Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 26, 2009 - Issue 7
1,106
Views
57
CrossRef citations to date
0
Altmetric
Review Article

THE FOOD-ENTRAINABLE OSCILLATOR: A NETWORK OF INTERCONNECTED BRAIN STRUCTURES ENTRAINED BY HUMORAL SIGNALS?

&
Pages 1273-1289 | Received 06 Feb 2009, Accepted 08 Jun 2009, Published online: 16 Nov 2009

REFERENCES

  • Amir S, Lamont EW, Robinson B, Stewart J. (2004). A circadian rhythm in the expression of PERIOD2 protein reveals a novel SCN-controlled oscillator in the oval nucleus of the bed nucleus of the stria terminalis. J. Neurosci. 24: 781–790.
  • Ángeles-Castellanos M, Aguilar-Roblero R, Escobar C. (2004). c-Fos expression in hypothalamic nuclei of food-entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286: R158–R165.
  • Ángeles-Castellanos M, Mendoza J, Díaz-Muñoz M, Escobar C. (2005). Food entrainment modifies the c-Fos expression pattern in brain stem nuclei of rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288: R678–R684.
  • Ángeles-Castellanos M, Mendoza J, Escobar C. (2007). Restricted feeding schedules phase shift daily rhythms of c-Fos and protein Per1 immunoreactivity in corticolimbic regions in rats. Neuroscience 144: 344–355.
  • Azzaydi M, Rubio VC, Martínez López FJ, Sánchez-Vázquez FJ, Zamora S, Madrid JA. (2007). Effect of restricted feeding schedule on seasonal shifting of daily demand-feeding pattern and food anticipatory activity in European sea bass (Dicentrarchus labrax L.). Chronobiol. Int. 24: 859–874.
  • Batterham RL, Heffron H, Kapoor S, Chivers JE, Chandarana K, Herzog H, Le Roux CW, Thomas EL, Bell JD, Withers DJ. (2006). Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 4: 223–233.
  • Bodosi B, Gardi J, Hajdu I, Szentirmai E, Obal FJr, Krueger JM. (2004). Rhythms of ghrelin, leptin, and sleep in rats: Effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287: R1071–R1079.
  • Burdakov D, González JA. (2009). Physiological functions of glucose-inhibited neurons. Acta Physiol. 195: 71–78.
  • Burdakov D, Luckman SM, Verkhratsky A. (2005). Glucose-sensing neurons of the hypothalamus. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360: 2227–2235.
  • Chou TC, Scammell TE, Gooley JJ, Gaus SE, Saper CB, Lu J. (2003). Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23: 10691–10702.
  • Coleman GJ, Hay M. (1990). Ancitipatory wheel-running in behaviorally anosmic rats. Physiol. Behav. 47: 1145–1151.
  • Coll AP, Farooqi IS, O'rahilly S. (2007). The hormonal control of food intake. Cell 129: 251–262.
  • Comperatore CA, Stephan FK. (1987). Entrainment of duodenal activity to periodic feeding. J. Biol. Rhythms 2: 227–242.
  • Comperatore CA, Stephan FK. (1990). Effects of vagotomy on entrainment of activity rhythms to food access. Physiol. Behav. 47: 671–678.
  • Coppola A, Diano S. (2007). Hormonal regulation of the arcuate nucleus melanocortin system. Front. Biosci. 12: 3519–3530.
  • Cummings DE. (2006). Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 89: 71–84.
  • Dalton LD, Carpenter RG, Grossman SP. (1981). Ingestive behavior in adult rats with dorsomedial hypothalamic lesions. Physiol. Behav. 26: 117–123.
  • Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. (2000). Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141: 4255–4261.
  • Davidson AJ. (2006). Search for the feeding-entrainable circadian oscillator: A complex proposition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290: R1524–R1526.
  • Davidson AJ, Stephan FK. (1998). Circadian food anticipation persists in capsaicin deafferented rats. J. Biol. Rhythms 13: 422–429.
  • Davidson AJ, Stephan FK. (1999). Plasma glucagon, glucose, insulin, and motilin in rats anticipating daily meals. Physiol. Behav. 66: 309–315.
  • Davidson AJ, Aragona BJ, Houpt TA, Stephan FK. (2001a). Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat. Physiol. Behav. 74: 349–354.
  • Davidson AJ, Aragona BJ, Werner RM, Schroeder E, Smith JC, Stephan FK. (2001b). Food-anticipatory activity persists after olfactory bulb ablation in the rat. Physiol. Behav. 72: 231–235.
  • Davidson AJ, Stokkan K, Yamazaki S, Menaker M. (2002). Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats. Physiol. Behav. 76: 21–26.
  • Dawson RJr, Annau Z. (1983). A behavioral assessment of arcuate nucleus damage after a single injection of monosodium glutamate. Neurobehav. Toxicol. Teratol. 5: 399–406.
  • Díaz-Muñoz M, Vázquez-Martínez O, Aguilar-Roblero R, Escobar C. (2000). Anticipatory changes in liver metabolism and entrainment of insulin, glucagon, and corticosterone in food-restricted rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 279: R2048–R2056.
  • Drazen DL, Vahl TP, D'Alessio DA, Seeley RJ, Woods SC. (2006). Effects of a fixed meal pattern on ghrelin secretion: Evidence for a learned response independent of nutrient status. Endocrinology. 147: 23–30.
  • Dudley CA, Erbel-Sieler C, Estill SJ, Reick M, Franken P, Pitts S, McKnight SL. (2003). Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301: 379–383.
  • Elmquist JK, Bjorbaek C, Ahima RS, Flier JS, Saper CB. (1998). Distributions of leptin receptor mRNA isoforms in the rat brain. J. Comp. Neurol. 395: 535–547.
  • Escobar C, Díaz-Muñoz M, Encinas S, Aguilar-Roblero R. (1998). Persistence of metabolic rhythmicity during fasting and its entrainment by restricted feeding schedules in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 274: R1309–R1316.
  • Fan W, Ellacott KLJ, Halatchev IG, Takahashi K, Yu P, Cone RD. (2004). Cholecystokinin-mediated suppression of feeding involves the brainstem melanocortin system. Nat. Neurosci. 7: 335–336.
  • Faulconbridge LF, Grill HJ, Kaplan JM, Daniels D. (2008). Caudal brainstem delivery of ghrelin induces Fos expression in the nucleus of solitary tract, but not in the arcuate or paraventricular nuclei of the hypothalamus. Brain Res. 1218: 151–157.
  • Feillet CA, Ripperger JA, Magnone MC, Dulloo A, Albrecht U, Challet E. (2006). Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16: 2016–2022.
  • Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS. (1995). Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat. Medicine. 1: 1311–1314.
  • Fry M, Ferguson AV. (2008). Ghrelin modulates electrical activity of area postrema neurons. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296: R485–R492.
  • Fuller PM, Lu J, Saper CB. (2008). Differential rescue of light- and food-entrainable circadian rhythms. Science 320: 1074–1077.
  • Gooley JJ, Schomer A, Saper CB. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9: 398–407.
  • Grill HJ, Schwartz MW, Kaplan JM, Foxhall JS, Breininger J, Baskin DG. (2002). Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143: 239–246.
  • Holst JJ. (2007). The physiology of glucagon-like peptide 1. Physiol. Rev. 87: 1409–1439.
  • Iijima M, Yamaguchi S, van der Horst GTJ, Bonnefont X, Okamura H, Shibata S. (2005). Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice. Neurosci. Res. 52: 166–173.
  • Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. (2000). Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology 141: 4797–4800.
  • Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I. (2001). Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and agouti-related protein mRNA levels and body weight in rats. Diabetes 50: 2438–2443.
  • Kelley AE, Baldo BA, Pratt WE. (2005). A proposed hypothalamic-thalamic-striatal axis for the integration of energy balance, arousal, and food reward. J. Comp. Neurol. 493: 72–85.
  • Kobelt P, Wisser A, Stengel A, Goebel M, Inhoff T, Noetzel S, Veh RW, Bannert N, van der Voort I, Wiedenmann B, Klapp BF, Taché Y, Mönnikes H. (2008). Peripheral injection of ghrelin iduces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain Res. 1204: 77–86.
  • Krieger DT. (1974). Food and water restriction shifts corticosterone, temperature, activity and brain amine periodicity. Endocrinology 95: 1195–1201.
  • Lamont EW, Diaz LR, Barry-Shaw J, Stewart J, Amir S. (2005a). Daily restricted feeding rescues a rhythm of period2 expression in the arrhythmic suprachiasmatic nucleus. Neuroscience 132: 245–248.
  • Lamont EW, Robinson B, Stewart J, Amir S. (2005b). The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc. Natl. Acad. Sci. USA. 102: 4180–4184.
  • Landry GJ, Simon MM, Webb IC, Mistlberger RE. (2006). Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290: R1527–R1534.
  • Landry GJ, Yamakawa GR, Webb IC, Mear RJ, Mistlberger RE. (2007). The dorsomedial hypothalamic nucleus is not necessary for the expression of food-anticipatory activity in rats. J. Biol. Rhythms 22: 467–478.
  • Martínez-Merlos MT, Ángeles-Castellanos M, Díaz-Muñoz M, Aguilar-Roblero R, Mendoza J, Escobar C. (2004). Dissociation between adipose tissue signals, behavior and the food-entrained oscillator. J. Endocrinol. 181: 53–63.
  • Mieda M, Williams SC, Sinton CM, Richardson JA, Sakurai T, Yanagisawa M. (2004). Orexin neurons function in an efferent pathway of a food-entrainable circadian oscillator in eliciting food-anticipatory activity and wakefulness. J. Neurosci. 24: 10493–10501.
  • Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M. (2006). The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. USA. 103: 12150–12155.
  • Mistlberger RE. (1994). Circadian food-anticipatory activity: Formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18: 171–195.
  • Mistlberger RE, Antle MC. (1999). Neonatal monosodium glutamate alters circadian organization of feeding, food anticipatory activity and photic masking in the rat. Brain Res. 842: 73–83.
  • Mistlberger RE, Marchant EG. (1995). Computational and entrainment models of circadian food-anticipatory activity: Evidence from non-24-h feeding schedules. Behav. Neurosci. 109: 790–798.
  • Mistlberger RE, Marchant EG. (1998). Enhanced food-anticipatory circadian rhythms in the genetically obese Zucker rat. Physiol. Behav. 66: 329–335.
  • Mistlberger RE, Rusak B. (1987). Palatable daily meals entrain anticipatory activity rhythms in free-feeding rats: Dependence on meal size and nutrient content. Physiol. Behav. 41: 219–226.
  • Mistlberger RE, Skene DJ. (2004). Social influences on mammalian circadian rhythms: Animal and human studies. Biol. Rev. Camb. Philos. Soc. 79: 533–556.
  • Mistlberger RE, Yamazaki S, Pendergast JS, Landry GJ, Takumi T, Nakamura W. (2008). Comment on “Differential rescue of light- and food-entrainable circadian rhythms.”. Science 322: 675a.
  • Mistlberger RE, Kent BA, Landry GJ. (2009). Phenotyping food entrainment: Motion sensors and telemetry are equivalent. J. Biol. Rhythms 24: 95–98.
  • Moberg GP, Bellinger LL, Mendel VE. (1975). Effect of meal feeding on daily rhythms of plasma corticosterone and growth hormone in the rat. Neuroendocrinology 19: 160–169.
  • Mondal MS, Date Y, Yamaguchi H, Toshinai K, Tsuruta T, Kangawa K, Nakazato M. (2005). Identification of ghrelin and its receptor in neurons of the rat arcuate nucleus. Regul. Pept. 126: 55–59.
  • Moriya T, Aida R, Kudo T, Akiyama M, Doi M, Hayasaka N, Nakahata N, Mistlberger RE, Okamura H, Shibata S. (2009). The dorsomedial hypothalamic nucleus is not necessary for food-anticipatory circadian rhythms of behavior, temperature or clock gene expression in mice. Eur. J. Neurosci. 29: 1447–1460.
  • Persons JE, Stephan FK, Bays ME. (1993). Diet-induced obesity attenuates anticipation of food access in rats. Physiol. Behav. 54: 55–64.
  • Poulin AM, Timofeeva E. (1998). The dynamics of neuronal activation during food anticipation in the brain of food-entrained rats. Brain Res. 1227: 128–141.
  • Reick M, Garcia JA, Dudley C, McKnight SL. (2001). NPAS2: An analog of clock operative in the mammalian forebrain. Science 293: 506–509.
  • Richter CP. (1922). A behavioristic study of the activity of the rat. Comp. Psychol. Monogr. 1: 1–54.
  • Ritter RC, Ladenheim EE. (1985). Capsaicin pretreatment attenuates suppression of food intake by cholecystokinin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 248: R501–R504.
  • Roky R, Kapás L, Taishi P, Fang J, Krueger JM. (1999). Food restriction alters the diurnal distribution of sleep in rats. Physiol. Behav. 97: 697–703.
  • Stephan FK. (1981). Limits of entrainment to periodic feeding in rats with suprachiasmatic lesions. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 143: 401–410.
  • Stephan FK. (1986). Interactions between light- and feeding-entrainable circadian rhythms in the rat. Physiol. Behav. 38: 127–133.
  • Stephan FK. (1989). Entrainment of activity to multiple feeding times in rats with suprachiasmatic lesions. Physiol. Behav. 46: 489–497.
  • Stephan FK. (2002). The “other” circadian system: Food as a zeitgeber. J. Biol. Rhythms 17: 284–292.
  • Stephan FK, Davidson AJ. (1998). Glucose, but not fat, phase shifts the feeding-entrained circadian clock. Physiol. Behav. 65: 277–288.
  • Stephan FK, Swann JM, Sisk CL. (1979). Anticipation of 24 h feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav. Neural Biol. 25: 346–363.
  • Szentirmai E, Hajdu I, Obal RJr, Krueger JM. (2006). Ghrelin-induced sleep responses in ad libitum fed and food-restricted rats. Brain Res. 1088: 131–140.
  • Thompson RH, Swanson LW. (1998). Organization of inputs to the dorsomedial nucleus of the hypothalamus: A reexamination with fluorogold and PHAL in the rat. Brain Res. Rev. 27: 89–118.
  • Toshinai K, Date Y, Murakami N, Shimada M, Mondal MS, Shimbara T, Guan J, Wang Q, Funahashi H, Sakurai T, Shioda S, Matsukura S, Kangawa K, Nakazato M. (2006). Ghrelin-induced food intake is mediated via the orexin pathway. Endocrinology 144: 1506–1512.
  • Verwey M, Khoja Z, Stewart J, Amir S. (2007). Differential regulation of the expression of Period2 protein in the limbic forebrain and dorsomedial hypothalamus by daily limited access to highly palatable food in food-deprived and free-fed rats. Neuroscience 147: 277–285.
  • Waddington Lamont E, Harbour VL, Barry-Shaw J, Renteria Diaz L, Robinson B, Stewart J, Amir S. (2007). Restricted access to food, but not sucrose, saccharine, or salt, synchronizes the expression of period2 protein in the limbic forebrain. Neuroscience 144: 402–411.
  • Wakamatsu H, Yoshinobu Y, Aida R, Moriya T, Akiyama M, Shibata S. (2001). Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13: 1190–1196.
  • Willesen MG, Kristensen P, Romer J. (1999). Co-localization of growth hormone secretagogue receptor and NPY mRNA in the arcuate nucleus of the rat. Neuroendocrinology 70: 306–316.
  • Wynne K, Bloom SR. (2006). The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nat. Clin. Pract. Endocrinol. Metab. 2: 612–620.
  • Yamanaka A, Beuckmann CT, Willie JT, Hara J, Tsujino N, Mieda M, Tominaga M, Yagami K, Sugiyama F, Goto K, Yanagisawa M, Sakurai T. (2003). Hypothalamic orexin neurons regulate arousal according to energy balance in mice. Neuron. 38: 701–713.
  • Yang L, Scott KA, Hyun J, Tamashiro KL, Tray N, Moran TH, Bi S. (2009). Role of the dorsomedial hypothalamic neuropeptide Y in modulating food intake and energy balance. J. Neurosci. 29: 179–190.
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature. 372: 425–432.
  • Zigman JM, Jones JE, Lee CE, Saper CB, Elmquist JK. (2006). Expression of ghrelin receptor mRNA in the rat and the mouse brain. J. Comp. Neurol. 20: 528–548.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.