Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 6
261
Views
39
CrossRef citations to date
0
Altmetric
Research Papers

BRAIN PHOTORECEPTOR PATHWAYS CONTRIBUTING TO CIRCADIAN RHYTHMICITY IN CRAYFISH

, , , , &
Pages 1136-1168 | Received 19 Mar 2009, Accepted 29 May 2009, Published online: 06 Oct 2009

REFERENCES

  • Aréchiga H, Fernández-Quiróz F, Fernández de Miguel F, Rodríguez-Sosa L. (1993). The circadian system of crustaceans. Chronobiol. Int. 10:1–19.
  • Aschoff J. (1960). Exogenous and endogenous components in circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 25:11–28.
  • Barrett RK, Page TL. (1989). Effects of light on circadian pacemaker development. I. The free running period. J. Comp. Physiol. A 165:41–49.
  • Beltz BS. (1999). Distribution and functional anatomy of amine-containing neurons in decapod crustaceans. Microsc. Res. Tech. 44:105–120.
  • Benito J, Houl JH, Roman GW, Hardin PE. (2008). The blue-light photoreceptor CRYPTOCHROME is expressed in a subset of circadian oscillator neurons in the Drosophila CNS. J. Biol. Rhythms 23:296–307.
  • Benton JL, Sandeman DC, Beltz BS. (2007). Nitric oxide in the crustacean brain: Regulation of neurogenesis and morphogenesis in the developing olfactory pathway. Dev. Dyn. 236:3047–3060.
  • Benton JL, Goergen EM, Rogan SC, Beltz BS. (2008). Hormonal and synaptic influences of serotonin on adult neurogenesis. Gen. Comp. Endocrinol. 158:183–190.
  • Bloch G, Robinson GE. (2001). Reversal of honeybee behavioural rhythms. Nature 410:1048.
  • Bobkova M, Grève P, Meyer-Rochow VB, Martin G. (2003). Description of intracerebral ocelli in two species of North American crayfish: Orconectes limosus (Cambaridae) and Pacifastacus leniusculus (Astacidae). Invert. Biol. 122:158–165.
  • Boles LC, Lohmann KJ. (2003). True navigation and magnetic maps in spiny lobsters. Nature 421:60–63.
  • Cashmore AR. (2003). Cryptochromes: Enabling plants and animals to determine circadian time. Cell 114:537–543.
  • Collins B, Mazzoni EO, Stanewsky R, Blau J. (2006). Drosophila CRYPTOCHROME is a circadian transcriptional repressor. Curr. Biol. 16:441–449.
  • Dardente H, Cermakian N. (2007). Review: Molecular circadian rhythms and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Dircksen H, Zahnow CA, Gaus G, Keller R, Rao KR, Riehm JP. (1987). The ultrastructure of nerve endings containing pigment-dispersing hormone (PDH) in crustacean sinus glands: Identification by an antiserum against a synthetic PDH. Cell Tissue Res. 250:377–387.
  • Dubruille R, Emery P. (2008). A plastic clock: How circadian rhythms respond to environmental cues in Drosophila. Mol. Neurobiol. 38:129–145.
  • Edwards DH. (1984). Crayfish extraretinal photoreception I. Behavioural and motoneuronal response to abdominal illumination. J. Exp. Biol. 109:291–306.
  • Emery P, So WV, Kaneko M, Hall JC, Rosbash M. (1998). CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–679.
  • Emery P, Stanewsky R, Helfrich-Förster C, Emery-Le M, Hall JC, Rosbash M. (2000). Drosophila CRY is a deep brain circadian photoreceptor. Neuron 26:493–504.
  • Escamilla-Chimal EG, Fanjul-Moles ML. (2008). Daily and circadian expression of cryptochrome during the ontogeny of crayfish. Comp. Biochem. Physiol. A. 151:461–470.
  • Fanjul-Moles ML, Pietro-Sagredo J. (2003). The circadian system of crayfish: A developmental approach. Microsc. Res. Tech. 60:291–301.
  • Fanjul-Moles ML, Miranda-Anaya M, Prieto J. (1996). Circadian locomotor activity rhythm during ontogeny in crayfish Procambarus clarkii. Chronobiol. Int. 13:15–26.
  • Fanjul-Moles ML, Escamilla-Chimal EG, Gloria-Osorio A, Hernández-Herrera G. (2004). The crayfish Procambarus clarkii CRY shows daily and circadian variation. J. Exp. Biol. 207:1453–1460.
  • Fernández de Miguel F, Aréchiga H. (1994). Circadian locomotor activity and its entrainment by food in the crayfish Procambarus clarkii. J. Exp. Biol. 190:9–21.
  • Fuentes-Pardo B, Guzmán-Gómez AM, Lara-Aparicio M, López de Medrano S. (2003). A qualitative model of a motor circadian rhythm. BioSystems 71:61–69.
  • Gegear RJ, Casselman A, Waddell S, Reppert SM. (2008). Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454:1014–1019.
  • Goergen EM, Bagay LA, Rehm K, Benton JL, Beltz BS. (2002). Circadian control of neurogenesis. J. Neurobiol. 53:90–95.
  • Hall JC. (2000). Cryptochromes: Sensory reception, transduction, and clock functions subserving circadian systems. Curr. Opin. Neurobiol. 10:456–466.
  • Hamasaka Y, Nässel DR. (2006). Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J. Comp. Neurol. 494:314–330.
  • Hardin PE. (2005). The circadian timekeeping system of Drosophila. Curr. Biol. 15:R714–R722.
  • Harzsch S, Dircksen H, Beltz BS. (2009). Development of pigment-dispersing hormone-immunoreactive neurons in the American lobster: Homology to the insect circadian pacemaker system?. Cell Tissue Res. 335:417–429.
  • Helfrich-Förster C. (1997). Development of pigment-dispersing hormone immunoreactive neurons in the central nervous system of Drosophila melanogaster. J. Comp. Neurol. 380:355–354.
  • Helfrich-Förster C. (2003). The neuroarchitecture of the circadian clock in the brain of Drosophila melanogaster. Microsc. Res. Tech. 62:94–102.
  • Helfrich-Förster C. (2005). Neurobiology of the fruit fly's circadian clock. Genes Brain Behav. 4:65–76.
  • Helfrich-Förster C, Homberg U. (1993). Pigment-dispersing hormone-immunoreactive neurons in the nervous system of wild-type Drosophila melanogaster and of several mutants with altered circadian rhythmicity. J. Comp. Neurol. 337:177–190.
  • Helfrich-Förster C, Stengl M, Homberg U. (1998). Organization of the circadian system in insects. Chronobiol. Int. 15:567–594.
  • Helfrich-Förster C, Täuber M, Park JH, Mühlig-Versen M, Schneuwly S, Hofbauer A. (2000). Ectopic expression of the neuropeptide pigment-dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 20:3339–3353.
  • Helfrich-Förster C, Winter C, Hofbauer A, Hall JC, Stanewsky R. (2001). The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron 30:249–261.
  • Helfrich-Förster C, Edwards T, Yasuyama K, Wisotzki B, Schneuwly S, Stanewsky R, Meinertzhagen IA, Hofbauer A. (2002). The extraretinal eyelet of Drosophila: Development, ultrastructure, and putative circadian function. J. Neurosci. 22(21):9255–9266.
  • Hofbauer A, Buchner E. (1989). Does Drosophila have seven eyes?. Naturwissenschaften 76:335–336.
  • Hoffmann K. (1965). Overt circadian frequencies and circadian rule. In Aschoff J. ( ed.) Circadian clocks. Amsterdam: North Holland, pp. 87–94.
  • Hsu YA, Stemmler EA, Messinger DI, Dickinson PS, Christie AE, de la Iglesia HO. (2008). Cloning and differential expression of two β-pigment-dispersing hormone (β-PDH) isoforms in the crab Cancer productus: Evidence for authentic β-PDH as a local neurotransmitter and β-PDH II as a humoral factor. J. Comp. Neurol. 508:197–211.
  • Jensen HL, Norrild B. (1999). Easy and reliable double-immunogold labelling of herpes simplex virus type-1 infected cells using primary monoclonal antibodies and studied by cryosection electron microscopy. Histochem. J. 31:525–533.
  • Klarsfeld A, Malpel S, Michard-Vanhee C, Picot M, Chelot E, Rouyer F. (2004). Novel features of cryptochrome-mediated photoreception in the brain circadian clock of Drosophila. J. Neurosci. 24:1468–1477.
  • Lin Y, Stormo GD, Taghert M. (2004). The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J. Neurosci. 24:7951–7957.
  • Malpel S, Klarsfeld A, Rouyer F. (2002). Larval optic nerve and adult extra-retinal photoreceptors sequentially associate with clock neurons during Drosophila brain development. Development 129:1443–1453.
  • Mangerich S, Keller R. (1988). Localization of pigment-dispersing hormone (PDH) immunoreactivity in the central nervous system of Carcinus maenas and Orconectes limosus (Crustacea), with reference to FMRFamide immunoreactivity in O. limosus. Cell Tissue Res. 253:199–208.
  • Mangerich S, Keller R, Dircksen H, Rao KR, Riehm JP. (1987). Immunocytochemical localization of pigment-dispersing hormone (PDH) and its coexistence with FMRFamide-immunoreactive material in the eyestalks of the decapod crustaceans Carcinus maenas and Orconectes limosus. Cell Tissue Res. 250:365–375.
  • Miranda-Anaya M. (2004). Circadian locomotor activity in freshwater decapods: An ecological approach. Biol. Rhythm Res. 35:69–78.
  • Miranda-Anaya M, Fanjul-Moles ML. (1997). Nonparametric effects of monochromatic light on the activity rhythm of juvenile crayfish. Chronobiol. Int. 14:25–34.
  • Nässel DR. (1999). Histamine in the brain of insects: A review. Microsc. Res. Tech. 44(2–3):121–136.
  • Nässel DR, Holmqvist MH, Hardie RC, Håkanson R, Sundler F. (1988). Histamine-like immunoreactivity in photoreceptors of the compound eyes and ocelli of flies. Cell Tissue Res. 253:639–646.
  • Nitabach MN, Taghert PH. (2008). Organization of the Drosophila circadian control circuit. Curr. Biol. 18:R84–R93.
  • Numata H, Shiga S, Morita A. (1997). Photoperiodic receptors in arthropods. Zool. Sci. 14:187–197.
  • Page TL. (1982). Extraretinal photoreception in entrainment and photoperiodism in invertebrates. Experientia 38:1007–1013.
  • Page TL, Larimer JL. (1972). Entrainment of the circadian locomotor activity rhythm in crayfish. J. Comp. Physiol. 78:107–120.
  • Page TL, Larimer JL. (1975). Neural control of circadian rhythmicity in the crayfish. I. The locomotor rhythm. J. Comp. Physiol. 97:59–80.
  • Pollack I, Hofbauer A. (1991). Histamine-like immunoreactivity in the visual system and brain of Drosophila melanogaster. Cell Tissue Res. 266:391–398.
  • Portaluppi F, Touitou Y, Smolensky H. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Prosser CL. (1934). Action potentials in the nervous system of the crayfish II. Responses to illumination of the eye and the caudal ganglion. J. Cell Comp. Physiol. 4:363–377.
  • Quilter CG, Williams BG. (1977). Circadian activity rhythms in crayfish Paranephrops zealandicus (Crustacea). J. Zool. (Lond.) 182:559–571.
  • Rao KR. (2001). Crustacean pigmentary-effector hormones: Chemistry and functions of RPCH, PDH and related peptides. Am. Zool. 41:364–379.
  • Refinetti R. (2006). Circadian physiology. Taylor and Francis, Boca Raton, Fla., 688 pp.
  • Renn SCP, Park JH, Rosbash M, Hall JC, Taghert PH. (1999). A pdf neuropeptide gene mutation and ablation of PDF neurons each causes severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 99:791–802.
  • Rieger D, Stanewsky R, Helfrich-Förster C. (2003). Cryptochrome, compound eyes, Hofbauer-Buchner eyelets, and ocelli play different roles in the entrainment and masking pathway of the locomotor activity rhythm in the fruit fly Drosophila melanogaster. J. Biol. Rhythms. 18:377–391.
  • Rieger D, Shafer OT, Tomioka K, Helfrich-Förster C. (2006). Functional analysis of circadian pacemaker neurons in Drosophila melanogaster. J. Neurosci. 26:2531–2543.
  • Rossano C, Morgan E, Scapini F. (2008). Variation of the locomotor activity rhythms in three species of Talitrid amphipods, Talitrus saltator, Orchestria montagui, and O. gammarellus, from various habitats. Chronobiol. Int. 25:511–532.
  • Rubin EB, Shemesh Y, Cohen M, Elgavish S, Roberston HM, Bloch G. (2006). Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res. 16:1352–1365.
  • Saifullah AS, Tomioka K. (2003). Pigment-dispersing factors sets the night state of the medulla bilateral neurons in the optic lobe of the cricket, Gryllus bimaculatus. J. Insect Physiol. 41:231–239.
  • Sandeman DC, Sandeman RE, de Couet HG. (1990). Extraretinal photoreceptors in the brain of the crayfish Cherax destructor. J. Neurobiol. 21:619–629.
  • Sandeman DC, Sandeman R, Derby C, Schmidt M. (1992). Morphology of the brain of crayfish, crabs and spiny lobsters: A common nomenclature for homologous structures. Biol. Bull. 183:304–326.
  • Schneider NL, Stengl M. (2005). Pigment-dispersing factor and GABA synchronize cells of the isolated circadian clock of the cockroach Leucophaea maderae. J. Neurosci. 25:5138–5147.
  • Shafer OT, Helfrich-Förster C, Renn SC, Taghert PH. (2006). Reevaluation of Drosophila melanogaster's neuronal circadian pacemakers reveals new neuronal classes. J. Comp. Neurol. 498:180–193.
  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK. (2002). Developmental plasticity of the locomotor activity rhythm of Drosophila melanogaster. J. Insect Physiol. 48:25–32.
  • Shemesh Y, Cohen M, Bloch G. (2007). Natural plasticity in circadian rhythms is mediated by reorganization in the molecular clockwork in honeybees. FASEB J. 21:2304–2311.
  • Shinkawa Y, Takeda S, Tomioka K, Matsumoto A, Oda T, Chiba Y. (1994). Variability in circadian activity patterns within the Culex pipiens complex (Diptera: Culicidae). J. Med. Entomol. 31:49–56.
  • Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692.
  • Stuart AE. (1999). From fruit flies to barnacles, histamine is the neurotransmitter of arthropod photoreceptors. Neuron 22:431–433.
  • Stuart AE, Borycz J, Meinertzhagen IA. (2007). The dynamics of signaling at the histaminergic photoreceptor synapse of arthropods. Prog. Neurobiol. 82:202–227.
  • Styrishave B, Bojsen BH, Witthøfft H, Andersen O. (2007). Diurnal variations in physiology and behavior of the noble crayfish Astacus astacus and the signal crayfish Pacifastacus leniusculus. Mar. Fresh Behav. Physiol. 40:63–77.
  • Tomioka K, Chiba Y. (1989). Photoperiod during post-embryonic development affects some parameters of adult circadian rhythm in the cricket Gryllus bimaculatus. Zool. Sci. 6:565–571.
  • Veleri S, Rieger D, Helfrich-Förster C, Stanewsky R. (2007). Hofbauer-Buchner eyelet affects circadian photosensitivity and coordinates TIM and PER expression in Drosophila clock neurons. J. Biol. Rhythms. 22:29–42.
  • Verde MA, Barriga-Montoya C, Fuentes-Pardo B. (2007). Pigment dispersing hormone generates a circadian response to light in the crayfish, Procambarus clarkii. Comp. Biochem. Physiol. 147:983–992.
  • Viccon-Pale JA, Fuentes-Pardo B. (1994). Synchronization by light of the circadian rhythm of motor activity in the crayfish. Biol. Rhythm Res. 25:267–276.
  • Wildt M, Goergen EM, Benton JL, Sandeman DC, Beltz BS. (2003). Regulation of serotonin levels by multiple light-entrainable endogenous rhythms. J. Exp. Biol. 207:3765–3774.
  • Wilkens LA, Larimer JL. (1972). The CNS photoreceptor of crayfish: Morphology and synaptic activity. J. Comp. Physiol. 80:389–407.
  • Wülbeck C, Grieshaber E, Helfrich-Förster C. (2008). Pigment-dispersing factor (PDF) has different effects on Drosophila's circadian clocks in the accessory medulla and in the dorsal brain. J. Biol. Rhythms. 23:409–424.
  • Yasuyama K, Meinertzhagen IA. (1999). Extraretinal photoreceptors at the compound eye's posterior margin in Drosophila melanogaster. J. Comp. Neurol. 412:193–202.
  • Yasuyama K, Okada Y, Hamanaka Y, Shiga S. (2006). Synaptic connections between eyelet photoreceptors and pigment dispersing-immunoreactive neurons of the blowfly Protophormia terranovae. J. Comp. Neurol. 494:331–344.
  • Yoshii T, Todo T, Wülbeck C, Stanewsky R, Helfrich-Förster C. (2008). Cryptochrome is present in the compound eyes and a subset of Drosophila's clock neurons. J. Comp. Neurol. 508:952–966.
  • Yoshii T, Wülbeck C, Sehadova H, Veleri S, Bichler D, Stanewsky R, Helfrich-Förster C. (2009). The neuropeptide pigment-dispersing factor adjusts period and phase of Drosophila's clock. J. Neurosci. 29:2597–2610.
  • Yu W, Hardin PE. (2006). Circadian oscillators of Drosophila and mammals. J. Cell Sci. 119:4793–4795.
  • Yuan Q, Metterville D, Briscoe AD, Reppert SM. (2007). Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24:948–955.
  • Zhu H, Yuan Q, Briscoe AD, Froy O, Casselman A, Reppert SM. (2005). The two CRYs of the butterfly. Curr. Biol. 15:R953–R954.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.