Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 1
326
Views
33
CrossRef citations to date
0
Altmetric
Research Papers

FEEDING-INDUCED RAPID RESETTING OF THE HEPATIC CIRCADIAN CLOCK IS ASSOCIATED WITH ACUTE INDUCTION OF PER2 AND DEC1 TRANSCRIPTION IN RATS

, , &
Pages 1-18 | Received 30 Jun 2009, Accepted 26 Aug 2009, Published online: 05 Mar 2010

REFERENCES

  • Albrecht U, Sun ZS, Eichele G, Lee CC. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064.
  • Caldelas I, Poirel VJ, Sicard B, Pevet P, Challet E. (2003). Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience 116:583–591.
  • Challet E, Pevet P. (2003). Interactions between photic and nonphotic stimuli to synchronize the master circadian clock in mammals. Front. Biosci. 8:S246–S257.
  • Challet E, Solberg LC, Turek FW. (1998). Entrainment in calorie-restricted mice: Conflicting zeitgebers and free-running conditions. Am. J. Physiol. 274:R1751–R1761.
  • Comperatore CA, Stephan FK. (1987). Entrainment of duodenal activity to periodic feeding. J. Biol. Rhythms 2:227–242.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. (2000). Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • Dardente H, Cermakian N. (2007). Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Dong Y, Wu T, Ni Y, Kato H, Fu Z. (2010). Effect of fasting on the peripheral circadian gene expression in rats. Biol. Rhythm. Res.41:41–47.
  • Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL. (2003). Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301:379–383.
  • Escobar C, Martinez-Merlos MT, Angeles-Castellanos M, del Carmen Minana M, Buijs RM. (2007). Unpredictable feeding schedules unmask a system for daily resetting of behavioural and metabolic food entrainment. Eur. J. Neurosci. 26:2804–2814.
  • Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E. (2006). Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16:2016–2022.
  • Feillet CA, Mendoza J, Albrecht U, Pévet P, Challet E. (2008). Forebrain oscillators ticking with different clock hands. Mol. Cell. Neurosci. 37:209–221.
  • Froy O. (2007). The relationship between nutrition and circadian rhythms in mammals. Front. Neuroendocrinol. 28:61–71.
  • Green CB, Takahashi JS, Bass J. (2008). The meter of metabolism. Cell 134:728–742.
  • Hara R, Wan K, Wakamatsu H, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted feeding entrains liver clock without participation of the suprachiasmatic nucleus. Genes Cells 6:269–278.
  • Honma KI, Honma S, Hiroshige T. (1983). Critical role of food amount for prefeeding corticosterone peak in rats. Am. J. Physiol. 245:R339–R344.
  • Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K. (2002). Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844.
  • Horikawa K, Minami Y, Iijima M, Akiyama M, Shibata S. (2005). Rapid damping of food-entrained circadian rhythm of clock gene expression in clock-defective peripheral tissues under fasting conditions. Neuroscience 134:335–343.
  • Kawamoto T, Noshiro M, Furukawa M, Honda KK, Nakashima A, Ueshima T, Usui E, Katsura Y, Fujimoto K, Honma S, Honma K, Hamada T, Kato Y. (2006). Effects of fasting and re-feeding on the expression of Dec1, Per1, and other clock-related genes. J. Biochem. 140:401–408.
  • Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. (2007). System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5:e34.
  • Lamia KA, Storch KF, Weitz CJ. (2008). Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105:15172–15177.
  • Mendoza J, Pevet P, Challet E (2007). Circadian and photic regulation of clock and clock-controlled proteins in the suprachiasmatic nuclei of calorie-restricted mice. Eur. J. Neurosci. 25:3691–3701.
  • Mikuni M, Saito Y, Koyama T, Yamashita I. (1981). Circadian variation of cyclic AMP in the rat pineal gland. J. Neurochem. 36:1295–1297.
  • Minana-Solis MC, Angeles-Castellanos M, Feillet C, Pevet P, Challet E, Escobar C. (2009). Differential effects of a restricted feeding schedule on clock-gene expression in the hypothalamus of the rat. Chronobiol. Int. 26:808–820.
  • Pitts S, Perone E, Silver R. (2003). Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285:R57–R67.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological rhythm research. Chronobiol. Int. 25:999–1016.
  • Quintero JE, Kuhlman SJ, McMahon DG. (2003). The biological clock nucleus: A multiphasic oscillator network regulated by light. J. Neurosci. 23:8070–8076.
  • Reppert SM, Weaver DR. (2002). Coordination of circadian timing in mammals. Nature 418:935–941.
  • Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB. (2006). Feedback repression is required for mammalian circadian clock function. Nat. Genet. 38:312–319.
  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF, Reppert SM. (1997). Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269.
  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053.
  • Stephan FK. (2002). The “other” circadian system: Food as a zeitgeber. J. Biol. Rhythms 17:284–292.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. (2001). Entrainment of the circadian clock in the liver by feeding. Science 291:490–493.
  • Storch KF, Weitz CJ. (2009). Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc. Natl. Acad. Sci. USA 106:6808–6813.
  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83.
  • Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted-feeding-induced anticipatory activity rhythm is associated with a phaseshift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13:1190–1196.
  • Wu T, Jin Y, Kato H, Fu Z. (2008a). Light and food signals cooperate to entrain the rat pineal circadian system. J. Neurosci. Res. 86:3246–3255.
  • Wu T, Jin Y, Ni Y, Zhang D, Kato H, Fu Z. (2008b). Effects of light cues on re-entrainment of the food-dominated peripheral clocks in mammals. Gene 419:27–34.
  • Zylka MJ, Shearman LP, Weaver DR, Reppert SM. (1998). Three period homologs in mammals: Differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.