Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 6
212
Views
19
CrossRef citations to date
0
Altmetric
Research Papers

PHASE OF THE ELECTRICAL ACTIVITY RHYTHM IN THE SCN IN VITRO NOT INFLUENCED BY PREPARATION TIME

, , , &
Pages 1075-1089 | Received 19 Feb 2009, Accepted 03 Jun 2009, Published online: 06 Oct 2009

REFERENCES

  • Abraham U, Prior JL, Granados-Fuentes D, Piwnica-Worms DR, Herzog ED. (2005). Independent circadian oscillations of Period1 in specific brain areas in vivo and in vitro. J. Neurosci. 25:8620–8626.
  • Abrahamson EE, Moore RY. (2001). Suprachiasmatic nucleus in the mouse: Retinal innervation, intrinsic organization and efferent projections. Brain Res. 916:172–191.
  • Akiyama M, Kouzu Y, Takahashi S, Wakamatsu H, Moriya T, Maetani M, Watanabe S, Tei H, Sakaki Y, Shibata S. (1999). Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J. Neurosci. 19:1115–1121.
  • Albrecht U, Sun ZS, Eichele G, Lee CC. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064.
  • Albus H, Bonnefont X, Chaves I, Yasui A, Doczy J, van der Horst GT, Meijer JH. (2002). Cryptochrome-deficient mice lack circadian electrical activity in the suprachiasmatic nuclei. Curr. Biol. 12:1130–1133.
  • Albus H, Vansteensel MJ, Michel S, Block GD, Meijer JH. (2005). A GABAergic mechanism is necessary for coupling dissociable ventral and dorsal regional oscillators within the circadian clock. Curr. Biol. 15:886–893.
  • Bergeron HE, Danielson B, Biggs KR, Prosser RA. (1999). TTX blocks baclofen-induced phase shifts of the mammalian circadian pacemaker in vitro. Brain Res. 841:193–196.
  • Biello SM, Golombek DA, Harrington ME. (1997). Neuropeptide Y and glutamate block each other's phase shifts in the suprachiasmatic nucleus in vitro. Neuroscience 77:1049–1057.
  • Bouskila Y, Dudek FE. (1993). Neuronal synchronization without calcium-dependent synaptic transmission in the hypothalamus. Proc. Natl. Acad. Sci. USA 90:3207–3210.
  • Brown TM, Piggins HD. (2009). Spatiotemporal heterogeneity in the electrical activity of suprachiasmatic nuclei neurons and their response to photoperiod. J. Biol. Rhythms 24:44–54.
  • Brown TM, Banks JR, Piggins HD. (2006). A novel suction electrode recording technique for monitoring circadian rhythms in single and multiunit discharge from brain slices. J. Neurosci. 156:173–181.
  • Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017.
  • Burgoon PW, Lindberg PT, Gillette MU. (2004). Different patterns of circadian oscillation in the suprachiasmatic nucleus of hamster, mouse, and rat. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 190:167–171.
  • Dardente H, Cermakian N. (2007). Review: Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Deboer T, Vansteensel MJ, Detari L, Meijer JH. (2003). Sleep states alter activity of suprachiasmatic nucleus neurons. Nat. Neurosci. 6:1086–1090.
  • Eilers PH.C. (2003). A perfect smoother. Anal. Chem. 75:3631–3636.
  • Gillette MU. (1986). The suprachiasmatic nuclei: Circadian phase-shifts induced at the time of hypothalamic slice preparation are preserved in vitro. Brain Res. 379:176–181.
  • Gillette MU. (1991). SCN electrophysiology in vitro: Rhythmic activity and endogenous clock properties. In Klein DC, Moore RY, Reppert SM. ( eds). SCN: The mind's clockOxford: Oxford University Press, pp. 125–143.
  • Gillette MU, Prosser RA. (1988). Circadian rhythm of the rat suprachiasmatic brain slice is rapidly reset by daytime application of cAMP analogs. Brain Res. 474:348–352.
  • Gillette MU, Medanic M, McArthur AJ, Liu C, Ding JM, Faiman LE, Weber ET, Tcheng TK, Gallman EA. (1995). Intrinsic neuronal rhythms in the suprachiasmatic nuclei and their adjustment. CIBA Found. Symp. 183:134–144.
  • Gribkoff VK, Pieschl RL, Wisialowski TA, van den Pol AN, Yocca FD. (1998). Phase shifting of circadian rhythms and depression of neuronal activity in the rat suprachiasmatic nucleus by neuropeptide Y: Mediation by different receptor subtypes. J. Neurosci. 18:3014–3022.
  • Groos G, Hendriks J. (1982). Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci. Lett. 34:283–288.
  • Hastings MH, Herzog ED. (2004). Clock genes, oscillators, and cellular networks in the suprachiasmatic nuclei. J. Biol. Rhythms 19:400–413.
  • Hastings MH, Field MD, Maywood ES, Weaver DR, Reppert SM. (1999). Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: New insights into a core clock mechanism. J. Neurosci. 19:RC11
  • Herzog ED, Geusz ME, Khalsa SB, Straume M, Block GD. (1997). Circadian rhythms in mouse suprachiasmatic nucleus explants on multimicroelectrode plates. Brain Res. 757:285–290.
  • Jagota A, de la Iglesia HO, Schwartz WJ. (2000). Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat. Neurosci. 3:372–376.
  • Kalsbeek A, Palm IF, La Fleur SE, Scheer FA, Perreau-Lenz S, Ruiter M, Kreier F, Cailotto C, Buijs RM. (2006). SCN outputs and the hypothalamic balance of life. J. Biol. Rhythms 21:458–469.
  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. (1999). mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205.
  • Liu C, Gillette MU. (1996). Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J. Neurosci. 16:744–751.
  • Liu C, Weaver DR, Jin X, Shearman LP, Pieschl RL, Gribkoff VK, Reppert SM. (1997). Molecular dissection of two distinct actions of melatonin on the suprachiasmatic circadian clock. Neuron 19:91–102.
  • Mason R, Rusak B. (1990). Neurophysiological responses to melatonin in the SCN of short-day sensitive and refractory hamsters. Brain Res. 533:15–19.
  • McArthur AJ, Gillette MU, Prosser RA. (1991). Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res. 565:158–161.
  • McArthur AJ, Coogan AN, Ajpru S, Sugden D, Biello SM, Piggins HD. (2000). Gastrin-releasing peptide phase-shifts suprachiasmatic nuclei neuronal rhythms in vitro. J. Neurosci. 20:5496–5502.
  • Meijer JH, Rietveld WJ. (1989). Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol. Rev. 69:671–707.
  • Meijer JH, Schaap J, Watanabe K, Albus H. (1997). Multiunit activity recordings in the suprachiasmatic nuclei: In vivo versus in vitro models. Brain Res. 753:322–327.
  • Meijer JH, Watanabe K, Schaap J, Albus H, Detari L. (1998). Light responsiveness of the suprachiasmatic nucleus: Long-term multiunit and single-unit recordings in freely moving rats. J. Neurosci. 18:9078–9087.
  • Morin LP, Allen CN. (2006). The circadian visual system, 2005. Brain Res. Rev. 51:1–60.
  • Mrugala M, Zlomanczuk P, Jagota A, Schwartz WJ. (2000). Rhythmic multiunit neural activity in slices of hamster suprachiasmatic nucleus reflect prior photoperiod. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278:R987–R994.
  • Nagano M, Adachi A, Nakahama K, Nakamura T, Tamada M, Meyer-Bernstein E, Sehgal A, Shigeyoshi Y. (2003). An abrupt shift in the day/night cycle causes desynchrony in the mammalian circadian center. J. Neurosci. 23:6141–6151.
  • Nakamura W, Yamazaki S, Takasu NN, Mishima K, Block GD. (2005). Differential response of Period 1 expression within the suprachiasmatic nucleus. J. Neurosci. 25:5481–5487.
  • Ohta H, Yamazaki S, McMahon DG. (2005). Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 8:267–269.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Prosser RA. (1998). In vitro circadian rhythms of the mammalian suprachiasmatic nuclei: Comparison of multi-unit and single-unit neuronal activity recordings. J. Biol. Rhythms 13:30–38.
  • Quintero JE, Kuhlman SJ, McMahon DG. (2003). The biological clock nucleus: A multiphasic oscillator network regulated by light. J. Neurosci. 23:8070–8076.
  • Ralph MR, Foster RG, Davis FC, Menaker M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247:975–978.
  • Rangarajan R, Heller HC, Miller JD. (1994). Chloride channel block phase advances the single-unit activity rhythm in the SCN. Brain Res. Bull. 34:69–72.
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418:935–941.
  • Saeb-Parsy K, Dyball RE. (2003). Defined cell groups in the rat suprachiasmatic nucleus have different day/night rhythms of single-unit activity in vivo. J. Biol. Rhythms 18:26–42.
  • Schaap J, Meijer JH. (2001). Opposing effects of behavioural activity and light on neurons of the suprachiasmatic nucleus. Eur. J. Neurosci. 13:1955–1962.
  • Schaap J, Albus H, Eilers PH, Detari L, Meijer JH. (2001). Phase differences in electrical discharge rhythms between neuronal populations of the left and right suprachiasmatic nuclei. Neuroscience 108:359–363.
  • Schaap J, Albus H, VanderLeest HT, Eilers PH, Detari L, Meijer JH. (2003). Heterogeneity of rhythmic suprachiasmatic nucleus neurons: Implications for circadian waveform and photoperiodic encoding. Proc. Natl. Acad. Sci. USA 100:15994–15999.
  • Schak KM, Harrington ME. (1999). Protein kinase C inhibition and activation phase advances the hamster circadian clock. Brain Res. 840:158–161.
  • Schwartz WJ, Gross RA, Morton MT. (1987). The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc. Natl. Acad. Sci. USA 84:1694–1698.
  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Jr., Reppert SM. (1997). Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269.
  • Shibata S, Moore RY. (1993). Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro. Brain Res. 615:95–100.
  • Shinohara K, Honma S, Katsuno Y, Abe H, Honma K. (1995). Two distinct oscillators in the rat suprachiasmatic nucleus in vitro. Proc. Natl. Acad. Sci. USA 92:7396–7400.
  • Shinohara K, Honma S, Katsuno Y, Honma K. (2000). Circadian release of excitatory amino acids in the suprachiasmatic nucleus culture is Ca2+-independent. Neurosci. Res. 36:245–250.
  • Silver R, LeSauter J, Tresco PA, Lehman MN. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382:810–813.
  • Soscia SJ, Harrington ME. (2004). Neuropeptide Y attenuates NMDA-induced phase shifts in the SCN of NPY Y1 receptor knockout mice in vitro. Brain Res. 1023:148–153.
  • Stephan FK, Zucker I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69:1583–1586.
  • Takahashi JS. (1993). Circadian-clock regulation of gene expression. Curr. Opin. Genet. Dev. 3:301–309.
  • van der Horst GT, Muijtjens M, Kobayashi K, Takano R, Kanno S, Takao M, de WJ, Verkerk A, Eker AP, Van LD, Buijs R, Bootsma D, Hoeijmakers JH, Yasui A. (1999). Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 398:627–630.
  • van Oosterhout F, Michel S, Deboer T, Houben T, van de Ven RC, Albus H, Westerhout J, Vansteensel MJ, Ferrari MD, van den Maagdenberg AM, Meijer JH. (2008). Enhanced circadian phase resetting in R192Q Cav2.1 calcium channel migraine mice. Ann. Neurol. 64:315–324.
  • VanderLeest HT, Houben T, Michel S, Deboer T, Albus H, Vansteensel MJ, Block GD, Meijer JH. (2007). Seasonal encoding by the circadian pacemaker of the SCN. Curr. Biol. 17:468–473.
  • Vansteensel MJ, Yamazaki S, Albus H, Deboer T, Block GD, Meijer JH. (2003). Dissociation between circadian Per1 and neuronal and behavioral rhythms following a shifted environmental cycle. Curr. Biol. 13:1538–1542.
  • Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, Mcdonald JD, Dove WF, Pinto LH, Turek FW, Takahashi JS. (1994). Mutagenesis and mapping of a mouse gene clock, essential for circadian behavior. Science 264:719–725.
  • Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS, Sancar A. (1999). Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. USA 96:12114–12119.
  • Welsh DK, Logothetis DE, Meister M, Reppert SM. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706.
  • Yamaguchi S, Kobayashi M, Mitsui S, Ishida Y, van der Horst GT, Suzuki M, Shibata S, Okamura H. (2001). View of a mouse clock gene ticking. Nature 409:684
  • Yamaguchi S, Isejima H, Matsuo T, Okura R, Yagita K, Kobayashi M, Okamura H. (2003). Synchronization of cellular clocks in the suprachiasmatic nucleus. Science 302:1408–1412.
  • Yamazaki S, Kerbeshian MC, Hocker CG, Block GD, Menaker M. (1998). Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J. Neurosci. 18:10709–10723.
  • Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, Block GD, Sakaki Y, Menaker M, Tei H. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685.
  • Yannielli PC, Harrington ME. (2000). Neuropeptide Y applied in vitro can block the phase shifts induced by light in vivo. Neuroreport. 11:1587–1591.
  • Yannielli PC, Kinley Brewer J, Harrington ME. (2002). Is novel wheel inhibition of per1 and per2 expression linked to phase shift occurrence?. Neuroscience 112:677–685.
  • Yoshikawa T, Yamazaki S, Menaker M. (2005). Effects of preparation time on phase of cultured tissues reveal complexity of circadian organization. J. Biol. Rhythms 20:500–512.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.