biotechnol. Bioeng. 1985; 27: 1591
  • Dehority B. A., Scott H. W., Johnson R. R. Estimation of forage nutritive value from cellulose digestibilities obtained with pure cultures of cellulolytic rumen bacteria. J. Dairy Sci. 1968; 51: 567
  • Watson J. M. Genetic engineering of low-lignin pasture plants. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 215
  • Cherney J. H. Normal and brown midrib mutations in relation to improved lignocellulose utilization. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 205
  • Egan A. R. Strategies in modification of plant attributes and rumen environment to increase utilization of lignocellulose. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 33
  • Teather R. M. Application of gene manipulation to the rumen microflora. Can. J. Anim. Sci. 1985; 65: 563
  • Forsberg C. W., Crosby B., Thomas D. Y. Potential for manipulation of the rumen fermentation through the use of recombinant DNA techniques. J. Anim. Sci. 1986; 63: 310
  • Patterson J. A. Prospects for establishment of genetically engineered microorganisms in the rumen. Enzyme Microb. Technol. 1989; 11: 187
  • Ohmiya K., Hishino C., Shimuzu S. Cellulose-dependent and penicillin-resistant plasmids isolated from Ruminococcus albus. Asian J. Anim. Sci. 1989; 2: 501
  • Flint H. J., Thompson A. M., Bisset J. Plasmid-associated transfer of tetracycline resistance in Bacteroides ruminocola. Appl. Environ. Microbiol. 1988; 54: 855
  • Mann S. P., Hazlewood G. P., Orpin C. G. Characterization of a cryptic plasmid (pOMl) in Butyrivibrio fibrisolvens by restriction endonuclease analysis and its cloning in Escherichia coli. Curr. Microbiol. 1986; 13: 17
  • Asmundson R. V., Kelly W. J. Isolation and characterization of plasmid DNA from Ruminococcus. Curr. Microbiol. 1987; 16: 97
  • Flint H. J., Stewart C. S. Antibiotic resistance patterns and plasmids of ruminal strains of Bacteroides ruminicola and Bacteroides multiacidus. Appl. Microbiol. Biotechnol. 1987; 26: 450
  • Martin S. A., Dean R. G. Characterization of a plasmid from the ruminal bacterium Selenomonas ruminantium. Appl. Environ. Microbiol. 1990; 55: 3035
  • Shoemaker N. B., Anderson K. L., Smithson S. L., Wang G.-R., Salyers A. A. Conjugal transfer of a shuttle vector from the human colonic anaerobe Bacteroides uniformis to the ruminal anaerobe Prevotella (Bacteroides) ruminicola. Appl. Environ. Microbiol. 1991; 57: 2114
  • Thomson A. M., Flint H. J. Electroporation induced transformation of Bacteroides ruminicola and Bacteroides uniformis by plasmid DNA. FEMS Microbiol. Lett. 1989; 61: 101
  • Wirth R. A., Friesenegger A., Fielder S. Transformation of various Gram-negative bacteria belonging to 11 different genera by electroporation. Mol. Gen. Genet. 1989; 216: 175
  • Gregg K., Ware C. E. Importance of genetic diversity in manipulation of rumen bacteria. Microbial and Plant Opportunities to Improve Lignocellulose Utilization in Ruminants, D. E. Akin, L. G. Ljungdahl, J. R. Wilson, P. J. Harris. Elsevier, New York 1990; 357
  • Weimer P. J. Growth of Fibrobacter succinogenes S85 in cellulose-limited continuous culture. Abstr. 21st Conf. Rumen Function. Chicago 1991; 28

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.