Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 6
290
Views
21
CrossRef citations to date
0
Altmetric
Research Papers

MELANOPSIN AND CLOCK GENES: REGULATION BY LIGHT AND ENDOTHELIN IN THE ZEBRAFISH ZEM-2S CELL LINE

, , , &
Pages 1090-1119 | Received 24 Sep 2008, Accepted 13 May 2009, Published online: 06 Oct 2009

REFERENCES

  • Abe H, Honma S, Namihira M, Tanahashi Y, Ikeda M, Yu W, Honma K. (1999). Phase-dependent induction by light of rat clock gene expression in the suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 66:104–110.
  • Aerts JL, Gonzales MI, Topalian SL. (2004). Selection of appropriate control genes to assess expression of tumor antigens using realtime RT–PCR. BioTechniques 36:84–91.
  • Akashi M, Nishida E. (2000). Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev. 14:645–649.
  • Albrecht U, Eichele G. (2003). The mammalian circadian clock. Curr. Opin. Gen. Dev. 13:271–277.
  • Albrecht U, Sun ZS, Eichele G, Lee CC. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064.
  • Balsalobre A, Damiola F, Schibler U. (1998). A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937.
  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schütz G, Schibler U.( 2000a). Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347.
  • Balsalobre A, Marcacci L, Schibler U. (2000b). Multiple signaling pathways elicit circadian gene expression in cultured Rat-1 fibroblasts. Curr. Biol. 10:1291–1294.
  • Bellingham J, Whitmore D, Philp AR, Wells DJ, Foster RG. (2002). Zebrafish melanopsin: Isolation, tissue localisation and phylogenetic position. Brain Res. Mol. Brain Res. 107:128–136.
  • Bellingham J, Chaurasia SS, Melyan Z, Liu C, Cameron MA, Emma E, Tarttelin EE, Iuvone PM, Hankins MW, Tosini G, Lucas RJ. (2006). Evolution of melanopsin photoreceptors: Discovery and characterization of a new melanopsin in nonmammalian vertebrates. PLoS Biol. 4:e254.
  • Benedito-Silva AA. (2003). Aspectos metodológicos da cronobiologia. In Marques N, Menna-Barreto LS. (eds.). Cronobiologia: Princípios e aplicações. São Paulo: EDUSP, pp. 297–320.
  • Berridge MJ, Lipp P, Bootman MD. (2000). The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 1:11–21.
  • Blau J, Young MW. (1999). Cycling vrille expression is required for a functional Drosophila clock. Cell 99:661–671.
  • Bootman MD, Taylor CW, Berridge MJ. (1992). The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J. Biol. Chem. 267:25113–25119.
  • Braasch I, Volff JN, Schartl M. (2009). The endothelin system: Evolution of vertebrate-specific ligand-receptor interactions by three rounds of genome duplication. Mol. Biol. Evol. 26:783–799.
  • Cacace AM, Ueffing M, Philipp A, Han EK, Kolch W, Weinstein IB. (1996). PKC epsilon functions as an oncogene by enhancing activation of the Raf kinase. Oncogene 13:2517–2526.
  • Cahill GM. (2002). Clock mechanisms in zebrafish. Cell Tissue Res. 309:27–34.
  • Carr AJ, Whitmore D. (2005). Imaging of single light-responsive clock cells reveals fluctuating free-running periods. Nat. Cell Biol. 7:319–321.
  • Carr AJF, Tamai T, Young K, Ferrer LC, Dekens V, Marcus P, Whitmore D. (2006). Light reaches the very heart of the zebrafish clock. Chronobiol. Int. 23:91–100.
  • Ceriani MF, Darlington TK, Staknis D, Mas P, Petti AA, Weitz CJ, Kay SA. (1999). Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science 285:553–556.
  • Cermakian N, Pando MP, Thompson CL, Pinchak AB, Selby CP, Gutierrez L, Ewlls DE, Cahill GM, Sancar A, Sassone-Corsi P. (2002). Light induction of a vertebrate clock gene involves signaling through blue-light receptors and MAP kinases. Curr. Biol. 12:844–848.
  • Chen S, Khan ZA, Karmazyn M, Chakrabarti S. (2007). Role of endothelin-1, sodium hydrogen exchanger-1 and mitogen activated protein kinase (MAPK) activation in glucose-induced cardiomyocyte hypertrophy. Diabetes Metab. Res. Rev. 23:56–67.
  • Cobb MH, Boulton TG, Robbins DJ. (1991). Extracellular signal-regulated kinases: ERKs in progress. Cell Regul. 2:965–978.
  • Cowell IG, Skinner A, Hurst HC. (1992). Transcriptional repression by a novel member of the bZIP family of transcription factors. Mol. Cell. Biol. 12:3070–3077.
  • Curley AT, Callard GV. (2008). Characterization of housekeeping genes in zebrafish: Male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol. Biol. 9:102–114.
  • Cyran SA, Buchsbaum AM, Reddy KL, Lin MC, Glossop NR, Hardin PE, Young MW, Storti RV, Blau J. (2003). vrille Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112:329–341.
  • Dardente H, Cermakian N. (2007). Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Davenport AP. (2002). International Union of Pharmacology XXIX. Update on endothelin receptor nomenclature. Pharmacol. Rev. 54:219–226.
  • Dekens MP, Santoriello C, Vallone D, Grassi G, Whitmore D, Foulkes NS. (2003). Light regulates the cell cycle in zebrafish. Curr. Biol. 13:2051–2057.
  • Emery P, So WV, Kaneko M, Hall JC, Rosbash M. (1998). CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 95:669–679.
  • Field MD, Maywood ES, O'Brien JA, Weaver DR, Reppert SM, Hastings MH. (2000). Analysis of clock proteins in mouse SCN demonstrates phylogenetic divergence of the circadian clockwork and resetting mechanisms. Neuron 25:437–447.
  • Filadelfi AM, Ramanzini GC, Visconti MA, Castrucci AML. (2004). The endothelin/sarafotoxin-induced increase of the proliferation of undifferentiated and DMSO-differentiated GEM-81 goldfish erythrophoroma cells is mediated by ETB receptors. Pigment Cell Res. 17:480–487.
  • Fujii R. (2000). The regulation of motile activity in fish chromatophores. Pigment Cell Res. 13:300–319.
  • Glossop NR, Houl JH, Zheng H, Ng FS, Dudek SM, Hardin PE. (2003). VRILLE feeds back to control circadian transcription of Clock in the Drosophila circadian oscillator. Neuron 37:249–261.
  • Goidin D, Mamessier A, Staquet M-J, Schmitt D, Berthier-Vergnes O. (2001). Ribosomal 18S RNA prevails over glyceraldehyde-3-phosphate dehydrogenase and beta-actin genes as internal standard for quantitative comparison of mRNA levels in invasive and noninvasive human melanoma cell subpopulations. Anal. Biochem. 295:17–21.
  • Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P. (1988). c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55:917–924.
  • Halberg HE, Pauly JE, Cardoso S, Kühl JF, Sothern RB, Shiotsuka RN, Hwang DS. (1972). Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science 177:80–82.
  • Hardingham GE, Cruzalegui FH, Chawla S, Bading H. (1998). Mechanisms controlling gene expression by nuclear calcium signals. Cell Calcium 23:131–134.
  • Haus-Seuffert P, Meisterernst M. (2000). Mechanisms of transcriptional activation of cAMP-responsive element-binding protein CREB. Mol. Cell. Biochem. 212:5–9.
  • Higgins D, Thompson J, Gibson T, Thompson JD, Higgins DG, Gibson TJ. (1994). CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
  • Hirayama J, Cardone L, Doi M, Sassone-Corsi P. (2005). Common pathways in circadian and cell cycle clocks: Light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc. Natl. Acad. Sci. USA 102:10194–10199.
  • Im LHJ, Isoldi M.C., Scarparo A.C., Castrucci AML, Visconti M.A.. (2006). Rhythmic expression, light entrainment and 〈-MSH modulation of rhodopsin in a teleost pigment cell line. Comp. Biochem. Physiol. 147:691–696.
  • Imokawa G, Yada Y, Kimura M. (1996). Signalling mechanisms of endothelin-induced mitogenesis and melanogenesis in human melanocytes. Biochem. J. 314:305–312.
  • Imokawa G, Kobayashi T, Miyagishi M, Higashi K, Yada Y. (1997). The role of endothelin-1 epidermal hyperpigmentation and signaling mechanisms of mitogenesis and melanogenesis. Pigment Cell Res. 10:218–228.
  • Imokawa G, Kobayasi T, Miyagishi M. (2000). Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes. J. Biol. Chem. 27:33321–33328.
  • Isoldi MC, Rollag MD, Castrucci AM, Provencio I. (2005). Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin. Proc. Natl. Acad. Sci. USA 102:1217–1221.
  • Kang H, Kang W, Lee C. (1998). Endothelin-B receptor-mediated Ca2+ signaling in human melanocytes. Eur. J. Physiol. 435:350–356.
  • Karne S, Jayawickreme CK, Lerner MR. (1993). Cloning and characterization of an endothelin-3 specific receptor (ETC receptor) from Xenopus laevis dermal melanophores. J. Biol. Chem. 268:19126–19133.
  • Kedzierski RM, Yanagisawa M. (2001). Endothelin system: The double-edged sword in health and disease. Annu. Rev. Pharmacol. Toxicol. 41:851–876.
  • Kobayashi A, Hachiya A, Ohuchi A, Kitahara T, Takema Y. (2002). Inhibitory mechanism of an extract of Althaea officinalis L. on endothelin-1-induced melanocyte activation. Biol. Pharm. Bull. 25:229–234.
  • Kobayashi Y, Ishikawa T, Hirayama J, Daiyasu H, Kanai S, Toh H, Fukuda I, Tsujimura T, Terada N, Kamei Y, Yuba S, Iwai S, Todo T. (2000). Molecular analysis of zebrafish photolyase/cryptochrome family: Two types of cryptochromes present in zebrafish. Genes Cells 5:725–738.
  • Kochva E, Bdolah A, Wollberg Z. (1993). Sarafotoxins and endothelins: Evolution, structure and function. Toxicon 31:541–568.
  • Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischack H, Finkenzeller G, Marme D, Rapp UR. (1993). Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364:249–252.
  • Kornhauser JM, Mayo KE, Takahashi JS. (1996). Light, immediate-early genes, and circadian rhythms. Behav. Genet. 26:221–240.
  • Kumbalasiri T, Rollag MD, Isoldi M, Castrucci AM, Provencio I. (2006). Melanopsin triggers the release of internal calcium stores in response to light. Photochem. Photobiol. 103:10432–10437.
  • Lowrey PL, Takahashi JS. (2004). Mammalian circadian biology: Elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5:407–441.
  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. (2003). Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259.
  • Mikoshiba K. (2007). IP3 receptor/Ca2+ channel: From discovery to new signaling concepts. J. Neurochem. 102:1426–1446.
  • Monk TH, Fort A. (1983). COSINA—a cosine curve fitting program suitable for small computers. Int. J. Chronobiol. 8:193–222.
  • Morris ME, Viswanathan N, Kuhlman S, Davis FC, Weitz CJ. (1998). A screen for genes induced in the suprachiasmatic nucleus by light. Science 279:1544–1547.
  • Moutsaki P, Whitmore D, Bellingham J, Sakamoto K, David-Gray ZK, Foster RG. (2003). Teleost multiple tissue (tmt) opsin: A candidate photopigment regulating the peripheral clocks of zebrafish?. Brain Res. Mol. Brain Res. 112:135–145.
  • Muldoon LL, Rodland KD, Forsythe ML, Magun BE. (1989). Stimulation of phosphatidylinositol hydrolysis, diacylglycerol release, and gene expression in response to endothelin, a potent new agonist for fibroblasts and smooth muscle cells. J. Biol. Chem. 264:8529–8536.
  • Nagoshi E, Saini C, Bauer C, Laroche T, Schibler U. (2004). Circadian gene expression in individual fibroblasts: Cell-autonomous and self–sustained oscillators pass time to daughter cells. Cell 119:693–705.
  • Nakahata Y, Akashi M, Trcka D, Yasuda A, Takumi T. (2006). The in vitro real-time oscillation monitoring system identifies potential entrainment factors for circadian clocks. BMC Mol. Biol. 7:5–12.
  • Naruse Y, Oh-hashi K, Iijima N, Naruse M, Yoshioka H, Tanaka M. (2004). Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell. Biol. 24:6278–6287.
  • Nishimura Y, Tanaka T. (2001). Calcium-dependent activation of nuclear factor regulated by interleukin 3/adenovirus E4 promoter-binding protein gene expression by calcineurin/nuclear factor of activated T cells and calcium/calmodulin-dependent protein kinase signaling. J. Biol. Chem. 276:19921–19928.
  • Obrietan K, Impey S, Storm DR. (1998). Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nature Neurosci. 1:693–700.
  • Ohno T, Onishi T, Ishida N. (2007). A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res. 35:648–655.
  • Panda S, Sato TK, Castrucci AM, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA. (2002). Melanopsin (Opn 4) is required for circadian phase shifting under low light conditions. Science 298:2213–2216.
  • Panda S, Provencio I, Tu DC, Pires SS, Rollag MD, Castrucci AM, Pletcher MT, Sato TK, Wiltshire T, Andahazy M, Kay SA, Van Gelder RN, Hogenesch JB. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science 301:525–527.
  • Pando MP, Pinchak AB, Cermakian N, Sassone-Corsi P. (2001). A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. Proc. Natl. Acad. Sci. USA 98:10178–10183.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Provencio I, Rollag MD, Castrucci AML. (2002). Discovery of a photoreceptor net in the mammalian retina. Nature 415:493
  • Ramanzini GC, Filadelfi AM, Visconti MA. (2006). Chromatic effects of endothelin family peptides in non-innervated fish Synbranchus marmoratus, melanophores. J. Exp. Zool. A Comp. Exp. Biol. 305:551–558.
  • Sakamoto K, Liu C, Kasamatsu M, Pozdeyev NV, Iuvone PM, Tosini G. (2005). Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur. J. Neurosci. 22:3129–3136.
  • Schimid H, Cohen CD, Henger A, Irrgang S, Schlondor D, Kretzler VM. (2003). Validation of endogenous controls for gene expression analysis in microdissected human renal biopsies. Kidney Int. 64:356–360.
  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Jr, Reppert SM. (1997). Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269.
  • Shearman LP, Jin X, Lee C, Reppert SM, Weaver DR. (2000). Targeted disruption of the mPer3 gene: Subtle effects on circadian clock function. Mol. Cell. Biol. 20:6269–6275.
  • Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC. (1998). The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila. Cell 95:681–692.
  • Takahashi JS. (1995). Molecular neurobiology and genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 18:531–553.
  • Takashima N, Fujioka A, Hayasaka N, Matsuo A, Takasaki J, Shigeyoshi Y. (2006). Gq/11-induced intracellular calcium mobilization mediates Per2 acute induction in Rat-1 fibroblasts. Genes Cells 11:1039–1049.
  • Takumi T, Taguchi K, Miyake S, Sakakida Y, Takashima N, Matsubara C, Maebayashi Y, Okumura K, Takekida S, Yamamoto S, Yagita K, Yan L, Young MW, Okamura H. (1998). A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17:4753–4759.
  • Tamai TK, Young LC, Whitmore D. (2007). Light signaling to the zebrafish circadian clock by Cryptochrome 1a. Proc. Natl. Acad. Sci. USA 104:14712–14717.
  • Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99:728–733.
  • Ueffing M, Lovric J, Philipp A, Mischak H, Kolch W. (1997). Protein kinase C-epsilon associates with the Raf-1 kinase and induces the production of growth factors that stimulate Raf-1 activity. Oncogene 15:2921–2927.
  • Ukai H, Kobayashi TJ, Nagano M, Masumoto K, Sujino M, Kondo T, Yagita K, Shigeyoshi Y, Ueda HR. (2007). Melanopsin-dependent photo-perturbation reveals desynchronization underlying the singularity of mammalian circadian clocks. Nature Cell Biol. 9:1327–1334.
  • Whitmore D, Foulkes NS, Sassone-Corsi P. (2000). Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 408:81–91.
  • Yada Y, Higuchi K, Imokawa G. (1991). Effects of endothelins on signal transduction and proliferation in human melanocytes. J. Biol. Chem. 26:18352–18357.
  • Yagita K, Tamanini F, van Der Horst GT, Okamura H. (2001). Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278–281.
  • Yamaguchi S, Mitsui S, Miyake S, Yan L, Onishi H, Yagita K, Suzuki M, Shibata S, Kobayashi M, Okamura H. (2000). The 5′ upstream region of mPer1 gene contains two promoters and is responsible for circadian oscillation. Curr. Biol. 10:873–876.
  • Zhu L-J, Altman SW. (2005). mRNA and 18S–RNA coapplication-reverse transcription for quantitative gene expression analysis. Anal. Biochem. 345:102–109.
  • Zhuang M, Wang Y, Steenhard BM, Besharse JC. (2000). Differential regulation of two period genes in the Xenopus eye. Brain Res. Mol. Brain Res. 82:52–64.
  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM. (1998). rThree period homologs in mammals: Differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.