Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 6
326
Views
44
CrossRef citations to date
0
Altmetric
Research Papers

FEEDING ENTRAINMENT OF DAILY RHYTHMS OF LOCOMOTOR ACTIVITY AND CLOCK GENE EXPRESSION IN ZEBRAFISH BRAIN

&
Pages 1120-1135 | Received 24 Feb 2009, Accepted 19 May 2009, Published online: 06 Oct 2009

REFERENCES

  • Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y, Menaker M, Block GD. (2002). Circadian rhythms in isolated brain regions. J. Neurosci. 22:350–356.
  • Abe H, Honma S, Honma K. (2007). Daily restricted feeding resets the circadian clock in the suprachiasmatic nucleus of CS mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292:607–615.
  • Aranda A, Madrid JA, Sanchez-Vazquez FJ. (2001). Influence of light on feeding anticipatory activity in goldfish. J. Biol. Rhythms 16:50–57.
  • Azzaydi M, Rubio VC, López FJ, Sánchez-Vázquez FJ, Zamora S, Madrid JA. (2007). Effect of restricted feeding schedule on seasonal shifting of daily demand-feeding pattern and food anticipatory activity in European sea bass (Dicentrarchus labrax L.). Chronobiol. Int. 24:859–874.
  • Cahill GM. (2002). Clock mechanisms in zebrafish. Cell Tissue Res. 309:27–34.
  • Castillo MR, Hochstetler KJ, Tavernier RJ, Jr., Greene DM, Bult-Ito A. (2004). Entrainment of the master circadian clock by scheduled feeding. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:551–555.
  • Cermakian N, Whitmore D, Foulkes NS, Sassone-Corsi P. (2000). Asynchronous oscillations of two zebrafish CLOCK partners reveal differential clock control and function. Proc. Natl. Acad. Sci. USA. 97:4339–4344.
  • Challet E. (2007). Minireview: Entrainment of the suprachiasmatic clockwork in diurnal and nocturnal mammals. Endocrinology 148:5648–5655.
  • Cuninkova L, Brown SA. (2008). Peripheral circadian oscillators: interesting mechanisms and powerful tools. Ann. NY Acad. Sci. 1129:358–370.
  • Damiola F, Le MN, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Dardente H, Cermakian N. (2007). Review: Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Davidson AJ, Poole AS, Yamazaki S, Menaker M. (2003). Is the food-entrainable circadian oscillator in the digestive system?. Genes Brain Behav. 2:32–39.
  • Feillet CA, Albrecht U, Challet E. (2006). “Feeding time” for the brain: a matter of clocks. J. Physiol. Paris 100:252–260.
  • Hurd MW, DeBruyne J, Straume M, Cahill GM. (1998). Circadian rhythms of locomotor activity in zebrafish. Physiol. Behav. 65:465–472.
  • Iijima M, Yamaguchi S, van der Horst GT, Bonnefont X, Okamura H, Shibata S. (2005). Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice. Neurosci. Res. 52:166–173.
  • Lahiri K, Vallone D, Gondi SB, Santoriello C, Dickmeis T, Foulkes NS. (2005). Temperature regulates transcription in the zebrafish circadian clock. PLoS Biol. 3:e351.
  • Lopez-Olmeda JF, Madrid JA, Sanchez-Vazquez FJ. (2006). Light and temperature cycles as zeitgebers of zebrafish (Danio rerio) circadian activity rhythms. Chronobiol. Int. 23:537–550.
  • Mendoza J. (2007). Circadian clocks: Setting time by food. J. Neuroendocrinol. 19:127–137.
  • Mendoza J, Graff C, Dardente H, Pevet P, Challet E. (2005). Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J. Neurosci. 25:1514–1522.
  • Mistlberger RE. (1994). Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18:171–195.
  • Mistlberger RE. (2006). Circadian rhythms: Perturbing a food-entrained clock. Curr. Biol. 16:968–969.
  • Nelson W, Tong YL, Lee JK, Halberg F. (1979). Methods for cosinor-rhythmometry. Chronobiologia 6:305–323.
  • Noeske-Hallin TA, Spieler RE, Parker NC, Suttle MA. (1985). Feeding time differentially affects fattening and growth of channel catfish. J. Nutr. 115:1228–1232.
  • Numano R, Yamazaki S, Umeda N, Samura T, Sujino M, Takahashi R, Ueda M, Mori A, Yamada K, Sakaki Y, Inouye ST, Menaker M, Tei H. (2006). Constitutive expression of the Period1 gene impairs behavioral and molecular circadian rhythms. Proc. Natl. Acad. Sci. USA. 103:3716–3721.
  • Pando MP, Sassone-Corsi P. (2002). Unraveling the mechanisms of the vertebrate circadian clock: Zebrafish may light the way. Bioessays 24:419–426.
  • Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. (2001). A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc. Natl. Acad. Sci. USA. 98:10178–10183.
  • Pardini L, Kaeffer B. (2006). Feeding and circadian clocks. Reprod. Nutr. Dev. 46:463–480.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Reebs SG, Lague M. (2000). Daily food-anticipatory activity in golden shiners. A test of endogenous timing mechanisms. Physiol. Behav. 70:35–43.
  • Sanchez-Vazquez FJ, Madrid JA. (2001). Feeding anticipatory activity: Food intake in fish. Blackwell Science Ltd., Oxford, pp. 216–232.
  • Sanchez-Vazquez FJ, Madrid JA, Zamora S, Tabata M. (1997). Feeding entrainment of locomotor activity rhythms in the goldfish is mediated by a feeding-entrainable circadian oscillator. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 181:121–132.
  • Sanchez-Vazquez FJ, Aranda A, Madrid JA. (2001). Differential effects of meal size and food energy density on feeding entrainment in goldfish. J. Biol. Rhythms 16:58–65.
  • Schibler U, Sassone-Corsi P. (2002). A web of circadian pacemakers. Cell 111:919–922.
  • Schibler U, Ripperger J, Brown SA. (2003). Peripheral circadian oscillators in mammals: Time and food. J. Biol. Rhythms 18:250–260.
  • Spieler RE, Clougherty JJ. (1989). Free-running locomotor rhythms of feeding-entrained goldfish. Zool. Sci. 6:813–816.
  • Spieler RE, Noeske TA. (1984). Effects of photoperiod and feeding schedule on diel variations of locomotor activity, cortisol, and thyroxine in goldfish. Trans. Am. Fish. Soc. 113:528–539.
  • Stephan FK. (2002). The “other” circadian system: Food as a zeitgeber. J. Biol. Rhythms 17:284–292.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science 291:490–493.
  • Tamai TK, Carr AJ, Whitmore D. (2005). Zebrafish circadian clocks: Cells that see light. Biochem. Soc. Trans. 33:962–966.
  • Tamai TK, Young LC, Whitmore D. (2007). Light signaling to the zebrafish circadian clock by cryptochrome 1a. Proc. Natl. Acad. Sci. USA. 104:14712–14717.
  • Tang R, Dodd A, Lai D, McNabb WC, Love DR. (2007). Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim. Biophys. Sin. (Shanghai) 39:384–390.
  • Vera LM, De PN, Gomez-Milan E, Delgado MJ, Sanchez-Muros MJ, Madrid JA, Sanchez-Vazquez FJ. (2007). Feeding entrainment of locomotor activity rhythms, digestive enzymes and neuroendocrine factors in goldfish. Physiol. Behav. 90:518–524.
  • Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13:1190–1196.
  • Weber DN, Spieler RE. (1987). Effects of the light-dark cycle and scheduled feeding on behavioral and reproductive rhythms of the cyprinodont fish, Medaka. Oryzias latipes. Experientia. 43:621–624.
  • Whitmore D, Foulkes NS, Sassone-Corsi P. (2000). Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 404:87–89.
  • Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, Siepka SM, Hong HK, Oh WJ, Yoo OJ, Menaker M, Takahashi JS. (2004). PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA. 101:5339–5346.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.